Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für...

40
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany PSI-18 28 May 2008
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    219
  • download

    0

Transcript of Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für...

Page 1: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Deuterium retention mechanisms in beryllium

M. Reinelt, Ch. Linsmeier

Max-Planck-Institut für PlasmaphysikEURATOM Association, Garching b. München, Germany

PSI-18 28 May 2008

Page 2: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Outline

Motivation Results of thermal release experiments Variation of ...

* Irradiation fluence* Implantation temperature * BeO coverage

Modeling Energy diagram of D / Be

Conclusion

ITER cross section

Page 3: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

D implantation into beryllium

Deuterium retention / thermal recycling of ITER main wall

Be : Fast reaction with O2 / H2O

Previous experiments : BeO contaminated surfaces

Investigation of System Be (+BeO) / D

Clean Be / D : NO DATA !

D implantation into beryllium

Deuterium retention / thermal recycling of ITER main wall

Be : Fast reaction with O2 / H2O

Previous experiments : BeO contaminated surfaces

Investigation of System Be (+BeO) / D

Clean Be / D : NO DATA !

Be: ~700 m2Be: ~700 m2

D,T

Motivation

Page 4: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Be (+ BeO)1 and 1.5 keVD implantation

Motivation

D,T

Variation by 1 ORDER OF MAGNITUDE !1 ORDER OF MAGNITUDE !

Variation by 1 ORDER OF MAGNITUDE !1 ORDER OF MAGNITUDE !

Be: ~700 m2Be: ~700 m2[Anderl et al. 1999]

Page 5: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Concept

Issues to be solved:

1.1. Retention in pure Be ?Retention in pure Be ?2.2. CrystallinityCrystallinity3.3. Influence of BeO ?Influence of BeO ?4.4. Retention mechanisms ?Retention mechanisms ?

Issues to be solved:

1.1. Retention in pure Be ?Retention in pure Be ?2.2. CrystallinityCrystallinity3.3. Influence of BeO ?Influence of BeO ?4.4. Retention mechanisms ?Retention mechanisms ?

Possible reasons:

1. Undefined BeO coverage2. Undefined crystallinity3. Unclear retention mechanisms (Needed for quantification)

Possible reasons:

1. Undefined BeO coverage2. Undefined crystallinity3. Unclear retention mechanisms (Needed for quantification)

Page 6: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Experimental concept

Thermal release

NRANRA

TPDTemperatureProgrammedDesorption

TPDTemperatureProgrammedDesorption

• Sequential release of D

• Limited by combination of

bulk + surface bulk + surface

processesprocesses

• Energy barriers for ... Diffusion Detrapping Recombination

• Sequential release of D

• Limited by combination of

bulk + surface bulk + surface

processesprocesses

• Energy barriers for ... Diffusion Detrapping Recombination

Single crystalline BeSingle crystalline Be

Retention mechanisms

1 keV D implantation1 keV D implantation Hydrogen retention

in situ... (10-11 mbar)

Ar sputter cleaning+ annealingXPS / LEIS:Control ofsurface

Ar sputter cleaning+ annealingXPS / LEIS:Control ofsurface

Page 7: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

0 100 200 300 4000.0

0.5

1.0

1.5

2.0

2.5

300

400

500

600

700

800

900

1000

Des

orpt

ion

rate

[10

13

s-1]

Time [s]

Tem

pera

ture

[K

]

TPD: Spectrum

Sequential release: Energetically different rate limiting steps

Sequential release: Energetically different rate limiting steps

1 keV D+ Implantation (300 K) 2·1017 D cm-2

m/q= 4 (D2)

Page 8: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

TPD: Increasing fluence

400 600 800 1000

Fluence

[1015cm-2]144

124

122

92

65

47

Desorp

tion r

ate

[a.u

.]

Temperature [K]

TPD Spectra recorded in random order !

Fluence dependent behaviour

TPD Spectra recorded in random order !

Fluence dependent behaviour

Page 9: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

TPD: Increasing fluence

Trapping in ion induced defects

Trapping in ion induced defects

400 600 800 1000

Fluence

[1015cm-2]144

124

122

92

65

47

Desorp

tion r

ate

[a.u

.]

Temperature [K]

Page 10: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

TPD: Increasing fluence

Structural modifications

Structural modifications

Local saturation of available

binding sites

Local saturation of available

binding sites

Trapping in ion induced defects

Trapping in ion induced defects

400 600 800 1000

Fluence

[1015cm-2]144

124

122

92

65

47

Desorp

tion r

ate

[a.u

.]

Temperature [K]

Page 11: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

TPD: Increasing fluence

Structural modifications

Structural modifications

400 600 800 1000

Fluence

[1015cm-2]144

124

122

92

65

47

Desorp

tion r

ate

[a.u

.]

Temperature [K]

0 200 4000

20

40

Ret

entio

n in

the

str

uctu

ral

mod

ifica

tions

[%

]

Incident fluence [1015 D cm-2]

Sample saturation

Thr

esho

ld

Page 12: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

100 200 300 400120

100

80

60

40

20

0

Incident fluence [1015 D cm-2]

De

pth

[n

m]

0

0.05

0.10

0.16

0.21

0.26

D Concentration

Retention: Simulation by SDTrim.SP

Supersaturation

zone D accumulation in a depth of 40 nm Bulk saturation concentration: 26 at% D

(D/Be = 0.35)

* Supersaturation * Structural modifications: Surface process?

D accumulation in a depth of 40 nm Bulk saturation concentration: 26 at% D

(D/Be = 0.35)

* Supersaturation * Structural modifications: Surface process?

(cut off)

SDTrim.SP Calculation

TPD Experiments

0 200 4000

10

20

30

Re

ten

tion

in s

tru

ctu

ral

mo

difi

catio

ns

[at%

]

Incident fluence [1015 D cm-2]

Page 13: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Structural modifications / Surface desorption

0 50 100 150 2000

2

4

6

8

10

Des

orpt

ion

rate

[10

13 s

-1]

Time [s]

Experiment TPD

300

350

400

450

500

550

Tem

pera

ture

[K

]

1st order release 1 DTrapped DMobile

2nd order release 2 D D2

(Surface desorption)

RT

ENTR d

nn

d exp)(

Page 14: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Structural modifications / Surface desorption

0 50 100 150 2000

2

4

6

8

10

Des

orpt

ion

rate

[10

13 s

-1]

Time [s]

Experiment TPD

Rate equation: 2nd order surface

desorption [E

a=0.87 eV]

1st order release [E

a=1.25 eV]

300

350

400

450

500

550

Tem

pera

ture

[K

]

* Peak shape

Desorption peak is 1st order

* Surface area (AFM)

Release of 60 x Θ (saturation coverage Θ ~ 0.5) AFM: max. 1.2 Θ

Surface recom-bination is not the rate-limiting step

* Peak shape

Desorption peak is 1st order

* Surface area (AFM)

Release of 60 x Θ (saturation coverage Θ ~ 0.5) AFM: max. 1.2 Θ

Surface recom-bination is not the rate-limiting step

RT

ENTR d

nn

d exp)(

Page 15: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

0 200 400 600

400

600

800

1000

de

sp

rtio

n r

ate

[a

.u.]

time [s]

3.0 ML BeO0.2 ML BeO

te

mp

era

ture

[K

]

TPD: Influence of BeO-coverage

No change of EA of release from binding states

No recombination limit ↔

Trapping in the bulk

Formation of BeO-D at the surface

No change of EA of release from binding states

No recombination limit ↔

Trapping in the bulk

Formation of BeO-D at the surface

BeO:D(surface)

Page 16: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900

deso

rptio

n ra

te [

a.u.

]

temperature [K]

TPD: Elevated implantation temperatures

300K300K 530 K530 K

Page 17: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900

deso

rptio

n ra

te [

a.u.

]

temperature [K]

TPD: Elevated implantation temperatures

300K300K 530 K530 K

Different retention mechanism !

Change of the binding states in the supersaturated areas

Different retention mechanism !

Change of the binding states in the supersaturated areas

Ion-induced trap sites

unaffected

Page 18: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900

deso

rptio

n ra

te [

a.u.

]

temperature [K]

TPD: Elevated implantation temperatures

300K300K 530 K530 K

Different retention mechanism !

Change of the binding states in the supersaturated areas

BeD2 formation (Decomposition ~ 570 K)

Different retention mechanism !

Change of the binding states in the supersaturated areas

BeD2 formation (Decomposition ~ 570 K)

Ion-induced trap sites

unaffectedBeD2

BeO:D(surface)

Page 19: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900 1000

400 500 600 700 800 900 1000

Temperature [K]

Des

orpt

ion

Flu

x [a

.u.]

Implanted / Co-deposited

1 keV Ion implanted(this work)D/Be plasma co-deposited(de Temmerman)

300 K

Page 20: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900 1000

400 500 600 700 800 900 1000

Temperature [K]

Des

orpt

ion

Flu

x [a

.u.]

300 K

Implanted / Co-deposited

Supersaturated material

Supersaturated material

1 keV Ion implanted(this work)D/Be plasma co-deposited(de Temmerman)

Page 21: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900 1000

400 500 600 700 800 900 1000

Temperature [K]

Des

orpt

ion

Flu

x [a

.u.]

300 K

Implanted / Co-deposited

Ion-induced traps in the bulk

Ion-induced traps in the bulk

1 keV Ion implanted(this work)D/Be plasma co-deposited(de Temmerman)

Page 22: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

400 500 600 700 800 900 1000

400 500 600 700 800 900 1000

Des

orpt

ion

Flu

x [a

.u.]

Temperature [K]

300 K

600 K530 K

Implanted / Co-deposited

Formation of BeD2see also posterP3-05 by R. Doerner

Formation of BeD2see also posterP3-05 by R. Doerner

Page 23: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Qualitative interpretation of data

[Anderl et al. 1999]

clean Be (1 keV)

Be (+ BeO)1 and 1.5 keV

Structural modifications

BeD2

Ion-induced traps in the bulk lattice~ Constant retention

300 400 500 600 700 800 900 1000 Specimen exposure temperature [K]

Page 24: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Identification of retention mechanismsIdentification of retention mechanisms

Quantification: TMAP7 / Rate equationsQuantification: TMAP7 / Rate equations

Page 25: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

TMAP7: D transport bulk / surface

600 700 800 900 10000

2

4

6

8

de

sorp

tion

ra

te [1

013 D

s-1

]

temperature [K]

TMAP7 simulations

Experimental data = 4 K/sec = 1 K/sec = 1 K/sec

Input parameters

• Trap concentration profile by SDTrim.SP• Saturated trap sites (TPD)• Temperature ramp (TPD)

Literature:• Diffusion barrier 0.29 eV• Dissolution energy 0.1 eV

Free parameters

Detrapping energies ET1 = 1.88 eV ET2 = 2.05 eV

Detrapping energies ET1 = 1.88 eV ET2 = 2.05 eV

Page 26: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Schematic energy diagram

E (

D-A

tom

)

TPD – Spectrum Activation energies

Atomic D E0≡ 0

Position / State0

Tem

per

atur

e [K

]

Desorption rate [a.u.]

Page 27: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Schematic energy diagram

[ES = -0.10 eV] Atomic D E0≡ 0

E (D-Atom)

Positions in the undisturbed bulk lattice

Mobile state

[ΔED = 0.29 eV]

Tem

per

atur

e [K

]

Desorption rate [a.u.]

Page 28: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Schematic energy diagram

[ES = -0.10 eV] Atomic D E0≡ 0

Surface

E (D-Atom)

Surface processesMobile state

[ΔED = 0.29 eV]

[ΔEAd = 0.87 eV]

Molecular D2

[EBE (1/2 D2) = -2.278 eV]

Tem

per

atur

e [K

]

Desorption rate [a.u.]

Page 29: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Schematic energy diagram

[ES = -0.10 eV] Atomic D E0≡ 0

[ΔEAd = 0.87 eV]

Molecular D2

[EBE (1/2 D2) = -2.278 eV]

Surface

Mobile state

[ΔED = 0.29 eV]

E (D-Atom)

Activation energies obtained from modeling of TPD spectra

Tem

per

atur

e [K

]

Desorption rate [a.u.]

Page 30: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Schematic energy diagramm

[ES = -0.10 eV] Atomic D E0≡ 0

[ΔEAd = 0.87 eV]

Molecular D2

[EBE (1/2 D2) = -2.278 eV]

Surface

Mobile state

[ΔED = 0.29 eV]

ΔE = 1.25 eV 1.33 eV

E (D-Atom)

ΔE = 1.88 eV 2.05 eV

Ion-induced defects

Supersaturatedstates

Activation energies obtained from modelling of TPD spectra

BeD2

Tem

per

atur

e [K

]

Desorption rate [a.u.]

Page 31: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Conclusion

Deuterium retention in beryllium

Binding states / retention mechanisms identified and quantified

Hydrogen retention in ITER: negligible contribution of "pure" Be wall (< 7 g T by implantation) Thin BeO surface layers are not rate-limiting for thermal recycling Formation of BeD2 at elevated temperatures

Currently: DFT calculations

Detailed understanding of D / Be

Deuterium retention in beryllium

Binding states / retention mechanisms identified and quantified

Hydrogen retention in ITER: negligible contribution of "pure" Be wall (< 7 g T by implantation) Thin BeO surface layers are not rate-limiting for thermal recycling Formation of BeD2 at elevated temperatures

Currently: DFT calculations

Detailed understanding of D / Be

Page 32: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Page 33: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Page 34: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Appendix

Page 35: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

200 300 400 500 600 700 800 900 1000

temp K

Literature data[Lossev,Küppers 1993]

Surface desorption ?

Page 36: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Substrate characterization: SEM

Cleaning:Cycles of 3 keV Ar+ / 1000 K Recrystallization + erosion

Cleaning:Cycles of 3 keV Ar+ / 1000 K Recrystallization + erosion

Page 37: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Substrate characterization: SEM

(1010)

(1120)

T 1000 K, several hours:Recrystallization to low indexed facets

T 1000 K, several hours:Recrystallization to low indexed facets

SEM

Page 38: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Substrate characterization: AFM

500 nm

• Recrystallization• Erosion • D Induced structural

modifications

• Recrystallization• Erosion • D Induced structural

modifications

AFM

Cycles of• Cleaning• D Implantation• Degassing 1000 K

Cycles of• Cleaning• D Implantation• Degassing 1000 K

Page 39: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

SEM: bubble & channel formation ?

This work: Anderl et al. [1992]:

Higher fluences Const. retention Aggregation ! Bubbles, pores,

OPEN channels

Higher fluences Const. retention Aggregation ! Bubbles, pores,

OPEN channels

Fluence ≤ 4·1017 D cm-2

CLOSED nanosized structural modifications !

Fluence ≤ 4·1017 D cm-2

CLOSED nanosized structural modifications !

Page 40: Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Chemical surface composition

BeO coverage < 0.2 ML• < 1day (10-11 mbar)• > 1000 K

BeO coverage < 0.2 ML• < 1day (10-11 mbar)• > 1000 K

• Cleaning by Ar+ bombardment• Annealing 1000 K

• Cleaning by Ar+ bombardment• Annealing 1000 K

XPS

cleaned &annealed