Deuterium retention in Tore Supra long discharges

27
1 E. Tsitrone 20th IAEA Vilamoura 1- 6/11/2004 Eurato m Deuterium retention in Tore Supra long discharges Interpreting the particle balance Particle retention during long discharges Particle recovery (after shot, glows, disruption Experimental results E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin 2 , Y. Corre, E. Dufour, A. Géraud, C. Grisolia , A. Grosman, J. Gunn , J. Hogan 3 , C. Lowry, R. Mitteau , V. Philips 4 , D. Reiter 4 , J. Roth 5 , M. Rubel 6 , R. Schneider 7 , M. Warrier 7 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F-13108 Saint Paul-lez-Durance, France 2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme13 397 Marseille cedex 20 3 : Fusion Energy Division, ORNL, Oak Ridge, TN 37831-8072 USA 4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D-52425 Jülich, Germany 5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D-85748 Garching Germany 6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, 100 44 Stockholm, Sweden 7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald Germany

description

Deuterium retention in Tore Supra long discharges. E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin 2 , Y. Corre, E. Dufour, A. Géraud, C. Grisolia , A. Grosman, J. Gunn , J. Hogan 3 , C. Lowry, R. Mitteau , V. Philips 4 , - PowerPoint PPT Presentation

Transcript of Deuterium retention in Tore Supra long discharges

Page 1: Deuterium retention  in Tore Supra long discharges

1E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomDeuterium retention in Tore Supra long discharges

• Interpreting the particle balance

• Particle retention during long discharges

• Particle recovery (after shot, glows, disruptions)

• Experimental results

E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia , A. Grosman, J. Gunn , J. Hogan3 , C. Lowry, R. Mitteau , V. Philips4,

D. Reiter4, J. Roth5, M. Rubel6, R. Schneider7, M. Warrier7

 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F-13108 Saint Paul-lez-Durance, France2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme13 397 Marseille cedex 203 : Fusion Energy Division, ORNL, Oak Ridge, TN 37831-8072 USA4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D-52425 Jülich, Germany5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D-85748 Garching Germany6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, 100 44 Stockholm, Sweden7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald Germany

Page 2: Deuterium retention  in Tore Supra long discharges

2E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomTore Supra : the CIEL configuration

• Long pulse : LH driven discharge at Vloop ~ 0, low plasma current/density low density hot edge plasma (Te ~ 100 eV at the LCFS)

Toroidal pump limiter (TPL)

Bumpers

Outboard movable limiter

• 15 m2 of carbon plasma facing components• Active cooling : stationary PFC temperaturefrom 120°C (cooling loop) up to 250°C on the limiter for long pulses

Plasma loaded zones

Shadowed zones

CCD imaging of the TPL

• Active pumping : neutralisers below TPL

Page 3: Deuterium retention  in Tore Supra long discharges

3E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Phase 1 Phase 2

Particle retention in long discharges

No saturation of in vessel retention after 15 minutes of cumulated plasma time

• Phase 2Constant retention rate (= 50% of injected flux)No saturation after 6 minutes

• Identical shot to shot behaviour

• Phase 1 (~ 100 s)Decreasing retention rate

• In vessel inventory shot duration in phase 2(Imax = 8 1022 D for 6 minutes)

Page 4: Deuterium retention  in Tore Supra long discharges

4E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Phase 1 Phase 2

Retention phase 1

x 1021

Particle recovery after shot

• Recovery > plasma content : the wall releases particles

x 1022

• Recovery correlated to retention in phase 1 : transient retention mechanism

• Small fraction recovered after shot

~ 100 s

Page 5: Deuterium retention  in Tore Supra long discharges

5E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomParticle recovery after glow discharge and disruptions

Recovery after He glow discharge (6 hours) : 1.5 - 2 1022 D < Imax

• Independent of the quantity trapped during the day of experiment

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

Plasma current before disruption (MA)

Par

ticle

exh

aust

(P

a.m

3)

Tore Supra - Disruptions 2002-2004

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

0

20

40

60

80

100

120

Plasma current before disruption (MA)

Par

ticle

exh

aust

(P

a.m

3)

Tore Supra - Disruptions 2002-2004

Recovery after disruption : up to 5 1022 D < Imax

• Large scatter at given Ip : machine history dependent ?(highest exhaust in start up phase)

• Threshold in Ip :

• Ip < 0.8 MA : ~ after shot recovery• Ip > 0.8 MA : increase with Ip dissipated energy high enough to heat D rich deposited layers [D. Whyte, PSI 2004]

Page 6: Deuterium retention  in Tore Supra long discharges

6E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomSample analysis : D content

Outboard limiter

Cold deposits (~ 120 °C)D/C ~ 10 %ND ~ 1022 at /m2 / m * S * d

TPL

Neutraliser finger

Hot deposits (> 500°C)D/C ~ 1 %ND ~ 1021 at/m2 * S

[C. Brosset, PSI 2004]

TPL deposits analysis still in progressCold deposits in shadowed areas D reservoir

Several ms

Shadowed

< 1 m

Plasma facing

Several ms

Carbon deposits

Net deposition zoneNet erosion zone (main plasma interaction area)

Net deposition zones

Page 7: Deuterium retention  in Tore Supra long discharges

7E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomInterpreting the particle balance

BUT : does not explain shot to shot behaviour unless very strong diffusion takes place

Phase 1

Progressive saturation of bombarded surfaces (D+, D0) until CDmax reached

• Implantation D C D+, D0

dimp< 0.1 m

Carbon

D+

D0

D2+

D2

TPL

Bumpers

[E. Tsitrone, PSI 2004]

Saturation time : from ~ 1s (TPL) to ~ 100 s (bumpers)

Page 8: Deuterium retention  in Tore Supra long discharges

8E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Phase 1

Interpreting the particle balance

• Outgassing after shot ~ phase 1 duration ( ~ 100s) : ok with filling / emptying the porosity reservoir

Good candidate for phase 1 BUT : extrapolation from lab to tokamak environment (temperature)

• TS deposited layers : 100 times more porous than original CFC [P. Roubin, PSI 2004]

• Filling the CFC porosityD2, D0

Adsorption

M. Warrier et al., Contrib. Plasma Phys. 44, No. 1-3, (2004)

• Adsorption : weak bond ( chemical bond) ok for transient mechanism

• Extrapolation from lab exp (77 K) : 1022 D/g deposits 0.5 g enough to account for phase 1

5 1021 D

Page 9: Deuterium retention  in Tore Supra long discharges

9E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomInterpreting the particle balance

Phase 1 + 2

• ok with Zeff, ok with low net erosion on TPL (high local redeposition), ok with layers growing rate

1020 C/s1.5 1020 CD4/s

Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …)

6 1020 C/s (phys. + self)

1.5 1020 CD4/s (chem.)

Erosion

5 1020 C6+/s

Local redeposition

Preliminary estimates of carbon erosion sources • physical + chemical sputtering by D+ and D0

• self sputtering by Cn+ (assumed 5% C in D+ flux)

• Codeposition :

Carbon deposits

C, D

CxDy

physical sputtering

chemical sputtering

carbon balance roughly coherent

Page 10: Deuterium retention  in Tore Supra long discharges

10E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomInterpreting the particle balance

Phase 1 + 2

• If D/C = 0.1 : need 2 1021 C/s of net redeposition : high erosion/redeposition on TPL ( > 100 m on 4 m2): not observed

No coherence between D retention rate / D/C ratio / C erosion/redeposition

D rich film created during the discharge subsequently depleted in D (glows, disruptions) ?

Hard to explain the retention rate in phase 2 with codeposition alone

• 1/3 of produced CD4 trapped : but high D/C ratio film : not observed

2 1020 D/s

1020 C/s1.5 1020 CD4/s

Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …)6 1020 C/s

1.5 1020 CD4/s

Erosion

5 1020 C6+/s

Local redeposition

• Codeposition : D balance

Page 11: Deuterium retention  in Tore Supra long discharges

11E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom Summary

Phase 2Phase 1

• D implantation in C : progressive saturation but not transient

• D adsorption in porosity : good candidate, but to be assessed in tokamak environment

• Codeposition of D and C :Can hardly explain the retention rate in phase 2

• D content sample analysis : D mainly in cold deposits in shadowed areas (120 °C)

Missing D not found yet but still a lot to investigate (TPL deposits, pumping ducts …)

• D recovery (He glow discharge, disruptions) < in vessel inventory accumulated in a single long discharge

• D retention : no wall saturation after 15 minutes in high Te / low ne edge plasma

Transient retention : recovered after shot

Permanent retention : NOT recovered after shot

Page 12: Deuterium retention  in Tore Supra long discharges

12E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Page 13: Deuterium retention  in Tore Supra long discharges

13E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomTore Supra : well equipped for particle balance

• Gas injection : manometers

• Active pumping : 10 neutralisers with turbo-molecular pumps equipped with 20 pressure gauges (1 in vertical port, 1 at the pump) + 2 Penning gauges (D2/He) + mass spectrometer• 2 pressure gauges in the chamber (equatorial ports)• pressure gauges in primary exhaust system

• Systematic calibration procedure : calibrated gas injection in the chamber with/without pumps activated

D+

to pumps

dNp/dt = inj – pump – in vessel

Page 14: Deuterium retention  in Tore Supra long discharges

14E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomEffect of active pumping

Pumping on

Active pumping on Tore Supra : no effect on dynamic wall retention but offset on gas injection

Pumping off

Same wall inventory

Shifted gas injection

Page 15: Deuterium retention  in Tore Supra long discharges

15E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

0 50 100 150 200 250 300 350 400 450 5000

1

2

3

4

0 50 100 150 200 250 300 350 400 450 5000

50

100

150

200

250

300

350

LH power (MW)

Injected flux (Pa.m3/s)Extracted Flux (Pa.m3/s)

Gas Puffing

Vessel Inventory

TPL exhaust

Vessel ExhaustPlasma Content x100

Inve

nto

ries

(P

a.m

3 )

s

Time (s)

Shot 32299

Particle balance sensitive to LH power loss

dNp/dt = inj – pump – in vessel

Page 16: Deuterium retention  in Tore Supra long discharges

16E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Shot 33067

T (°C) before/after disruption (20 ms)

Disruption heats deposited layers

Net erosion zone (main plasma interaction area)

Thickest deposition zone (shadowed/plasma area)

Moderate deposition zone (plasma interaction area)

T > 220 °CPlasma loaded zones

Shadowed zones

CCD imaging of the TPL

Page 17: Deuterium retention  in Tore Supra long discharges

17E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

T°C #33067 (t-20ms) T #33067 (disruption)

IR shows cold deposits

Page 18: Deuterium retention  in Tore Supra long discharges

18E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomD inventory in the machine

Estimated D inventory in the machine : From analysed samples : ~ 5 1022 D (80% in cold deposits)From non analysed samples (TPL surface) : ~ 4 1022 D (most of it in TPL shadowed zones)Total : ~ 9 1022 D

Estimated D inventory from particle balance integrated over a campaign: From averaged net retention rates : ~ 1.5 1024 DGlow discharge : ~ 4 1023 DDisruptions : ~ 3 1023 DTotal : ~ 8 1023 D

No firm conclusion can be drawn on D balance

BUT : surface/depth of layers difficult to assess, samples still to be analysed

BUT : retention rate scenario dependent, not all disruptions recorded, glow D2 not accounted, cleaning discharges …

Page 19: Deuterium retention  in Tore Supra long discharges

19E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomDeuterium retention in Tore Supra long discharges

• Interpreting the particle balance

• Particle retention during long discharges

• Particle recovery (after shot, glows, disruptions)

• Experimental results

E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia , A. Grosman, J. Gunn , J. Hogan3 , C. Lowry, R. Mitteau , V. Philips4,

D. Reiter4, J. Roth5, M. Rubel6, R. Schneider7, M. Warrier7

 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F-13108 Saint Paul-lez-Durance, France2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme13 397 Marseille cedex 203 : Fusion Energy Division, ORNL, Oak Ridge, TN 37831-8072 USA4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D-52425 Jülich, Germany5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D-85748 Garching Germany6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, 100 44 Stockholm, Sweden7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald Germany

minimize the retention rate optimize the recovery techniques

ITER in vessel T inventory limit : (retention rate - recovery rate) dt < 350 g

Page 20: Deuterium retention  in Tore Supra long discharges

20E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Phase 1 Phase 2

Particle retention in long discharges

dNp/dt = inj – pump – in vessel

No saturation of in vessel retention after 15 minutes of cumulated plasma time

• Phase 2Constant retention rate (= 50% of injected flux)No saturation after 6 minutes

• Identical shot to shot behaviour

• Phase 1 (~ 100 s)Decreasing retention rate

• In vessel inventory shot duration in phase 2(Imax = 81022 D for 6 minutes)

Page 21: Deuterium retention  in Tore Supra long discharges

21E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomSample analysis : D content

Outboard limiter

Cold deposits (~ 120 °C)D/C ~ 10 %ND ~ 1022 at /m2 / m * S * d

TPL

Neutraliser finger

Hot deposits (> 500°C)D/C ~ 1 %ND ~ 1021 at/m2 * S

[C. Brosset, PSI 2004]

TPL deposits analysis still in progressCold deposits in shadowed areas D reservoir

Several ms

Shadowed

< 1 m

Plasma facing

Several ms

Carbon deposits

Net deposition zone Net erosion zone (main plasma interaction area)

Moderate deposition zone (plasma interaction area)

Thickest deposition zone (shadowed area)

D content in analysed samples < D inventory over campaign

Page 22: Deuterium retention  in Tore Supra long discharges

22E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomInterpreting the particle balance

Phase 1 + 2

• Codeposition :

Carbon deposits

C, D

CxDy

Physical sputtering (C/s)

Chem. sputtering (CD4/s)

Self sputtering (C/s)

D+ (1022 /s) 3 1020 1.25 1020 D0 (4 1021 /s) 4.5 1019 2.75 1019

C 6 + (5 1020 /s) 2.6 1020

Estimates of carbon erosion sources

• ok with Zeff, ok with high redeposition (low net erosion on TPL), ok with layers growing rate carbon balance roughly coherent 1020 C/s

1.5 1020 CD4/s

Distant redeposition (TPL shadowed areas, neutralisers, outboard limiter …)6 1020 C/s

1.5 1020 CD4/s

Erosion

5 1020 C6+/s

Local redeposition

• C source underestimated : no synergy D+/D0, no localised hot Tsurf, no LH accelerated e-

Page 23: Deuterium retention  in Tore Supra long discharges

23E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomSample analysis : D content Net erosion zone

Plasma facing

< 1 m

Carbon substrate

Neutraliser finger

Outboard limiter

Cold deposits (~ 120 °C)D/C ~ 10 %ND ~ 1022 at /m2 / m * S * d

TPL

Hot deposits (> 500°C)D/C ~ 1 %ND ~ 1021 at/m2 * S

[C. Brosset, PSI 2004]

TPL deposits analysis still in progressCold deposits in shadowed areas

Several ms

Shadowed

hot deposits

cold deposits< 1 m

Plasma facing

Several ms

Carbon deposits

Net deposition zone

Page 24: Deuterium retention  in Tore Supra long discharges

24E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

Euratom

Phase 1

Interpreting the particle balance

68

1019

2

4

68

1020

2

S (s

-1)

500450400350

t (s)

0.001

2

3

4

56

0.01

2

P (Pa)

68

1019

2

4

68

1020

2

S (s

-1)

500450400350

t (s)

0.001

2

3

4

56

0.01

2

P (Pa)68

1019

2

4

68

1020

2

S (s

-1)

500450400350

t (s)

0.001

2

3

4

56

0.01

2

P (Pa)

68

1019

2

4

68

1020

2

S (s

-1)

500450400350

t (s)

0.001

2

3

4

56

0.01

2

P (Pa)pvessel

Soutgas

dpvessel/dt = Soutgas – Seff pvessel

• Recovery ~ phase 1 duration : ok with filling / emptying the porosity reservoir

Good candidate for phase 1 BUT : extrapolation from lab to tokamak environment

(temperature, pressure, incident particles)

• Filling the CFC porosity

• TS deposited layers : 100 times more porous than virgin CFC [P. Roubin, PSI 2004]

D2, D0

Adsorption

M. Warrier et al., Contrib. Plasma Phys. 44, No. 1-3, (2004)

• Adsorption : weak bond ( chemical bond) ok for transient mechanism

• Extrapolation from lab exp : 1022 D/g deposits 0.5 g enough to account for phase 1

5 1021 D

Page 25: Deuterium retention  in Tore Supra long discharges

25E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomDeuterium retention in Tore Supra long discharges

• Interpreting the particle balance

• Particle retention during long discharges

• Particle recovery (after shot, glows, disruptions)

• Experimental results

E. Tsitrone, C. Brosset, J. Bucalossi, B. Pégourié, T. Loarer, P. Roubin2, Y. Corre, E. Dufour, A. Géraud, C. Grisolia , A. Grosman, J. Gunn , J. Hogan3 , C. Lowry, R. Mitteau , V. Philips4,

D. Reiter4, J. Roth5, M. Rubel6, R. Schneider7, M. Warrier7

 Association Euratom-CEA, CEA Cadarache, CEA-DSM-DRFC, F-13108 Saint Paul-lez-Durance, France2 : LPIIM, UMR 6633, Université de Provence, Centre Saint-Jérôme13 397 Marseille cedex 203 : Fusion Energy Division, ORNL, Oak Ridge, TN 37831-8072 USA4 : Institut für Plasmaphysik, FZ Jülich, Euratom Association, D-52425 Jülich, Germany5 : Max Planck Institute für Plasmaphysik, Euratom Association, Boltzmannstr. 2, D-85748 Garching Germany6 : Alfven Laboratory, Royal Institute of Technology, Association Euratom VR, 100 44 Stockholm, Sweden7 : Max Planck Institute für Plasmaphysik, Euratom Association, Teilinst. Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald Germany

minimize the retention rate optimize the recovery techniques

ITER in vessel T inventory limit : (retention rate - recovery rate) dt < 360 g

Page 26: Deuterium retention  in Tore Supra long discharges

26E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomParticle recovery after glow discharge and disruptions

Recovery after He glow discharge (6 hours) : 1.5 - 2 1022 D < Imax

• Independent of the quantity trapped during the day of experiment • ~ desaturation of 15 m2 of carbon implanted with D for 300 eV incident He

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

Plasma current before disruption (MA)

Par

ticle

exh

aust

(P

a.m

3)

Tore Supra - Disruptions 2002-2004

0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.2 0.4 0.6 0.8 1 1.2 1.4 1.60

20

40

60

80

100

120

0

20

40

60

80

100

120

Plasma current before disruption (MA)

Par

ticle

exh

aust

(P

a.m

3)

Tore Supra - Disruptions 2002-2004

Recovery after disruption : up to 5 1022 D < Imax

• Large scatter at given Ip : machine history dependent ?(highest exhaust in start up phase)

• Threshold in Ip :

• Ip < 0.8 MA : ~ after shot recovery• Ip > 0.8 MA : increase with Ip dissipated energy high enough to outgas deposited layers [D. Whyte, PSI 2004]

Page 27: Deuterium retention  in Tore Supra long discharges

27E. Tsitrone 20th IAEA Vilamoura 1-6/11/2004

EuratomInterpreting the particle balance

BUT : does not explain shot to shot behaviour unless very strong diffusion takes place

Phase 1

Progressive saturation of bombarded surfaces (D+, D0) at CDmax = f(Einc, Tsurf )

• Implantation D C D+, D0

dimp< 0.1 m

Carbon

D+

D0

D2+

D2

TPL

Bumpers

[E. Tsitrone, PSI 2004]

Saturation time : from ~ 1s (TPL) to ~ 100 s (bumpers)

Implantation of D0 in bumpers