Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter...

51
Detection of Neutralino WIM P Yeong Gyun Kim (Korea Univ.) I. Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP IV.Indirect Detection : Neutrino T elescopes V. Conclusions s B decay and

Transcript of Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter...

Page 1: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Detection of Neutralino WIMP

Yeong Gyun Kim(Korea Univ.)

I. Evidence for Dark MatterII. Dark Matter CandidatesIII. Direct Detection of Neutralino WIMPIV. Indirect Detection : Neutrino TelescopesV. Conclusions

sB decay and

Page 2: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

What is Dark Matter ?

: stuff that neither emits nor absorbs detectable EM radiation

: the existence can be inferred by its gravitational effects on visible celestial body

Motion of Galaxies in Clusters

Galactic Rotation Curves

Gravitational Lensing

Temperature fluctuation of CMBR ……

I. Evidence for Dark Matter

Page 3: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Observed the Coma cluster of galaxies in 1933:

Fritz Zwicky (1898-1974)

Motions of galaxies in clusters

Found the galaxies move too fast to be confined in the cluster by the gravitational attraction of visiblematter alone.

The central 1Mpc ofComa cluster in optical

Dark Matter in cluster

Page 4: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Galactic Rotation Curves

Vera Rubin (1928-)

In 1970s, they found ‘flat’ rotation curves.

Dark Matter in galaxy

Page 5: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Cosmic Microwave Background Anisotropies

,

,

.

Brayon

Matter

Totaletc

WMAP satellite

Page 6: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Matter/Energy density in the Universe

1.0Total

0.04Baryon

0.27Matter

Total Matter

Non-Baryonic Dark Matter

Dark Energy (Cosmological constant)

Matter Baryon

0.005Lumi

Baryonic Dark Matter

Baryon Lumi

Page 7: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Neutrinos

Axion

WIMPs (Weakly Interacting Massive Particles)

MACHOs (MAssive Compact Halo Objects)

Baryonic Dark Matter candidates

Non-Baryonic Dark Matter candidates

; Neutralinos, Kaluza-Klein states, …. Wimpzillas (superheavy DM)

….

; Jupiter, brown dwarfs, white dwarfs, neutron stars, black hole….

Hydrogen gas, Dusts….

II. Dark Matter Candidates (what is Dark Matter made of ?)

Page 8: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Relic density of WIMPs

Time evolution of the number density of WIMPs

H : Hubble constant

Av : thermally averaged annihilation cross section of WIMP

eqn

3T3/ 2( / 2 ) exp( / )m T m T

( )T m

( )T m

WIMP : Weakly Interacting Massive Particle

2 23 [( ) ( ) ]eqA

dnHn v n n

dt

: equilibrium number density

Page 9: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Freeze out atAn H

26 3 110Av cm s

2 (1)h O

2 27 3 1(3 10 / )Ah cm s v

If

Page 10: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Minimal Supersymmetric Standard Model (MSSM)

SM fields plus an extra Higgs doublet and their superpartners

SU(3) x SU(2) x U(1) gauge symmetry and Renormalizability

R-parity conservation (to avoid fast proton decay)

( B: baryon number, L: lepton number S: spin )

3( ) 2( 1) B L SR

= +1 for ordinary particles= -1 for their superpartners

Soft Supersymmetry Breaking

LSP is STABLE !

Page 11: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Neutralino mass matrix

In the basis

0 0 01 2( , , , )B W H H

1

2

0 cos sin sin sin

0 cos cos sin cos

cos sin cos cos 0

sin sin sin cos 0

Z W Z W

Z W Z W

Z W Z W

Z W Z W

M M M

M M M

M M

M M

1 2,M M : Bino, Wino mass parameters

: Higgsino mass parameter

tan

0 0 0 01 2 3 1 4 2i i i i iN B N W N H N H

: ratio of vev of the two neutral Higgs

Lightest Neutralino = LSP in many cases (WIMP !! )

Page 12: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Neutralino Annihilation channels

etc.

Page 13: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Overview of the allowed regions of mSUGRA parameter space by the Relic density of Neutralino WIMP

1. Bulk region: at low m0 and m1/2: t-channel slepton exchange

2. Stau co-annihil. region: at low m0 where: neutralino-stau coannihilation

m m

3. Focus point region: at large m0 where mu is small: a sigificant higgsino comp.

,WW ZZ

4. A-annihilation region: at large tan 2Am mwhere

A ff

(hep-ph/0106204, Battaglia et al.)

Page 14: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

30.3 /local GeV cm

270 /v km s

5 2 110010local

GeVcm s

m

Local Dark Matter density

Maxwellian velocity distribution

Local Flux of Dark Matter

III. Direct detection of Neutralino WIMP

Page 15: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Principles of WIMP detection

• Elastic scattering of a WIMP on a nucleus inside a detector

310v c

• The recoil energy of a nucleus with mass2

22

(max) 2( )recoil x N

N

mE v m

m m

610 10recoil NE m keV For

• This recoil can be detected in some ways :

Electric charges released (ionization detector)

Flashes of light produced (scintillation detector)

Vibrations produced (phonon detector)

Nm

Page 16: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Experimental Results

(CDMS collab. astro-ph/0405033)

Page 17: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Low energy effective Lagrangian for neutralino-quark int.

scalar interaction

5 5( ) ( ) ( ) ( ) ....q qL f qq d q q

spin-dep. interaction

• The other terms are velocity-dependent contributions and can be neglected in the non-relativistic limit for the direct detection.

• The axial vector currents are proportional to spin operatorsin the non-relativistic limit.

Page 18: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

2 2 232( 1)spin F rG m J J

1( )p p n na S a S

J

( , ),

, , 2q p n

p n qq u d s F

da

G

( , )p nq : the quark spin content of the nucleon

Spin-dependent Neutralino-Nucleus cross-section

2

2 2313 142

...8

qq

W

g Td N N

M

,p nS

where (J : the spin of the nucleus)

: the expectation values of the spin content of the nucleus: depends on the target nucleus

( ) 0.78,pu ( ) 0.48,p

d ( ) 0.15ps

, 0.011,0.491p nS for 73Ge

, 0.415, 0.047p nS for19F

Nr

N

m mm

m m

: reduced mass

Page 19: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

224( )scalar r p nm Zf A Z f

, ( , ) ( , )

, , , ,,

2

27p n q qp n p n

Tq TGq u d s q c b tp n q q

f f ff f

m m m

Scalar Neutralino-Nucleus cross-section

2( )

12 11 13 142

cos 1Re ( tan )( cos sin )

4 cosH d

d WW H

g mf N N N N

m m

where

( ) 0.020,pTuf

A : the atomic weight, Z : the nuclear electric charge

( , ), , | | , ,p np n Tq qm f p n m qq p n ( , ) ( , )

, ,

1p n p nTG Tq

q u d s

f f

( ) 0.026,p

Tdf ( ) 0.118pTsf

( ) 0.014,nTuf

( ) 0.036,nTdf ( ) 0.118n

Tsf

Page 20: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

• In most instances, p nf f

2 2 24scalar r pm A f

: the scalar (spin-independent) cross section scales with the atomic weight, in contrast to the spin-dependent cross section.

• The scalar interaction almost always dominates for nuclei with A > 30.

: For , either interaction can dominate, depending on the SUSY parameters.

: has predominantly spin-independent interactions.

19F

73Ge

scalar spinvs.

Page 21: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

sB decays in MSSM

In the Standard Model

• the decay proceeds through Z penguin and W exchange box diagrams.

• the decay is helicity suppressed due to angular momentum conservation.

9( ) 3 10SM sB B

Current Experimental Limit (90% CL)

7exp ( ) 5.4 10sB B

73.8 10

(CDF)

(D0)

Page 22: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

In the MSSM (Babu,Kolda 2000)

• Fermion mass eigenstates can be different from the Higgs interaction eigenstates.

• This generates Higgs-mediated FCNCs.

3tan

21/ Am

Page 23: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

p vs. ( )sB B

Both observables increase as tan increases.

Smaller Higgs masses give larger observable values.

2tanp

6( ) tansB B

41/p Am

4( ) 1/s AB B m

Page 24: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Minimal Supergravity Model

Unification of the gauge couplings at GUT scale

Universal soft breaking parameters at GUT scale

m : universal scalar mass M : universal gaugino mass A : universal trilinear coupling

Radiative EW symmetry breaking2 2 2

2 21 22

tan1

2 tan 1Z

m mM

Free parameters ( m,M,A,tan ,sgn( ) )

Page 25: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

These conditions imply that

1 2M M at EW

scale

2M at EW scale

31 2

1 2 3 GUT

MM M M

21 2 2

5tan 0.5

3 WM M M

2 0.8M M

(tan 10, 0)A

Bino-like

01

2 2 2 211.8 0.04

2 ZM M m

Heavy Am 2 2 2 21( ( ) )

2dA H Zm m EW M

Page 26: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

mSUGRA model ( A=0 and m,M < 1TeV )

Higgs and sparticle mass and ( )B b s

bounds included.

2 0.095h •

• 20.095 0.13h

• 2 0.13h

(S.Baek, YGK, P.Ko 2004 )

Page 27: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

mSUGRA model ( A=0 and m,M < 1 TeV )

Higgs and sparticle masses and ( )B b s

bounds included.

Required that Neutralino is LSP

tan 55

7( ) 3.8 10sB B •

(S.Baek, YGK, P.Ko 2004 )

Page 28: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Non-universal Higgs mass Model (NUHM)

Parameterize the non-universality in the Higgs sector at GUT scale

2 21(1 ),

dHm m 2 2

2(1 )uH

m m

The above modifications of mSUGRA boundary cond. lead to the change of and at EW scale. Am

2 2 21( )

2uH Zm EW M

2 2 2 2( ) ( ) 2d uA H Hm m EW m EW

2 2 21( )

2dH Zm EW M

Page 29: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

tan 35, 0A mSUGRA NUHM 1 2( 1, 1)

Page 30: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

tan 35, 0A mSUGRA NUHM 1 2( 1, 1)

Page 31: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Non-Universal Higgs Mass Model 1 2( 1, 1)

tan 35, 0A

Page 32: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Non-Universal Higgs Mass Model 1 2( 1, 1)

tan 35, 0A

7( ) 3.8 10sB B •

7( ) 3.8 10sB B •

Page 33: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Non-Universal Higgs Mass Model 1 2( 1, 1)

tan 50, 0A

Page 34: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Non-Universal Higgs Mass Model 1 2( 1, 1)

tan 50, 0A

7( ) 3.8 10sB B •

7( ) 3.8 10sB B •

Page 35: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

A specific D-brane Model (D.G. Cerdeno et al. 2001)

the gauge groups of the standard model come from different sets of Dp branes.

In this model, scalar masses are not completely universal and gaugino mass unificaion is relaxed.

the string scale is around GeV rather than GUT scale.1210

Free parameters:3/ 2 1,2tan , , , ,sgn( )m

3/ 2 1 ,m TeV 0 2 , 1,21 1

Page 36: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

A D-brane Modeltan 50

Page 37: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

A D-brane Modeltan 50

7( ) 3.8 10sB B

7( ) 3.8 10sB B

Page 38: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

See D.G.Cerdeno’s talk this afternoon

for more detailed analysis, including

Non-universal scalar and gaugino masses

Page 39: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

IV. Indirect detection of Neutralino WIMP( Neutrino telescopes : SuperK, AMANDA, ANTARES, IceCube)

Neutralino WIMPs in the galactic halo can be captured by the SUN and Earth through Neutralino-nucleus scattering

The neutrino flux can be detected in neutrino telescopesvia conversion

The accumulated Neutralino WIMPs annihilate into SM particles,which ultimately yields energetic neutrino flux

Page 40: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Super-K : Super Kamiokande detector

50,000 ton water Cherenkov detector,located in the Kamioka-Mozumi mine in Japanwith 1000 m rock overburden.

Set upper limits on WIMP-induced upwardmuon flux from the Sun and Earth etc. (~10^3 / km^2 yr)

Page 41: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

AMANDA : Antiartic Muon and Neutrino Detector Array

Uses 3 km thick ice layer at the geographical South Pole.

A deep under-ice Cherenkovneutrino telescope.

AMANDA-II detector is in operation with 677 PMTsat 19 strings since 2000.

AMADA-II will be integratedto IceCube.

Page 42: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

ANTARES : Astronomy with a Neutrino Telescope and Abyss environmental RESearch

In construction of a 12-string detector inthe Mediterranean Sea at 2400 m depth

A deep underwater neutrino telescope.

Page 43: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

The number of Neutralino WIMP in the Sun (or Earth)

2A

dNC C N

dt

: the capture rate of WIMPs onto the Sun (or Earth)C

AC: the total annihilation cross section times relative velocity per volume

The present annihilation rate (at =4.5 Gyr, age of solar system)

2 20

1 1tanh ( )

2 2A A AC N C CC t

0t

2 20

1

2 AC C t 0 1ACC t for

1

2C 0 1ACC t for

When accretion is efficient, the annihilation rate dependson the capture rate C, but not on the annihilation cross section.

Page 44: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

The Capture rate C depends on the elastic scattering cross section of Neutralino with matter in the Sun (or Earth).

The capture rate for the Earth primarily depends on the spin-independent DM scattering cross section. (only a negligible fraction of the Earth’s mass is in nuclei with spin)

For the capture rate of the Sun, both spin-independent and spin-dependent DM scattering cross section can be important. (spin-dependent interaction with hydrogen nuclei)

The neutrino-induced muon flux strongly depends onNeutralino-nucleus scattering cross section.

Page 45: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Muon Flux vs. m

mSUGRA model ( A=0 and m,M < 1TeV )(S.Baek, YGK, P.Ko PRELIMINARY)

from the Sun from the Earth

tan 55

tan 35

tan 10

Page 46: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

vs.

(S.Baek, YGK, P.Ko PRELIMINARY)

scalarp /(2 / )spin

p m GeV

Page 47: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

vs.

(S.Baek, YGK, P.Ko PRELIMINARY)

( )sB B in Non-Universal Higgs Model

from the Sun from the Earth

Page 48: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Muon Flux vs. mNon-Universal Higgs Mass Model

from the Sun from the Earth

(S.Baek, YGK, P.Ko PRELIMINARY)

7( ) 3.8 10sB B

Page 49: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Muon Flux vs. mNon-Universal Higgs Mass Model

from the Sun from the Earth

(S.Baek, YGK, P.Ko PRELIMINARY)

7( ) 3.8 10sB B

Page 50: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

Muon Flux vs. mA D-brane Model

tan 55

(S.Baek, YGK, P.Ko PRELIMINARY)

tan 50

from the Earthfrom the Sun

tan 50

Page 51: Detection of Neutralino WIMP Yeong Gyun Kim (Korea Univ.) I.Evidence for Dark Matter II.Dark Matter Candidates III.Direct Detection of Neutralino WIMP.

V. Conclusions

We considered the direct detection and indirect detection of neutralino WIMPs in the galactic halo, including the current upper bound of in mSUGRA, Non-Universal Higgs mass and a D-brane model.

( )sB B

We have shown that current upper limit on the branching ratio puts strong constraint on the model parameter space which could lead to quite large spin-independent neutralino-proton scattering cross section and neutrino-induced muon flux from the Sun and Earth.

sB