Destabilization of a caisson-type breakwater by scouring ...MAEDA Lab. ICSE2012...

47
MAEDA Lab. ICSE2012 20120829(Wed)-31(Fri) Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed due to a tsunami T. IMASE (Nagoya Institute of Technology, Nagoya, Japan ) K. MAEDA (Nagoya Institute of Technology, Professor, Nagoya, Japan ) M. MIYAKE (Toyo construction Co., Ltd., Doctor, Hyogo, Japan) Y. SAWADA (Toyo construction Co., Ltd., Doctor, Hyogo, Japan) H. SUMIDA (Toyo construction Co., Ltd., Hyogo, Japan) K. TSURUGASAKI (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

Transcript of Destabilization of a caisson-type breakwater by scouring ...MAEDA Lab. ICSE2012...

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed

    due to a tsunami

    T. IMASE (Nagoya Institute of Technology, Nagoya, Japan )

    K. MAEDA (Nagoya Institute of Technology, Professor, Nagoya, Japan )

    M. MIYAKE (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

    Y. SAWADA (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

    H. SUMIDA (Toyo construction Co., Ltd., Hyogo, Japan)

    K. TSURUGASAKI (Toyo construction Co., Ltd., Doctor, Hyogo, Japan)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Topics

    Destabilization of a caisson-type breakwater by scouring and seepage failure of the seabed due to a tsunami

    [Part.1] Introduction

    [Part.2] Tsunami experiment

    using centrifuge model test

    [Part.3] Numerical simulation

    using SPH method

    [Part.4] Conclusion

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Introduction

    Part. 1

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    In 46 minutes after earthquake

    In 31 minutes after earthquake

    In 26 minutes after earthquake

    Introduction(The Great East Japan Earthquake)

    Kamaishi port

    Ministry of Land, Infrastructure, Transport and Tourism

    In 2011, tsunami hazard occurred in Japan (the Great East Japan earthquake).

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Marine Hazard

    Ocean wave

    Wave Hazard

    Ground Hazard

    Tsunami

    Wave Hazard

    Ground Hazard

    Experimental methodology using centrifugal device

    Periodic waves (Ocean wave)

    Mass movement (Tsunami)

    Introduction

    Development of

    Numerical analysis using SPH method

    cyclic loadingSeepage

    Wave force

    cyclic loading

    The ground hazard mechanism

    by the tsunami is not understood.

    Clarification of damage mechanism

    with interaction of the tsunami, seabed soil and structure

    A past tsunami research has been

    discussing damage of marine structure

    with the interaction of the tsunami and

    the structure.

    iS agP 2.2Tanimoto (1994) et al. eq. :

    Started from 2009

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Introduction - Estimation of damage -

    Sliding・FallingScouring with

    crosscurrent and vortex

    Bearing capacity failure

    Liquefaction

    Sliding・Falling

    Liquefaction

    Tractive force

    Bearing capacity failure

    Seepage

    Liquefaction

    Tractive force

    Seepage

    cyclic loading

    Tsunami

    Anaseism

    Wave

    Tsunami

    forceOverflow

    Seabed

    soil

    LiquefactionBearing

    capacitySeepage

    Bachrush

    Wave

    Tsunami

    force

    Seabed

    soil

    Cyclic loading

    Tsunami coming from offing Tsunami return to offing

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Tsunami experiment with drum-type centrifuge device

    Part. 2

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Maximum acc. 440G (600rpm)

    Dimensions Model Proto type

    (Maximum acc.)

    Diameter 2.2 m 3041 m

    Width 0.3 m 132 m

    Depth 0.3 m 132 m (Ground 32 m)

    Maximum force 3.7 ton 1628g-ton

    26

    1010

    護岸

    ゲート

    50

    239

    338

    波高計3

    波高計1

    波高計2

    単位 (cm)

    1:3

    Model area:about 3.4 m

    Toyo construction Co., Ltd.

    Seabed soil (Toyoura-sand: Dr=40%)

    Rubble mound

    (Gravel: 2.9mm)

    Reservoir area:About 3.5 m 300rpm

    Caisson-type

    breakwater

    Tsunami experiment with drum-type centrifuge device

    Model test device

    The experiment study used a 2.2 m diameter drum-type centrifuge device. The tsunami was

    generated by dam break using gate.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Gage points Maximum incident wave Maximum overlapping wave

    CH 1 near the gate 0.69 m 2.58 m

    CH 2 near the breakwater 0.77 m 2.39 m

    Tsunami experiment with drum-type centrifuge device

    Tsunami experiment in a 32 g field

    0 10 20 30 40 50 600

    1

    2

    3

    Duration time, t (s)

    Wav

    e hei

    ght,

    η (

    m)

    Centrifuge model test CADMAS-SURF

    CH1

    Maximum overlapping wave:

    2.58m Maximum incident

    wave: 0.69m

    The experimental wave pressure were as

    large as than the results obtained using

    Tanimoto’s equation or Goda equation.

    Tsunami force

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Hei

    ght,

    z (

    m)

     遠心模型実験による最大波圧 遠心模型実験による段波圧 谷本らの式(最大波圧) 谷本らの式(段波圧) 池野ら

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Hei

    ght,

    z (

    m)

     遠心模型実験による最大波圧 遠心模型実験による段波圧 谷本らの式(最大波圧) 谷本らの式(段波圧) 池野ら

    0 1 2 3 4

    0

    10

    20

    30

    Length, L (m)

    Lif

    t pre

    ssure

    ,P

    d (

    kN

    /m2)

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Hei

    ght,

    z (

    m)

    Centrifuge model test Tanimoto et al. Goda eq.

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Heig

    ht,

    z (

    m)

    Centrifuge model test Tanimoto et al. Goda eq.

    0 1 2 3 4

    0

    10

    20

    30

    Length, L (m)

    Lif

    t p

    ress

    ure

    ,P

    d (

    kN

    /m2)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Direction of the tsunami

    Offing Shore

    Movie (Click fig.)

    Tsunami experiment with drum-type centrifuge device

    Deformation of breakwater, rubble mound and seabed soil

    The breakwater was slided

    Shear deformation occurred

    Rubble mound and seabed soil

    was scoured

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri) Tsunami experiment with drum-type centrifuge device

    Slide of the breakwater

    Shear deformation

    Blowout of stone and sand from

    the mound and the ground

    Shore Offing

    (a)

    A B C D E

    5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    100

    200

    300

    Duration time, t (s)

    Mom

    ent

    that

    act

    s on b

    reak

    wat

    er, M

    (kN

    )

    Maximum bore

    pressure

    Maximum overlapping

    wave pressure

    The breakwater was slided (points A and B) when the maximum bore

    pressure acted.

    Rubble mound and seabed soil was scoured while continuous wave

    pressures were acting (points B-E).

    Shear deformation occurred in the rubble mound and the seabed soil, and

    decreased the bearing capacity.

    Deformation of breakwater, rubble mound and seabed soil

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    RPaqw

    qwsc

    Fh

    s'sin'

    'tantan1

    sec'tan''

    Deformation velocity by PIV analysis

    Bishop method

    1.0

    0.0

    0.5

    [m/s]

    0.191.0 s

    F

    Safety rate of circular slide

    Shrear strain

    Deformation of rubble mound and seabed soil due to tsunami

    Discussion of bearing capacity destruction

    Tsunami experiment with drum-type centrifuge device

    Breakwater

    Rubble mound

    Seabed ground

    Direction

    of the tsunami Circular slip

    surface analysis

    0 100 50 [%]

    Shear deformation occurred in the

    rubble mound and the seabed ground

    with move of the breakwater.

    And, the safety rate of circular slide

    was smaller than 1.0.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    PWP4~PWP5 (near the ground surface): imax≒0.65

    893.08538.01

    1656.2

    1

    1

    e

    Gi scr

    PWP4

    PWP3

    PWP5

    PWP6

    PWP2 PWP1

    PWP2~PWP4 (into mound):imax≒0.8

    PWP2~PWP5 (into mound) :imax≒0.5

    10 20 30 40 500

    0.5

    1

    Hy

    dra

    uli

    c g

    rad

    ien

    tin

    Ru

    bb

    le m

    ou

    nd, i

    Ru

    bb

    le m

    ou

    nd

    Duration time, t (s)

    PWP3-PWP1 PWP1-PWP4 PWP4-PWP2 PWP2-PWP5 PWP2-PWP6

    Rubble mound

    10 20 30 40 500

    100

    200

    300

    Duration time, t (s)

    Mo

    men

    t th

    at a

    cts

    on b

    reak

    wat

    er, M

    (k

    N)

    A B C D E

    Ground surface

    10 20 30 40 500

    0.5

    1

    Hydra

    uli

    c gra

    die

    nt

    in t

    he

    gro

    und, i

    gro

    und

    Duration time, t (s)

    PWP3-PWP4 PWP4-PWP5 PWP5-PWP6

    Tsunami experiment with drum-type centrifuge device

    Scouring and blowout with seepage flow

    We calculated the hydraulic gradient

    using the measured pore water pressure.

    The results, the hydraulic gradient

    increased from the center of the

    breakwater bottom toward the shore while

    the continuous wave pressure was acting.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Numerical simulation using SPH method

    Part. 3

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri) Numerical simulation using SPH

    Layer of Solid

    Air

    Water

    Porous material,

    soil

    sff

    fsf

    Layer of Fluid

    Total volume fraction: 1 = (Volume fraction: n) + (Volume fraction: 1-n)

    Superposition

    of fluid-solid

    layers

    Interaction body force

    Soil-fluid coupling in the SPH method calculate fluid phase and solid phase, and the obtained results are

    overlapping by Darcy's low.

    )(2 fsfs f

    k

    gn vvf

    n:Porosity

    g:Acceleration of gracity

    ρf:Density of fluid

    k:Permeability

    vs:Velocity of solid

    vf:Velocity of fluid

    Soil-fluid coupling

    Seepage around sheet pile (K. Maeda, M. Sakai (2004))

    Superposition of

    smoothed physical values

    Smoothed physical values

    by using smoothed function for each particle

    x

    Limited zone of influence

    x1

    x2

    o

    Particle : i

    Particle : j

    rij

    xi

    xj

    κhi hi

    Smoothed Particle Hydrodynamics

    x'x'x'xx dfhWf )(),()(

    The feature of the SPH method is as follows;

    Mesh free

    Lagrangian method

    Initial modeling is easy.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri) Numerical simulation using SPH

    Comparison between experimental

    result and numerical analysis result

    Tsunami experimentusing centrifuge device

    Numerical Analysisusing SPH method

    i

    h

    粒子(質点)

    影響半径

    ゲート

    300rpm

    海底地盤

    ケーソン式防波堤

    捨石マウンド

    NG

    Superposition of

    smoothed physical values

    Smoothed physical values

    by using smoothed function for each particle

    x

    Limited zone of influence x1

    x2

    o

    Particle : i

    Particle : j

    rij

    xi

    xj

    κhi hi

    防波堤の滑動

    マウンド・地盤のせん断変形

    捨石・地盤の噴出

    防波堤

    捨石マウンド海底地盤

    円弧すべり解析

    0 10050

    [%]

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Tsunami

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Hei

    gh

    t, z

    (m

    )

     遠心模型実験による最大波圧 遠心模型実験による段波圧 谷本らの式(最大波圧) 谷本らの式(段波圧) 池野ら

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Heig

    ht,

    z (

    m)

     遠心模型実験による最大波圧 遠心模型実験による段波圧 谷本らの式(最大波圧) 谷本らの式(段波圧) 池野ら

    0 1 2 3 4

    0

    10

    20

    30

    Length, L (m)

    Lif

    t p

    ress

    ure

    ,P

    d (

    kN

    /m2)

    0 1 2 3 4

    0

    10

    20

    30

    Length, L (m)

    Lif

    t pre

    ssure

    ,P

    d (

    kN

    /m2)

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Heig

    ht,

    z (

    m)

    Exp. Numerical analysis Tanimoto et al.

    0 10 20 30

    -2

    -1

    0

    1

    2

    Wave Pressure, Pd (kN/m2)

    Heig

    ht,

    z (

    m)

    Exp. Numerical analysis Tanimoto et al.

    iS agP 2.2

    Tanimoto(1994) et al. eq.

    Standard in technology of facilities in harbors

    Ps

    第1波襲来時

    Wave pressure that acts on breakwater

    Comparison between experimental result and numerical analysis result

    The wave pressure of numerical analysis were as large as than experiment result and tanimoto’s equation.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    0 10 20 30 40 50 60 70 80 90 100-80.0

    -60.0

    -40.0

    -20.0

    0

    20.0

    40.0

    60.0

    80.0

    Marg

    in o

    f b

    eari

    ng

    cap

    acit

    y,

    (kN

    /m)

    Duration time, t (s)

    Exp. Numerical analysis Numerical analysis(EPWP)

    Margin of bearing capacity

    Margin of bearing capacity= Bearing capacity strength - Tsunami force - Bearing capacity decrease in breakwater due to increase of excess pore water pressure in the ground

    Margin of bearing capacity

    Initial decrease is the same.

    The decrease in the safety factor of the breakwater was

    larger when the excess pore water pressure in the ground

    was taken into consideration

    Comparison between experimental result and numerical analysis result

    RPaqw

    qwscF

    h

    s

    'sin'

    'tantan1

    sec'tan''

               

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    t = 3.30 s

    result of SPH analysis(flow velocity vector)

    [m/s]

    t = 2.70 s

    t = 5.00 s t = 6.00 s

    ① ②

    ③ ④

    0.0 0.3 0.6 0.9 1.2

    t=15s t=30sΔη=50mm Δη=80mm

    Centrifuge model test

    Slide of the breakwater

    Shear deformation

    Blowout of stone and sand from

    the mound and the ground

    Shore Offing

    (a)1g channel test

    Comparison between experimental result and numerical analysis result Seepage flow into rubble mound and seabed soil

    Weight:W

    Lift force:LFTractive

    force :τ

    Soil particle

    friction:Fr

    Close up

    Weight:W

    Lift force:LFTractive

    force :τ

    friction:Fr

    Close up

    Excess pore water pressure:ue

    High-speed flow

    is caused in the

    rubble mound.

    As a result,

    seepage flow was generated on the

    seabed soil surface.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    10 20 30 40 500

    0.5

    1

    Hydra

    uli

    c g

    radie

    nt

    in t

    he g

    round, i

    gro

    und

    Duration time, t (s)

    Exp.(PWP3-PWP4) Exp.(PWP4-PWP5) Exp.(PWP5-PWP6) Numerical analysis(PWP3-PWP4) Numerical analysis(PWP4-PWP5) Numerical analysis(PWP5-PWP6)

    ij

    ejeif

    ji

    ij

    HHg

    PP

    i

    f

    iP

    eiH

    ij

    g

    :Density of fluid

    :Acceleration of gravity

    :Total head of measurement point i

    :Elevation head of measurement point i

    :Distance of measurement point i and j

    Hydraulic gradient into seabed soil

    20

    30

    40

    CL

    Unit : mm

    PWP8

    PWP9

    PWP7

    PWP3

    PWP4PWP5PWP6

    PWP2 PWP1

    35

    4@

    25

    P1

    P2

    P3

    P4

    P5

    15

    0

    43.5

    Tsunami

    : Pore water pressure meter

    : Wave pressure meter

    Numerical simulation using SPH

    In the outcome of an experiment and the analytical result, the value is

    different. Behavior looks like.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri) Numerical simulation using SPH

    Tsunami simulation

    in virtual coastal area

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    1,000

    350 30 210 50 50

    10 151

    1:3

    I.W.L +35.0

    I.W.L +20.0

    Unit : m

    shoreoffing

    WL1 WL2 WL3 Measurement of wave level

    1:2

    I.W.L +20.0

    8.8

    15

    21

    0

    Caisson-type

    Breakwater

    Rubble mound

    Seabed

    Impermeability

    layer

    Impermeability

    layer

    offingshore

    Measurement of

    wave pressureUnit : m

    PWP1 PWP2 PWP3 PWP4 PWP5 PWP6 PWP7 PWP8 PWP9

    PWP10 PWP11 PWP12 PWP13 PWP14 PWP15 PWP16 PWP17 PWP18

    PWP19 PWP20 PWP21 PWP22 PWP23 PWP24 PWP25 PWP26 PWP27

    Marine model

    Caisson-type breakwater model

    Tsunami simulation in virtual coastal area

    Numerical simulation using SPH

    Stability of breakwater due to tsunami was investigated using a standard model of

    coastal area. A tsunami was generated by dam break. The permeability coefficients

    of the rubble mound and the seabed soil were set as 1×10-2 m/s and 2×10-5 m/s.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    0 100 2000

    10

    20

    Duration time, t (s)

    Wav

    e le

    vel

    , η (

    m) WL1 WL2 WL3

    0 20 40 60 80 1000

    10

    20

    Duration time, t (s)

    Wave

    level

    , η (

    m) WL1 WL2 WL3

    1,000

    350 30 210 50 50

    10 151

    1:3

    I.W.L +35.0

    I.W.L +20.0

    Unit : m

    shoreoffing

    WL1 WL2 WL3 Measurement of wave level

    Height of

    incident wave

    Height of

    overlapping wave

    WL1 7.17 m

    16.8 m

    WL2 17.1 m

    WL3 - 16.6 m

    Soliton wave was confirmed for the first time in middle Japan Sea Earthquake in 1983.

    Wave period: About 70 [s]

    Wave for about ten a few seconds of cycle

    Breaking wave

    wave force is very large

    Soliton wave

    Tsunami simulation in virtual coastal area

    Numerical simulation using SPH

    The feature of soliton wave is as follows;

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    (a)Moment that acts on breakwater

    (b)Hydraulic gradient into seabed soil

    (c)Safety ration of Bearing capacity

    1:2

    I.W.L +20.0

    5.0

    Caisson-type

    Breakwater

    Rubble mound

    Seabed

    offing shore

    Unit : m

    PWP5 PWP6 PWP7 PWP8 PWP9

    offing shore

    Unit : m

    R=15.0

    Stability of the breakwater

    against anaseism

    Tsunami simulation in virtual coastal area

    Numerical simulation using SPH

    The breakwater will be

    large deformation.

    The breakwater is moved due to

    the action of the initial impulsive

    wave force.

    Shear deformation occurred in

    the rubble mound and the seabed

    soil and it receive seepage force,

    which decreased the stability.

    Especially, the decrease in the

    safety factor of the breakwater

    was larger when the excess pore

    water pressure in the ground was

    taken into consideration

    Margin of bearing capacity= Bearing capacity strength - Tsunami force - Bearing capacity decrease in breakwater due to increase of excess pore water pressure in the ground

    (a)

    (b)

    (c)

    0 20 40 60 80 100 120 140 160 180 2000

    20

    40

    60

    80

    Mo

    men

    t th

    at a

    cts

    o

    n b

    reak

    wate

    r, M

    (M

    N)

    0 20 40 60 80 100 120 140 160 180 200-1.0

    -0.5

    0.0

    0.5

    1.0

    Hy

    dra

    uri

    c gra

    die

    nt

    in

    th

    e gro

    und

    , i g

    round

    PWP5-PWP6 PWP7-PWP8 PWP6-PWP7 PWP8-PWP9

    0 20 40 60 80 100 120 140 160 180 200-2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Marg

    in o

    fbeari

    ng c

    apacit

    y, (M

    N/m

    )

    Duration time, t (s)

    About excess pore water pressure Non-consideration Consideration

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Conclusion

    Part. 4

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Time

    Event

    dW

    dUP

    dHPdBP

    A

    21,aa

    3a

    4a

    dW

    dUP

    dHP

    dBP

    dHP

    aR

    Sliding of the

    Breakwater

    Bearing capacity of

    the Breakwater

    Falling of the

    Breakwater

    Wave pressure Excess pore water pressure

    Seepage of the

    Seabed and Rubble

    mound

    Tsunami - Seabed soil – Breakwater interaction

    The breakwater slid due to the action of the initial impulsive wave force.

    Shear deformation occurred in the rubble mound and the seabed soil, which

    decreased the bearing capacity.

    The hydraulic gradient increased in rubble mound and seabed soil at the shore

    side under breakwater due to seepage flow with the continuous wave pressure.

    The bearing capacity of breakwater decreased due to degradation of the ground

    caused due to the increment of excess pore water pressure in the seabed soil.

    Conclusion

    Damage mechanism of breakwater by tsunami

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Thank you

    for your kind attention

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Fluid, Fluid-Solid coupling

    2D-Dambreak 3D-Dambreak

    Tsunami hazard simulation (Hachinohe port)

    Movie (Click fig.)

    Numerical simulation using SPH

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Margin of bearing capacity= Bearing capacity strength - Tsunami force - Bearing capacity decrease in breakwater due to increase of excess pore water pressure in the ground

    1:2

    I.W.L +20.0

    5.0

    Caisson-type

    Breakwater

    Rubble mound

    Seabed

    offing shore

    Unit : m

    PWP1 PWP2 PWP3 PWP4PWP5

    offing shore

    Unit : m

    R=15.0

    Stability of the breakwater

    against backrush

    Tsunami simulation in virtual coastal area

    Numerical simulation using SPH

    (a)

    (b)

    (c)

    0 20 40 60 80 100 120 140 160 180 2000

    2

    4

    6

    8

    10

    Mo

    men

    t th

    at

    acts

    o

    n b

    reak

    wate

    r, M

    (M

    N)

    0 20 40 60 80 100 120 140 160 180 200-1.0

    -0.5

    0.0

    0.5

    1.0

    Hy

    dra

    uri

    c g

    rad

    ien

    t i

    n t

    he g

    rou

    nd

    , i g

    round

    PWP1-PWP2 PWP3-PWP4 PWP2-PWP3 PWP4-PWP5

    0 20 40 60 80 100 120 140 160 180 200-1.0

    -0.5

    0.0

    0.5

    1.0

    Marg

    in o

    fb

    eari

    ng

    cap

    acit

    y,

    (MN

    /m)

    Duration time, t (s)

    About excess pore water pressure Non-consideration Consideration

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    10 20 30 40 50 600

    0.5

    1

    1.5

    2

    Duration time, t (s)

    Safe

    ty r

    atio

    of

    slid

    ing, F

    s

    Analysis Theory

    10 20 30 40 50 600

    0.5

    1

    1.5

    2

    Duration time, t (s)

    Safe

    ty r

    ati

    o o

    f T

    ippin

    g, F

    s

    Analysis Theory

    10 20 30 40 50 600

    0.5

    1

    1.5

    Duration time, t (s)

    Fs

    Sliding Tipping Bearing capacity

    Safety ratio of sliding

    2.1s

    F

    sdsUdBdPaPaPaWa

    4321

    sdsUdBddPPPWf

    2.1s

    F

    Safety ratio of tipping

    Safety ratio of sliding, tipping and bearing capacity

    Numerical simulation using SPH

    Tsunami simulation in virtual coastal area

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    津波越流力による 防波堤背後地盤の不安定化

    撮影開始 2:30後

    八戸港における津波来襲時の様子

    出典: You Tube

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    320112 9.6 67.2 16

    3.2

    1:3W.L. +3.2

    Unit : m

    shoreoffingΔh WL1 WL2 WL3

    Measurement of wave level

    B1

    B2

    B3

    B4

    B5

    B6

    A1

    A2

    A3

    A4

    A5

    A6

    C1

    C2

    C3

    C4

    C5

    C6

    D1

    D2

    D3

    D4

    D5

    D6

    E1

    E2

    E3

    E4

    E5

    E6

    F1

    F2

    F3

    F4

    F5

    F6

    G1

    G2

    G3

    G4

    G5

    G6

    H1

    H2

    H3

    H4

    H5

    H6

    I1

    I2

    I3

    I4

    I5

    I6

    J1

    J2

    J3

    J4

    J5

    J6

    K1

    K2

    K3

    K4

    K5

    K6

    Tsunamioffing shore

    : Measurement point of pressure

    0.6

    4

    1.6Unit : m

    Caisson-type

    breakwater

    Rubble mound

    Circular slip

    surface analysis

    h0=

    1.1

    2

    P1 P2

    Case Offing site water level shore site water level Δh

    Non-overflow 7.36 (m) 3.20 (m) + 3.20(m): Seabed + 0.96 (m)

    overflow 12.80(m) 3.20 (m) + 3.20(m): Seabed + 6.40 (m)

    津波越流力による防波堤背後地盤の不安定化

    津波流動場を想定した海岸域のモデル化

    初期粒子間距離:0.16m 粒子数:10万個程度

    防波堤:不動剛体構造物

    捨石マウンド:不動透過性構造物 透水係数km=1.0×10

    -2m/s (Dupuit-Forchheimer則)

    海底床:不透水性(境界)

    海底地盤:不動透過性構造物 透水係数ks=2.0×10

    -5m/s (Darcy則)

    全 域

    混成堤モデル

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    防波堤越流時の津波挙動 津波越流力による防波堤背後地盤の不安定化

    Movie (Click fig.)

    越流あり:Δh=+6.4mにおける解析結果

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    越流なし 越流あり

    越流後の落下水塊による地盤内応力変化 -動水勾配の経時変化に着目した検討-

    津波越流力による防波堤背後地盤の不安定化

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    越流あり

    t=16s

    0.0 1.00.50.25 0.75

    動水勾配(正は上向き)

    越流水塊による急速載荷 W

    vimpact

    Impact force

    Seepage force Fu

    vshearTractive force

    g

    v

    g

    P impactimpact

    2

    2

    防波堤背後地盤に作用する落下水塊の影響 津波越流力による防波堤背後地盤の不安定化

    H1

    Tsunami

    offing shore

    : Measurement point of pressure

    0.6

    4 Unit : m

    Caisson-type

    breakwater

    Rubble mound

    Circular slip

    surface analysis

    h0=

    1.1

    2

    P1 P2

    H2

    0 10 20 30 40 50 60 70 80 90 100-40

    -20

    0

    20

    40

    60

    80

    100

    Duration time, t (s)

    Δu

    H2-H

    1 (

    kN

    )

    ΔuH2-H1=ΔuH2-ΔuH1地盤表層と地盤内部の水圧差

    zf

    RD

    W

    H

    412141~ fzqgR

    乱流・渦に伴う乱れ

    野口 他(1997): 津波遡上による護岸越流および前面洗掘の大規模模型実験,海工論,第44巻,pp.296-300

    土木学会刊(1999), 水理公式集 平成11年度版.

    過剰間隙水圧,浸透力による土粒子の浮遊(液状化)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    (a) 防波堤に作用する総モーメント力

    (b) 支持力に対する安全率(地盤内過剰間隙水圧の考慮)

    0 10 20 30 40 50 60 70 80 90 1000.00.20.40.60.81.01.21.41.61.82.0

    Duration time, t (s)

    Mo

    men

    t th

    at

    acts

    o

    n b

    reak

    wate

    r, M

    (M

    N)

    Non overflow Overflow

    0 10 20 30 40 50 60 70 80 90 100-200.0

    -150.0

    -100.0

    -50.0

    0

    50.0

    100.0

    150.0

    200.0

    Marg

    in o

    f b

    eari

    ng

    cap

    acit

    y,

    (kN

    /m)

    Duration time, t (s)

    No overflow : Wave force No overflow : Wave force + EPWP Overflow : Wave force Overflow : Wave force + EPWP

    地盤の剛性低下を考慮した支持力破壊の検討 津波越流力による防波堤背後地盤の不安定化

    offing shore

    Caisson-type

    breakwater

    Rubble mound

    Seabed ground

    A

    offing shore

    Caisson-type

    breakwater

    Rubble mound

    Seabed ground

    : Measurement point

    of pressure

    地盤への津波力作用の影響により, 支持力強度が一層低下する

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    有川太郎・佐藤昌治・下迫健一郎・富田孝史・辰巳大介・廉慶善・高橋研也(2012): 釜石湾口防波堤の津波による被災メカニズムの検討-水理特性を中心とした第一報-, 港空研資料, No.1251.

    健全な状態 津波来襲後

    滑動に対する安全率

    d

    dd

    H

    UBdd

    SP

    PPWfF

    ※(社)日本港湾協会:港湾の施設の技術上の基準・同解説(上)・(下),2007

    dW

    dUP

    dHP

    dBP

    Tsunami

    dW

    dBP

    dUP

    dHP:堤体重量(kN/m)

    :浮力(kN/m)

    :揚圧力(kN/m)

    :水平波力(kN/m)

    ia :力の作用するアーム長(m)

    df :壁体底面と基礎との摩擦(=0.6)

    防波堤背後の水圧変動に伴う 防波堤の滑動に対する安全性低下

    津波越流力による防波堤背後地盤の不安定化

    有川ら(2012)による釜石湾口防波堤の被災検討 防波堤

    港内側 港外側

    津 波

    ※一部加筆

    22

    2

    2

    2

    2

    2

    2

    1212

    122

    h

    h

    h

    hh

    g

    hhg

    hg

          

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    防波堤背後の水圧変動に伴う 防波堤の滑動に対する安全性低下

    津波越流力による防波堤背後地盤の不安定化

    H1

    Tsunami

    offing shore

    : Measurement point of pressure

    0.6

    4 Unit : m

    Caisson-type

    breakwater

    Rubble mound

    Circular slip

    surface analysis

    h0=

    1.1

    2

    P1 P2

    H2

    Increase in

    slide force

    Decrease in

    slide force

    Decrease in backpressure with overflow

    0.0 2.0 4.0 6.0 8.0 10.00.0

    2.0

    4.0

    6.0

    8.0

    10.0

    P2/ρgh0

    P1/ρ

    gh

    0

    Non overflow Overflow

    dW

    dUP

    dHP

    dBP

    Tsunami

    dHP

    dW

    dUP

    dHP

    dBP

    Tsunami

    dHP

    要因② 渦等伴う 水圧変化

    渦 度

    要因① 水位変動に伴う 水圧変化

    水位変動

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    結 言

    Time

    Event

    dW

    dUP

    dHPdBP

    A

    21,aa

    3a

    4a

    dW

    dUP

    dHP

    dBP

    dHP

    aR

    Sliding

    Bearing capacity

    Falling

    Overflow

    Seepage failure

    vortex

    Reduced

    water pressure Sliding

    Scouring

    Bearing capacity

    Falling

    Liquefaction

    or

    Fluidization

    越流による落下水塊による背後地盤への影響と防波堤の不安定化

    地盤の洗掘・局所的液状化を誘発し、支持力強度を低下させる

    落下水塊の衝突力とその後のせん断流

    乱流・渦に伴う乱れと圧力低下 滑動に対する安全性を低下させ、支持力破壊と相まって防波堤が移動・転倒

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    アンカーを用いた防波堤の固定による耐波強化

    裏込カウンターによる耐波強化 消波ブロックによる耐波強化

    我が国において

    今後に対策として

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    aI=5.0m

    RaPqW

    qWSc

    FHddd

    d

    dddd

    s

    sin

    tantan1

    sectan'

    支持力に対する安全率

    Ip gaP 4.2

    :谷本ら(1984) 津波外力

    裏込めの抵抗力 d2

    h1

    h2 d1

    d3

    θ

    Ws

    補強材: 割石の場合

    tans

    WR

    tantan'2

    1444142

    dddhddWs

    sW :最上層の被覆層を除いた滑り面より上の割石の水中重量

    :滑り面傾斜角(度)

    : 2

    1tan :割石と割石の摩擦係数(=0.8) 2

    aI

    1:2

    8.7

    15.0

    5.0

    1:1

    Units : m

    すべり線

    防波堤 捨石マウンド,割石

    2.12 8.9【kN/m3】

    Dc 【kN/m2】

    D 【°】

    海底地盤

    35

    '7.8

    水中 単位体積重量

    粘着力

    内部摩擦角 45

    00-

    補強なし:

    補強あり:

    08.1s

    F

    55.1s

    F

    滑動・転倒に対する効果も考えられる。 赤塚雄三,竹田英章,蓮見隆:混成堤の堤体背後に設置したコンクリート方塊あるいは割石の滑動抵抗,第22回海岸工学講演会論文集,Vol.2,pp.421-425,1975.

    支持力補強(裏込め)

    菊池喜昭,新舎博,河村健輔,江口信也:裏込めを有するケーソン式混成堤の安定性の検討,土木学会論文集C(地圏工学),Vol.67, No.4, pp.474-487,2011.

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Tractiveforce

    Seepage force

    W Tractiveforce

    g

    v

    g

    P impactimpact

    2

    2

    vimpact

    Impact force

    Seepage force

    Scouring seabed surface

    Overflow

    Movie (Click fig.)

    Movie (Click fig.)

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Tractiveforce

    Seepage force

    W Tractiveforce

    g

    v

    g

    P impactimpact

    2

    2

    vimpact

    Impact force

    Seepage force

    表層部に作用する 掃流力

    内部応力変化に伴う浸透力

    掃流力・馬蹄渦

    内部応力変化に伴う浸透力

    落下水塊による 衝撃力

    護岸(舗装)被害

    防波堤被害

    防潮堤被害

    結言 ~其の2:地盤工学における新たな課題~

    地震動

    津 波

    洗 掘

    液状化

    衝撃力

    掃流力

    浸透力

    間隙空気

    馬蹄渦

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Weight:W Soil particle

    friction:Fr

    Weight:W

    Lift force:Tractive

    force :τ

    friction:Fr

    Close up

    Excess pore water pressure:ue

    Weight:W

    Lift force:LFTractive

    force :τ

    Soil particle

    friction:Fr

    Close up

    Weight:W

    Lift force:LFTractive

    force :τ

    friction:Fr

    Close up

    Excess pore water pressure:ue

  • MAEDA Lab.

    ICSE2012 20120829(Wed)-31(Fri)

    Tsunami experiment using centrifuge device

    Numerical Analysis using SPH method

    i

    h

    粒子(質点)

    影響半径

    ゲート

    300rpm

    海底地盤

    ケーソン式防波堤

    捨石マウンド

    NG

    Superposition of

    smoothed physical values

    Smoothed physical values

    by using smoothed function for each particle

    x

    Limited zone of influence x1

    x2

    o

    Particle : i

    Particle : j

    rij

    xi

    xj

    κhi hi

    防波堤の滑動

    マウンド・地盤のせん断変形

    捨石・地盤の噴出

    防波堤

    捨石マウンド海底地盤

    円弧すべり解析

    0 10050

    [%]