Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed...

44
Designing Smart Sensors In Standard CMOS Kofi Makinwa Electronic Instrumentation Laboratory/DIMES Delft University of Technology Delft, The Netherlands

Transcript of Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed...

Page 1: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Designing Smart SensorsIn Standard CMOS

Kofi Makinwa

Electronic Instrumentation Laboratory/DIMES

Delft University of Technology

Delft, The Netherlands

Page 2: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 2

Sensors are Everywhere!

Page 3: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 3

World Sensor Market

Time

US $Billions

1998 2003 2008

50.6

42.2

32.5

Courtesy of InTechno Consulting

Page 4: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 4

Traditional Sensor Systems

Sensor Interfaceelectronics

traditionalwind sensor

Page 5: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 5

Smart Sensors

smartwind sensor

Sensor InterfaceElectronics

• Sensor + Interface electronics in one package• Robust microprocessor compatible interface

Page 6: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 6

Why Smart Sensors?• Standard output format ⇒ plug-and-play!

• Bus interfaces ⇒ multiple sensors, less wiring

• More functionality: self-test, diagnostics, storage of sensor ID and calibration data

• Smaller, cheaper, more reliable …

Page 7: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 7

Smart Sensor Design

Sensors

• Cover many domains ⇒ sensor physics

• Interact with the environment ⇒ package design

• Output small analog signals ⇒ analog design

Smart sensor design is challenging!

InterfaceElectronics

Package

Page 8: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 8

Sensors in Standard CMOSStandard CMOS sensors cover the following domains:• Thermal ⇒ resistors, transistors & thermopiles• Magnetic ⇒ Hall-plates & magFETs• Optical ⇒ photo-diodes• Chemical ⇒ ISFETs• Electrical ⇒ resistors, capacitors & inductors• Mechanical (requires micro-machining!)

⇒ moveable proof mass or diaphragm

Note: Silicon sensors are usually not best in class!Ultimate performance ⇒ “exotic” sensor + CMOS circuitry

Page 9: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 9

Typical Sensor Characteristics In general, sensors

• Output small analog quantities: microvolts (Hall sensors, thermopiles), microamps (photodiodes), atto-farads (inertial sensors)

• Are relatively slow – at least compared to the switching speed of transistors

In addition, silicon sensors

• Are sensitive to process spread, temperature & (packaging) stress

Page 10: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 10

A Design Methodology 1. Do no harm! ⇒ sensor should limits performance

2. Do system design! ⇒ use sensor physics to compensate for sensor non-idealities

3. Digitize early! ⇒ less analog errors, digital signal processing (flexibility, Moore’s Law)

4. Be dynamic! Use DEM, chopping, auto-zeroing and Σ∆ modulation to shift gain errors,1/f noise, offset and quantization noise out of (LF) sensor bandwidth

Sensor BW

Shifted offset, gain error,1/f noise, Q-noise

freq.

dB

Page 11: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 11

A Design Methodology 1. Do no harm! ⇒ sensor should limits performance

2. Do system design! ⇒ use sensor physics to compensate for sensor non-idealities

3. Digitize early! ⇒ less analog errors, digital signal processing (flexibility, Moore’s Law)

4. Be dynamic! Use DEM, chopping, auto-zeroing and Σ∆ modulation ⇒ reduce gain errors,1/f noise, offset and quantization noise in small sensor bandwidth

Three case studies: a smart wind sensor, a smart Hall-effect sensor and a smart temperature sensor

Page 12: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 12

A Smart Wind Sensor!

Convective cooling ⇒ temperature gradient

⇒ wind speed and direction

Page 13: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 13

An Electronic Wind Sensor

Page 14: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 14

Wind Sensor Chip

• On-chip heaters

• PNP: measures chip temperature Tchip

• Thermopiles: measure temperature differences δTNS and δTEW

⇒ wind speed and direction

Page 15: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 15

Sensor Characteristics • Slow (~1s time constant)

• Thermopile output is small (microvolts) and spreads

• Output is proportional to ∆T = Tchip - Tamb ⇒ regulation

• Sensor suffers from packaging offset (chip is not perfectly centered on disc) ⇒ calibration and trimming

• Sensor achieves ~1° angle error ⇒ thermopile outputs must be digitized with > 8-bit resolution

• Characteristics depend on chip size ⇒ same chip area ⇒ simple interface circuitry

Page 16: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 16

Thermal Balancing

• Old principle: measuretemperature difference δT

• New principle: cancel temperature differences

• Measure difference in heater power δP⇒ wind speed & direction

Page 17: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 17

• Heaters are pulsed by bitstream

• Pulses are thermally low-pass filtered⇒ δTNS ~ 0

• Requires only a low-offset comparator!

• Another modulator regulates ∆T

Thermal Σ∆ Modulation

Page 18: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 18

Smart Wind Sensor

Page 19: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 19

Smart Wind Sensor Chip

• Same area as original sensor

• Even in a 1.6µm CMOS process!

• Thermal Σ∆modulators ⇒ 10-bit resolution

• Bitstream output

Page 20: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 20

Thermal Σ∆ Modulator Spectrum• Thermal LPF

⇒ Noise shaping!

• But its finite gain⇒ Q-noise floor

• Off-center chip ⇒ DC offset

• Auto-zeroing ⇒ No 1/f noise

fclk = 8kHz

Page 21: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 21

Wind Sensor Performance

• After calibration:Speed error: ± 4% Angle error: ± 2°

• Same as for original sensor

• But, with on-chip electronics

• Is being commercialized

Page 22: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 22

Earth’s Magnetic Field

Goal: Hall-sensor based compass with 1° angle error

⇒ Hall-sensor precision < 0.5µT

⇒ Precision of readout electronics < 25nV!

• Compass senses at least two components of earth’s field

• Field strength < 45µT

Sensor

X-sensor

YSensor

Page 23: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 23

Hall Effect+

B

VHall

Ibias

-

VHall = SH IBias B

+

-Wheatstone bridge model

Resistances in bridge model– Are mismatched ⇒ Offset (10mT typical)– Change due to changes in temperature and

packaging stress ⇒ Offset drift

Page 24: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 24

Spinning-Current Hall Plate• Bias current rotated, while

Hall voltages are summed

• Cancels offset due to staticbridge mismatch

⇒10 - 100µT offset

• But thermal settling ⇒ tens of milliseconds per spin cycle

⇒ Time-varying offset e.g. due to temperature and stress remains a problem

Page 25: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 25

Hall Sensor Offset Reduction• Orthogonal coupling

– 4 sensors are biasedin 4 different directions

– Hall voltages are summed

⇒ Instantaneous compensation of time-varying offset

• Stable offset < 10µT ⇒ can be trimmed!

• Also compensates for errors due to nearby metal objects

Page 26: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 26

Spinning-Current Sensor Output

• Typically 10mV worst case offset

• But offset drift < 25nV is required after spinning⇒ Interface electronics with sub-microvolt offset⇒ Good linearity over an 80 - 100dB dynamic range

Time0

10

Out

put (

mV)

Offs

et

Sign

al

Page 27: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 27

System Architecture

Sub-microvolt offset ⇒ nested chopping

• Hall-voltages converted to currents by chopped instrumentation amplifier (fast choppers)

• Σ∆ Modulator digitizes resulting currents

• Entire front-end is again chopped (slow choppers)

• Decimation filter sums and averages Hall-voltages

DecimationCounter &

Summing Spin

SlowChopper

FastChopper

V - IInst.Amp.

Σ∆Modulator

HallSensor

FastChopper

DigitalSlow Chopper

Page 28: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 28

Chip Micrograph

• 0.5µm CMOS

• Area: 2.9 mm²

• Dissipates 21mW (4.2mA @ 5V)

• RS232, SPI/µwireand PWM interface

• Commercial product

Hall Sensor Inst. Amp. ADC

Timing, Control & Interfaces

Page 29: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 29

Sensor Offset Distribution

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3

Offset (µT) - 19 Samples

Sensor offset (3σ) < 4µT, but offset drift < 5nT per week!

Page 30: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 30

Heading error

-2.5-2

-1.5-1

-0.50

0.51

1.52

2.5

0 30 60 90 120150180210240270300330360

Before calibrationOffset & Gain calibrated

System Response Measurement

• Angle error < 1° after calibration and trimming!

• State-of-the-art performance!

Compass Output

-25-20-15

-10-505

10

152025

0 30 60 90 120150180210240270300330360

Rotation (degrees)

Sens

or o

utpu

ts (µ

T)

X-VectorY-Vector

Page 31: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 31

A Smart Temperature Sensor

• Commercial smart temperature sensorsare not very accurate (±1.0°C from –55°C to 125°C)

• By comparison: class-A Pt100 ±0.5°C

• Our goal: ±0.1°C from –55°C to 125°Cwith only a single-temperature trim

Page 32: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 32

Operating Principle

• substrate PNPs generate:∆VBE proportional to absolute temp. (PTAT)VBE complementary to absolute temp. (CTAT)

• ratiometric measurement:BEBE

BE

REF

TEMPVV

VVV

∆⋅α+∆⋅α

==µ

Page 33: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 33

Dominant Error Sources

• process spread of VBE ⇒ errors of ~3°C

• offset in ∆VBE read-out: 10µV ⇒ 0.1°C error

• mismatch in 1:p current ratioand gain α: 0.1% ⇒ 0.2°C error

Page 34: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 34

Single-Temperature Calibration• process spread

⇒ PTAT error in VBE

• So single-temperaturetrim is sufficient,provided all othererrors are negligible

Approach:

- reduce all errors except spread to 0.01°C level

- correct spread by trimming the bias current

Page 35: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 35

Block Diagram

• Bipolar core = two PNPs

• Σ∆ modulator produces bitstream bsthat is a digital representation of temperature

• bitstream is filtered and scaled by decimation filterto produce binary reading in °C

Page 36: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 36

Dynamic Element Matching

• Accurate 1:5 current ratio for ∆VBE⇒ rotate current sources

• Accurate 1:8 sampling capacitor ratio ⇒ rotate sampling capacitors

Page 37: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 37

Switched-Capacitor Front-End

• Correlated double-sampling (CDS) cancels offset and 1/f noise of 1st integrator

Page 38: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 38

Chopped Σ∆ Modulator

• After CDS, offset of 1st integrator is still > 10µV⇒ further offset reduction by system-level chopping

Page 39: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 39

Chip Micrograph

• 0.7µm CMOS

• Area: 4.5mm2

• supply voltage:2.5..5.5V

• supply current:75µA

• Bitstream output

Page 40: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 40

Measurement Results

24 samplesfrom 1 batch

inaccuracy (±3σ) after calibration& trimming at 30°C:

±0.1°C –55..125°C

State-of-the-art performance!

Page 41: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 41

New Challenges• Designing ultra-low-power autonomous and biomedical

sensors ⇒ dynamic techniques• Designing smart sensors (e.g. temp sensors)

in nanometer CMOS ⇒ time-domain signal processing• Using dynamic techniques in other analog systems

e.g. amplifiers & ADCs

• Designing smart sensors based on new types of sensors e.g. SPADs and thermal diffusivity sensors

Page 42: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 42

Summary• Smart sensor design is challenging!

• The following design methodology helps

– Do no harm!

– Do system design!

– Digitize early!

– Be dynamic!

• Used to realize a unique wind sensor and state-of-the-art magnetic field and temperature sensors

K.A.A. Makinwa et al, “Smart sensor design: The art of compensation and cancellation,” Proc. ESSCIRC, pp. 76 - 82, Sept 2007.

Page 43: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 43

• Mierij Meteo

• Xensor Integration

• NXP Semiconductors

• Dutch Technology Foundation (STW)

• Thank-You for Your Attention!

• Any questions?

Acknowledgements

Page 44: Designing Smart Sensors In Standard CMOS...Convective cooling ⇒temperature gradient ⇒wind speed and direction Sept 2007 ESSCIRC 07 13 An Electronic Wind Sensor Sept 2007 ESSCIRC

Sept 2007 ESSCIRC 07 44

Background Reading1. K.A.A. Makinwa and J.H. Huijsing, “A smart wind sensor using thermal sigma-

delta modulation techniques,” Sensors and Actuators A, vol. 97-98, pp. 15 – 20,April 2002.

2. K.A.A. Makinwa and J.H. Huijsing, “A smart CMOS wind sensor,” Digest of Technical Papers ISSCC, pp. 432 – 479, Feb. 2002.

3. J. van der Meer, F.R. Riedijk, K.A.A. Makinwa and J.H. Huijsing, “A fully-integrated CMOS Hall sensor with a 4.5uT, 3σ offset spread for compass applications,”Digest of Technical Papers ISSCC, pp. 246 – 247, Feb. 2005.

4. M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from −55°C to 125°C,” JSSC, vol. 40, no. 12, pp. 2805 – 2815, Dec. 2005.

5. C.P.L. van Vroonhoven and K.A.A. Makinwa, “A CMOS Temperature-to-Digital Converter with an Inaccuracy of ±0.5°C (3σ) from –55 to 125°C,” Digest of Technical Papers ISSCC, pp. 576 – 577, Feb. 2008.

6. K.A.A. Makinwa and M.F. Snoeij, “A CMOS temperature-to-frequency converter with an inaccuracy of ±0.5°C (3σ) from –40 to 105°C,” J. Solid-State Circuits, vol. 41, is. 12, pp. 2992 – 2997, Dec. 2006.

7. K.A.A. Makinwa, M.A.P. Pertijs, J.C. van der Meer and J.H. Huijsing, “Smart sensor design: The art of compensation and cancellation,” Proc. ESSCIRC, pp. 76 – 82, Sept 2007.