Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is...

23
Designing permanent magnets from first-principles Hisazumi Akai 1) and Masako Ogura 2) 1) ISSP, University of Tokyo 2) Department of Physics, Osaka University

Transcript of Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is...

Page 1: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Designing permanent magnets from first-principles

Hisazumi  Akai1)  and  Masako  Ogura2)  

 1)ISSP,  University  of  Tokyo  

2)Department  of  Physics,  Osaka  University  

Page 2: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Permanent magnets (PM)

n Magne6za6on  n Coercivity  n Temperature  characteris6cs  

Page 3: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

How to use magnetic field?

n Using  magne6c  field  produced  by  magnets

N

S

B

H B

Closed magnetic circuit Actual situation

Magnet is under magnetic field Magnetic field cannot be used

Page 4: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

PM = ferro + coercivity

n PM  is  used  at  the  second  quadrant  n Without  coercivity,  PM  cannot  be  used.  

H

M

HC

MR

Page 5: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Maximum energy product

n B=M+µ0 H

H

BR

B

HC

(BH)max

BH-curve

Page 6: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Ideal PM

n Hard  PM  and  soH  PM

H

M

HC

MR hard magnet soft magnet

HC

Hc is much smaller than magnetic anisotropy.

Page 7: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Magnetic domain

n Domain structures n Initially no net magnetization n Under field, preferable domain expands

Field

S

N

Magnetic field

Page 8: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Hard PM n Strong  magne6c  anisotropy  

– Crystalline  magne6c  anisotropy  – Shape  magne6c  anisotropy  

n Magne6c  domain  structure    – Pinning  of  domain  wall  – Single  domain  structure  

n  Single-domain structure →fine particles n  Acicular crystal →spinodal decomposition n  Pinning →defects n  Spin-orbit coupling →rare-earth n  Orbital moment →orbital degeneracy

Page 9: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Designing permanent magnets from first-principles

n How?  n Possible?  n Present  status?

Page 10: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

First-principles electronic structure calculation?

n  Based  on  the  density  func6onal  theory  (DFT)  n  Ab-­‐ini6o,  yet  approxima6ons  needed  for  Exc  

–  Local  approxima6on  (LDA,  GGA,  …)  –  Local  +  something  (SIC,  hybrid,  …)  –  A  bit  beXer  approaches  (EXX-­‐OEP,  EXX+RPA,  GW,  …)  

n Mainly  for  crystals,  i.e.  periodic  systems  –  APW,  KKR,  their  linearized  versions,  pseudo-­‐poten6al,  …  

n  Various  kinds  of  extension  –  Impurity,  disorder,  clusters,  mul6layers,  surfaces,  interfaces,..  –  Structural  op6miza6on,  ab-­‐ini6o  molecular  dynamics,…

Page 11: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

What can be discussed?

n Proper6es  at  ground  state  – Electron  density        ,  spin  density    – Quan66es  that  are  func6onal  of          and                

•  total  energy,  magne6za6on,  electrosta6c  poten6al,  …  

– First  order  perturba6on  to  the  total  energy  •  sta6c  suscep6bility,  hyperfine  fields,  isomer  shiHs  

– Ground  state  under  constraint  •   E  [          ],  …  

– Second  order  perturba6on  such  as  suscep6bility,  conduc6vity,  …    –  not  completely  jus6fiable,  marginal  

 

n

m

n

m

m

Page 12: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Slightly beyond DFT –yet acceptable

n Local  suscep6bility χij  、  exchange  constants Jij    

 n Atomic  pair  interac6ons  n Conduc6vity  σ、op6cal  conduc6vity  σμν(ω)  n Temperature  effects(through  Fermi  distribu6on  func6on)  

n Combina6on  with  many-­‐body  perturba6on  theories  

Jij =1χ ii

χ ij1χ jj

Page 13: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Designing permanent magnets

n First  step:  simula6on  of  magne6c  systems  n Second  step:  simula6on  of  permanent  magnets  n Third  step:  design  permanent  magnets

Page 14: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

First step – simulation of magnetic systems

n Magne6za6on  n Curie  temperature  n Crystal  magne6c  anisotropy

Page 15: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Magnetization n  Accurate  enough  for  materials  used  for  permanent  magnets

Magnetization of 3d disordered alloys

Slater-Pauling curves (1991) 2.5

2.0

1.5

1.0

0.5

0.0

Mag

neti

zati

on (µ

B /

ato

m)

2827262524Electron number / atom

FeSc

FeV

FeTi

FeCr

FeCo(bcc)

FeNi(bcc)

NiFe(fcc)

CoNi

CoFe(fcc)

CoMn

CoCr

NiMnNiTi

NiV NiCr

NiCu

Theory

2.5

2.0

1.5

1.0

0.5

0.0

Mag

neti

zati

on (µ

B /

ato

m)

2827262524Electron number / atom

Experiment FeCo(bcc)

FeNi(bcc)CoFe(fcc)

CoNi

CoMn

CoCrNiFe(fcc)

NiMn

NiTi

NiCr

NiV

NiCu

FeMn

FeV FeCr

KKR-CPA-LDA

Well described within DFT-LDA

Page 16: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Curie temperature n Method  applicable  for  which  local  magne6c  moment  well  developed

Calculation of Jij

Map to Heisenberg model

Apply statistical method

Curie temperature Slater-Pauling curves

C. Takahashi et al J. Phys. Cond. Matter, 19 (2007) 365233.

Page 17: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Crystalline magnetic anisotropy of transition metals

n Framework  of  DFT  (More  or  less)  –   spin-­‐orbit  coupling  

n Cubic  phase  –numerically  difficult

Total energy  ~1000Ry Cohesive energy  ~0.3Ry Magnetic energy  ~0.02Ry Crystal structure energy ~0.02Ry Magnetic structure energy ~0.01Ry

Crystalline magnetic anisotropy energy 0.0000001 ~ 0.00001Ry

Numerical precision of theory 10-6Ry 

Page 18: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

MAE of rare-earths

n LDA  not  works  well  – self-­‐interac6on  ≅  exchange  –  Introducing  “orbitals”  needed  – SIC(self-­‐interac6on  correc6on)  a  beXer  choice  – LDA+U  (i.e.  Hartree-­‐Fock  approxima6on)  not  preferable  

n Spin-­‐orbit  coupling  n Hybridiza6on  of  f-­‐orbital  yet  important n Less  numerical  difficulty  

Page 19: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

MAE and orbital degeneracy

n Unquenched  orbital  moment  n Hardly  occurs  in  metals  except  for  rare  earths  

– Narrow  bands  comparable  to  spin-­‐orbit  splinng  – Li2(Li0.7Fe0.3)N

Li2(Li0.7Fe0.3)N MAE field 2200kOe, coercivity field 120kOe

Page 20: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

 Aims at this stage

n Reproduce  basic  proper6es  of  magne6c  materials  quan6ta6vely–quantum  simula6on  

n Design  new  magne6c  materials–CMD  – Larger  magne6za6on  – Higher  Curie  temperature  – Strong  magne6c  anisotropy  

n Design  preferable  materials  for  permanent  magnets  – No  rare-­‐earth  metals  – No  environmental  problem  – Low  price

Page 21: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Next step –design permanent magnets

n Coercivity  mechanism  – Phenomenological  descrip6on  ⇒  microscopic  theory  – How  to  realize  a  magne6c  single-­‐domain    – Spinodal  decomposi6on  – Possible  sintering  process  – Grains,  grain  surfaces,  and  related  proper6es  – Grain  boundary  – Pinning  mechanism  of  domain  walls  

n High  temperature  proper6es  – Predic6ve  power  without  relying  on  specific  models  

Page 22: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Some examples

n Method  – Local  density  approxima6on  of  DFT  – KKR  Green’s  func6on  method  

n Calcula6on  of  J  ij      n MAE  (magne6c  anisotropy  energy)  Slater-­‐Pauling  curves  

n   MAE  of  SmFeN

Page 23: Designing permanent magnets from first-principles€¦ · Magnetic field cannot be used Magnet is under magnetic field PM = ferro + coercivity! PMis(used(atthe(second(quadrant! Without

Summary

n Towards  designing  permanent  magnets  – 1st  step descrip6on  of  magne6c  materials  – 2nd  step descrip6on  of  permanent  magnets  – 3rd  step designing  permanent  magnets  

n Overview  of  the  first-­‐principles  approach  –  Jij  – Tc  – K1