Designing Green Conference

download Designing Green Conference

of 107

Embed Size (px)

Transcript of Designing Green Conference

  • 1.

2. Sizing Ice Machines and Bins for Maximum Efficiency. 3. Ice is the Forgotten Food. Restaurants dont charge for it, Yet customers demand it. 4.

  • Identifying how & who Ice is used:
    • Whos Using Ice:
    • How are they Using Ice:

5.

    • Whos Using Ice:
      • Bars & Night Clubs
      • Convenience Stores
      • Correctional/ Marine
      • Education Facilities
  • Healthcare
  • Hotel/Motel
  • Restaurants
  • Supermarkets

6.

    • A. Keeping Drinks Cold
    • B. Preparing Food (fish, vegis)
    • C. Holding Food below 40 (salad bar)
    • D. Cooling soda via a cold plate
    • E. Package Ice
    • F. Rapid cooling of soup & sauces
    • G. Guest Ice
    • How is Ice being Used:

7.

  • Restaurants.1.50 lbs per person
  • Cocktail.3.00 lbs per person per seat
  • Water Glass.0.25 lbs per 10 oz glass
  • Salad Bar.30.0 lbs per cubic ft
  • Fast Food.0.25 lbs per 7-10 oz drink
          • 0.50 lbs per 12-16 oz drink
          • 0.75 lbs per 18-24 oz drink

Basic Equations for Ice usage: Foodservice 8.

  • Lodging:
  • Guest Ice..5.00 lbs per Room
  • Restaurant1.50 lbs per person
  • Cocktail.3.00 lbs per personper seat
  • Catering1.00 lbs per person

9.

  • Convenience Store
  • Beverage.. 6 oz per 12 oz drink
  • 10 oz per 20 oz drink
  • 16 oz per 32 oz drink
  • Cold Plate.40%-50% more ice per day
  • than just filling a soda dispenser
  • Package Ice.....lbs per bag x
  • bags sold per day

10.

  • Healthcare
  • Cafeteria.1.0 lbs per person
  • Patient Ice..2.5 lbs per day

11. Sizing Ice Machines Two variables to considerIce Production (ice machine size) Vs. Ice Storage (bin size) 12. Production vs. Storage

  • Ice Machines are rated for 24 Hour Production.
    • Not 12 hour, so
  • Make sure the recovery time covers the next
  • ice demand!

13. Bin Types

  • Slope Frontis the most popular
    • L.I.F.O. Ice Management
    • Capacities of 200 - 900 lbs
    • Widths: 22, 30, 42, 48 & 52 to match machines
    • Labor intensive, Scooping ice from low ice level.
    • Potential for cross contamination of ice is high.
    • Bottom ice can stale.

14. Bin Types

  • Uprights
    • F.I.F.O Ice management
    • Capacities: 500 - 5000 lbs
    • Widths: 30, 48, 56, 60, 72 & 96
    • Inconvenient to scoop small amounts of ice
    • Potential for cross contamination of ice is high

15. Bin Types

  • Gravity-Fed Uprights
    • F.I.F.O Ice management
    • Capacity: 500 4600+ lbs
    • Widths: 30, 48, 56, 60 & 72
    • Great for moving large amounts of ice
    • Virtually no cross contamination of ice

16. 17. Quadzilla 18. 19. 20. 21.

  • Example of a typical Large Volume Ice User
  • Saturday- In August- In Sacramento
  • Casual Dining and Large Bar Service
  • 300 Seats & 50 Bar Seats
  • Large fish menu
  • Heavy Cocktail promotion

22.

  • Typical Restaurant Ice Usage :
  • 300 Seats
  • 4 Turns Between Lunch & Dinner
  • 300 x 4 = 1200 People
  • 1200 people x 1.5 lbs of ice = 1800 lbs

23.

  • Typical Bar Ice Usage:
  • 50 Seats
  • 3 Turns
  • 50 x 3 = 150 People
  • 150 people x 3 lbs of ice = 450 lbs

24.

  • Bar ice continued:
  • (3) 75 lbs Jockey Boxs with Cold Plates
  • 225 lbs plus an additional 40% melt
  • = 150 lbs of ice
  • 450 lbs(bar ice)
  • + 150 lbs(add for jockey boxes)
    • = 600 lbs total bar ice

25. Food Prep: Fresh Fish = 150 lbs of ice Soups & Sauces = 225 lbs of ice Total Prep = 375 lbs of ice 26.

  • Total Ice Usage
  • 1800 lbs + 375 lbs + 600 lbs = 2775 lbs
  • 2775 lbs of ice is being used
  • on this Saturday night.

27.

  • How do we size the bin
  • For maximum efficiency?
    • 1600 lbs storage bin, gravity fed
    • This saves energy because it is not running all
    • day, and can operate in off peak hours

28.

  • Other things to keep in mind:
  • Remote vs. Self Contained
    • How the BTUs effect room environment &
    • HVAC system.
    • Noise consideration
    • Ease of Install.

29.

  • Other things to keep in mind
  • Self Contained Air Cooled vs. Water Cooled
    • When, Why, and Why Not?
    • Can Water Cooled qualify for LEED?

Yes You Can! 30.

  • Energy Star and Water Usage
  • Green building practices

#1 Selling Machine In the USA 31.

  • New Technologies:
    • Currently used
    • Looking ahead
  • Ice Machine Life Cycle
    • 12 years or more

32. Any Questions or Thoughts? 33. 34. 35. 36. 37. 38. 39. 40. 41. Designing Green The importance of the cook line design in engineering an energy efficient Kitchen Ventilation System.

  • What are three main components to designing an
  • efficient Kitchen Ventilation Hood System?

1. The Cooking Equipment Design 2. The Hood Design 3. The Make Up Air System 42. Wall Canopy 43. Wall Canopy Partial Side Wall 44. Pass Through Windows 45. Island Hood 6 OverhangFour Sides 12 OverhangFour Sides 18 OverhangFour Sides 46. Choosing and Sizing a Hood

  • Choose an energy efficient hood that is listed for the cooking equipment in the cook line.

Allow for adequate hood overhangs on all sides of the hood. Verify the hood that will fit into the space available. Verify attic spacing. Watch out for small or nonexistent attics! Ceiling height.Watch out for low ceilings! 47. The Make Up Air A. It is the responsibility of the food service consultant to play an active roll in the design of the make up air system? B. Why is it important for the Food Service Consultant to take an active roll is this part of the Kitchen Ventilation Design? 1. The make up air is the most mis-understood part of the kitchen ventilation system. 2. The make up sir system creates more problems than any other component of a Kitchen Ventilation System. 3. A poorly designed make up air system can create cross currents under the hood, that blow the heated plume out from under the hood which the hood is not designed to over come and can not overcome in most installations. 48. Add on Make Up Air Plenums Do add on make up air plenums help the hood with Capture and Containment? 49. Add on Make Up Air Plenums No!!!! However, they are less detrimental than most other make up delivery systems. 50. Revealing the Myth of Kitchen Ventilation Hoods Hoods do not draw the cooking effluents created by cooking equipment up into the hood. The reason that the cooking effluents rise up in to the hood is simply because the heated air is lighter than the surrounding cooler air and therefore the heated air rises up into the hood. The main functions of the hood are the capture, containment of heated plume. To provide an apparatus to prevent fire from penetrating into the duct work. 51. Conclusion The Food Service Consultant is the single most important person in the design of an energy efficient Kitchen Ventilation System. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. Gemini Air Syste