DESIGN SYSTEMS | PARAMETRIC MODELLING

115
DESIGN SYSTEMS | PARAMETRIC MODELLING 44MM KEUZE | 2AR | Sint-Lucas Architectuur | 2011-2012

description

Results of a parametric modelling workshop in the second year of Sint-Lucas Architectuur. Tutor: Corneel Cannaerts

Transcript of DESIGN SYSTEMS | PARAMETRIC MODELLING

Page 1: DESIGN SYSTEMS | PARAMETRIC MODELLING

DESIGN SYSTEMS | PARAMETRIC MODELLING

44MM KEUZE | 2AR | Sint-Lucas Architectuur | 2011-2012

Page 2: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 3: DESIGN SYSTEMS | PARAMETRIC MODELLING

PARAMETRIC MODELLING

PARAMETRIC MODELLING

Parametrisch modelleren – het expliciet vastleggen van relaties tussen input parameters en ontwerp output in een parametrisch model – kan diepgaande implicaties hebben voor de ontwerppraktijk. In een traditioneel computer ondersteund ontwerpproces wordt een model opgebouwd in discrete stap-pen, dit resulteert in een lineair ontwerpproces . Parametrisch ontwerpen is een non-lineair ontwerpproces, op elk moment kunnen de input parameters en de onderlinge relaties tussen deze parameters worden veranderd en de resultaten van deze veranderingen worden onderzocht.

DESIGN SYSTEMS

Parametrisch ontwerpen introduceert systeemdenken in het ontwerp: de focus van de ontwerper verschuift van het maken van één enkele ontwerpo-plossing naar het maken van een model waarmee verschillende ontwerpvari-aties kunnen worden onderzocht. In plaats van het maken van één singulier ontwerp, baken je een oplossingsruimte af (solution space) en maak je een tool om hierin te navigeren.Parameters die kunnen worden opgenomen in een parametrisch model kunnen heel verschillend zijn: programma, gebruiksscenario’s, constructie, materiaaleigenschappen, vormelijke esthetische, ethische aspecten, kosten, structuur... De moeilijkheid ligt in het vertalen van deze parameters in een numeriek systeem.

44MM KEUZE | 2AR | Sint-Lucas Architectuur | 2011-2012Docent: Corneel Cannaerts

OPDRACHT

Deze keuze is enerzijds een technische introductie in parametrisch modelleren met behulp van Rhinoceros3D en Grasshopper3D, en anderzijds een ontwer-poefening die de implicaties van dit systeem denken bevraagd.

In het eerste deel bestaat uit een serie voorbeelden, tutorials en kleine indi-viduele oefeningen, met als doel vertrouwd te raken met de basisbegrippen en technieken van parametrisch modelleren. In het tweede deel worden de aangeleerde technieken gebruikt om in groepen van 3 studenten een ontwerp te maken, het doel van deze oefening is niet zozeer één finaal ontwerp, maar een ontwerp systeem, dat resulteert in één grasshopper model.

Page 4: DESIGN SYSTEMS | PARAMETRIC MODELLING

INHOUD

Squiggling Lines - Alex Van Belleghem, Eliass Vanmele & Andries Vansteelandt

Square Chair - Matthias Desmaele, Miel Dhondt & Michiel Demuynck

Hermes Rive Gauche - Joke Dufourmont, Sofie Forton & Arno Raspoet

Spline Hinge - Kristof Van Damme, Alexander Vandenberghe & Silke Van Damme

Paviljoen 2012 - Evelyne Provoost, Marie van Kerckhoven & Thomas Faes

Geodesic Dome - Lodewijk Remmery, Maxim Rotsaert & Ruben Rosseel

(Atmo)sphere - Arnaud Raemdonck, Matteo Lampaert

Walkthrough - David Chatchatrian, Floris De Clercq, Timothy Ghyssaert

Fluid Adaptable Spaces - Kwinten Delvaux, Glenn Van Acoleyen

Page 5: DESIGN SYSTEMS | PARAMETRIC MODELLING

Squiggling lines

Bij dit project vertrekken we vanuit een raster waarbij onderling geschrankt de helft van de punten weggelaten worden. De resterende punten worden verbonden door middel van splines. Op die manier wordt het raster op een organische manier ingevuld met curves. Voorts worden de curves ge-extrudeerd. De hoogte van deze extrusie wordt bepaald door de afstand van de punten op de curves ten opzichte van een nieuw gekozen punt.Door dit nieuwe punt te verplaatsen manipuleer je telkens de vorm van het model (binnen voorop ingestelde limiet-waarden).

Het resultaat betreft dus een geheel parametrisch manipuleerbaar object binnen grasshopper. Gezien het raster echter nog rechthoekig van vorm is, wordt dit raster opge-bouwd tussen twee — in Rhino getekende — curves. Voorts hebben we ervoor gekozen om het punt dat de extrusie be-paald een nieuwe curve te laten volgen (evaluate curve). Doordat we dit punt kunnen verplaatsen via een slider in Grass-hopper heeft dit de mogelijkheid het geheel te animeren (animate slider), zodat we vanuit grasshopper een sequentie van afbeeldingen als output hebben die we als loop samenvoegen.

Van Belleghem Alex, Vanmele Eliass, Vansteelandt Andries

Page 6: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 7: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 8: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 9: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 10: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 11: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 12: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 13: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 14: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 15: DESIGN SYSTEMS | PARAMETRIC MODELLING

Square Chair Square Chair

Een stoel, tafel, decora e of eender welk object zelf ontwerpen is niet voor iedereen weggelegd. Dit probleem vormt de basis van ons project. Het concept is een �‘programma�’ verspreiden waarmee men een persoonlijk meubel/object kan ontwerpen.

De vorm van het object wordt ontworpen op 1 van 4 manieren die het best voor de gebruiker geschikt is:

* De vorm bepalen dmv curves (vb p5) * Een 3D model ontwerpen in een CAD-omgeving * 3D scan * ...

Het ontworpen model wordt hierna verwerkt in het programma, men kan hier-bij de materialisa e van het object bepalen:

* Groo e van het te maken object * Materiaalkeuze (Dikte en druksterkte (afstand tussen vlakken)) * Keuze orienta e van de vlakken * Keuze van de afstanden tussen de vlakken - Regelma g, willekeurig of een wiskundige rij ( bonacci)

Hierna wordt het ingevoerde model verwerkt tot een reeks in elkaar schui are platen (voorbeeld onderzijde pagina). Deze zijn aangepast aan de opgegeven vorm en bovenstaande parameters.

Ma hias Desmaele, Miel Dhondt & Michiel Demuynck

Het produc eproces van het gecreëerde object is volledig vrij; * manueel of mechanisch versnijden (lasercu en), 3D printen, ... * de verkregen delen kunnen zonder lijm verbonden worden.

Door gebruik te maken van lichte, gemakkelijk verkrijgbaar en goedkope ma-terialen kan de �‘ontwerper�’ op een eenvoudige manier zelf designer spelen.Hij kan zijn persoonlijke leefomgeving volledig naar voorkeur inrichten met zelf ontworpen objecten en meubels.

2

Page 16: DESIGN SYSTEMS | PARAMETRIC MODELLING

3

Page 17: DESIGN SYSTEMS | PARAMETRIC MODELLING

^ Basismodel in Rhino< metamorf model de ni e GH

Schaalmodel: ligzetel uit karton

4

Page 18: DESIGN SYSTEMS | PARAMETRIC MODELLING

Proefmodellen zetels 5

Page 19: DESIGN SYSTEMS | PARAMETRIC MODELLING

Ope

n cu

rves

naa

r ge

spie

geld

3D

mod

el

Geslo

ten

curv

es

naar

3D

mod

el

Uitgeholde bank

Tafelpoot

6

Page 20: DESIGN SYSTEMS | PARAMETRIC MODELLING

Boekenkast

Zitmeubel

7

Page 21: DESIGN SYSTEMS | PARAMETRIC MODELLING

8

Page 22: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 23: DESIGN SYSTEMS | PARAMETRIC MODELLING

Hermes Rive Gauche

Ontwerp door ingenieursbureau Bollinger + Grohmann voor modehuis hermes.

Joke Dufourmont, Sofie Forton & Arno Raspoet

Page 24: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 25: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 26: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 27: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 28: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 29: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 30: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 31: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 32: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 33: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 34: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 35: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 36: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 37: DESIGN SYSTEMS | PARAMETRIC MODELLING

SPLINE

Een fysiek model hadden we al.Rest ons enkel nog het digitaal.Vertrekkende vanuit 3 curves: 2 uiterste curves die zijdelings bewegen 1 centrale curve die bij beweging van deze 2 in de hoogterichting verandert.

Het digitale model speelde op het fysieke in,het fysieke op het digitale.

Resultaat: een digitaal model hebben we al.Rest ons het fysieke.

Kristof Van Damme, Alexander Vandenberghe & Silke Van Damme

SSPPLL

III

NNN

EEE

Page 38: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 39: DESIGN SYSTEMS | PARAMETRIC MODELLING

FYSIEK MODEL

Page 40: DESIGN SYSTEMS | PARAMETRIC MODELLING

BEPALENDE PARAMETER

Via deze slider kunnen we de afstand tussen de uiterste curves aanpassen. Deze afstand zal de hoogte bepalen waarop de 2 balkjes op de middelste curve samenkomen.

Page 41: DESIGN SYSTEMS | PARAMETRIC MODELLING

2 curves die in Rhino getekend worden, zorgen voor de uitlijning van de uiterste zijden van de balken.Het loften tussen deze zal later worden gebruikt om de breedte van de balken te bekomen.

De begin- en eindpunten worden gebruikt om de lengte van het model te bepalen.

Page 42: DESIGN SYSTEMS | PARAMETRIC MODELLING

Uit ‘Sort List’ en ‘List Item’ volgt de grootste begin- en kleinste eindwaarde.Bovenaan bij ‘Range’ begint de plaatsbepaling van de balkjes.

Het ‘delen door’ leidt tot de breedte van de balken.

De slider zal bepalen hoeveel balkjes ons model telt.

Page 43: DESIGN SYSTEMS | PARAMETRIC MODELLING

Door het snijden van de vlakken die we bekomen via ‘YZ planes’ en de loft tussen de 2 uiterste curves, verkrijgen we rechten tussen deze curves.

In het midden verschijnt de 3de curve die we in Rhino getekend hebben.

Als we nu de net aangemaakte curves snijden met de 3 curves die we ingegeven hebben in Rhino, verkrijgen we de snijpunten waarmee we later de buitenste curves kunnen verplaatsen tegenover hun oorspronkelijke positie.

Page 44: DESIGN SYSTEMS | PARAMETRIC MODELLING

De slider laat de afstand variëren van de punten die zich totnutoe op de curves bevonden.

Verder meten we de afstand tussen de verschoven punten en hun originele positie.Deze afstand wordt omgezet naar een hoogteverandering die de punten op de middelste curve ondergaan.

Page 45: DESIGN SYSTEMS | PARAMETRIC MODELLING

Na de hoogteverandering van de punten in de middelste curve gaan we een rechte tekenen tussen deze punten en hun overeenkomstige, verschoven punten van de uiterste curve.

Nu volgt er een complexe fase waarbij we een vlak creëren dat ons in staat stelt de balkjes op de aangemaakte rechten te plaatsen met de rechte als midden van het balkje.

Parameters van het balkje:

B : planes die de positie bepalenX : expression -> x/2 : breedte van het balkjeY : expression -> y/2 : hoogte van het balkjeZ : expression -> z/2 : lengte van het balkje + een extra lengte ( deze is nodig voor het verbinden van de 2 samenkomende balken)

De y- en z-waarde zijn van eigenschap veranderd door de complexe constructie van het vlak op de rechte.

Page 46: DESIGN SYSTEMS | PARAMETRIC MODELLING

De vorige fase wordt hier herhaald voor de andere zijde van het model.

Page 47: DESIGN SYSTEMS | PARAMETRIC MODELLING

Paviljoen 2012

The AA Squswoosh Pavillion.

Dit paviljoen was het vertrekpunt voor wat we wilden kunnen bereiken met Grasshopper. Het bestaat uit een multifunctioneel model, opgebouwd uit een 3D, houten rasterstructuur. Het paviljoen doet dienst als zitbank, ligzetel, over-kappendde structuur, ... Een bruikbaar parkpaviljoen met andere woorden.

De opbouw van ons model zelf maakt gebruik van curves, waartussen de rasterstructuur opgebouwd wordt. In het uiteindelijk model zijn er 2 curves gekozen, die 3-dimensionaal in de ruimte liggen. Om het model bouwbaar te houden gaan de curves nooit onder het xy-vlak.De vorm van de curves was de meest bepalende factor voor hoe het paviljoen er uiteindelijk zou uitzien. Het verloop van de curves moest zowel lage punten - die dienst zouden doen als zit-/ligplaatsen - toelaten, als veel hogere punten - die moesten zorgen voor overkappingen en schaduwzones - .

Het resultaat is dan een 3 dimensionaal, golvende rasterstructuur zonder vaste breedte en hoogte

Evelyne Provoost, Marie van Kerckhoven & Thomas Faes

Parameters? - Het aantal onderverdelingen van de curves - Het aantal onderverdelingen van de verbindingslijnen - De vorm van de curve zelf (kan blijven aangepast worden) - De hoogte van de extrusie - De afmetingen van de insnijding Curve kan een dikte hebben, dan worden die afmetingen belangrijk

Page 48: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 49: DESIGN SYSTEMS | PARAMETRIC MODELLING

The AA Squswoosh Pavillion (vertrekpunt)

Opgebouwd uit 2 gelijke curves rond 2 brandpunten.

Page 50: DESIGN SYSTEMS | PARAMETRIC MODELLING

Eigen onderzoek: vormstudie (top view)

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Te eenvoudig, te weinig variatie

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

OD

UC

ED B

Y AN

AU

TOD

ESK ED

UC

ATIO

NA

L PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Probleem met omzetting naar raster

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Uiteindelijk model: voldoende variatie, goede omzetting naar rasterstructuur, goed bouwbaar

Page 51: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

1. Curves geselecteerd2. Onderverdeeld in een gelijk aantal delen

Page 52: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

1. Onderverdeling van curves verbinden2. Opnieuw onderverdelen in een aantal delen3. Curve verbindt al de onderverdelingen van de verbindingsstukken: ontstaan van de tussencurves

Page 53: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

1. Extrusie van de curves, de tussencurves en de verbind- ingslijnen2. Opsplitsing van de tussencurves: de 2 buitenste niet Die zitten in een andere, aparte extrusiecomponent

Page 54: DESIGN SYSTEMS | PARAMETRIC MODELLING

1. Extrusie van de curves, de tussencurves en de verbind- ingslijnen2. Opsplitsing van de tussencurves: de 2 buitenste niet Die zitten in een andere, aparte extrusiecomponent

Grasshopper model (opbouw)

1. Snijlijnen bepalen van alle curves2. Evaluate curve: middelpunten van die snijlijnen

Page 55: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

1. Boxen maken: 1 boven het middelpunt van de snijlijnen, en 1 onder2. Waarom? Boxen subtracten: in elkaar schuiven van de curves voor het bouwen van het model3. Parameters? Breedte van de insnijding, Hoogte van de box (hoger dan de curve) Breedte van de box (breder dan de curve)

Page 56: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

1. Subtracten boxen van curves2. Resultaat: ingesneden curves

Page 57: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (opbouw)

Page 58: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model (eerste zoekingen/experimenten)

1. Tussencurves creëeren door gebruik te maken van shift list in de verbindingslijntjes2. De verbindingslijntjes onderverdelen en elke onderverdeling heeft een nummer: shift 1 = eerste curve, shift 2 = tweede curve, etc.

Page 59: DESIGN SYSTEMS | PARAMETRIC MODELLING

1. Veel te omslachtig, kon veel korter

Grasshopper model (eerste zoekingen/experimenten)

Page 60: DESIGN SYSTEMS | PARAMETRIC MODELLING

1. Boxen (voor uitsnijdingen) proberen te richten via baseplanes die loodrecht op de verbindingslijnen stonden

Grasshopper model (eerste zoekingen/experimenten)

Page 61: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 62: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 63: DESIGN SYSTEMS | PARAMETRIC MODELLING

Maquette (zonder lasercutter)

Page 64: DESIGN SYSTEMS | PARAMETRIC MODELLING

Maquette (zonder lasercutter)

Page 65: DESIGN SYSTEMS | PARAMETRIC MODELLING

Maquette (met lasercutter)

Page 66: DESIGN SYSTEMS | PARAMETRIC MODELLING

Maquette (met lasercutter)

Page 67: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 68: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 69: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 70: DESIGN SYSTEMS | PARAMETRIC MODELLING

DESIGN SYSTEMS | PARAMETRIC MODELLING

44MM KEUZE | 2AR | Sint-Lucas Architectuur | 2011-2012

DESIGN SYSTEMS | PARAMETRIC MODELLING44MM KEUZE | 2AR | Sint-Lucas Architectuur | 2011-2012

Page 71: DESIGN SYSTEMS | PARAMETRIC MODELLING

PARAMETRIC MODELLING - GEODESIC DOME

In het vak Parametric Modeling maakten we kennis met het begrip parametrisch ontwerpen en ontdekten we er de vele mogelijkheden van op architecturaal vlak.

In de eerste weken werden we wegwijs gemaakt in het programma grashopper en leerden we aan de hand van eenvoudige voorbeelden zelf modeleren. Daarna kregen we de opdracht om met een groep van drie studenten een eigen parametrisch model te ontwikkelen en dit vervolgens volledig te doorgronden op vlak van parameters, vorm genererend principes en geometrie.

Lodewijk Remmery, Maxim Rotsaert & Ruben Rosseel

We ontwikkelden een variant van een ‘geodesic dome’, gebaseerd op het parametrisch model van een ‘geodesic sphere’. De keuze hiervoor was voor de hand liggend, aangezien dat twee van de drie leden van onze groep het keuzevak Form Finding deden en bezig waren met de ontwikkeling van een akoestisch absorberende koepel.Door deze koepel parametrisch te gaan tekenen, konden we op voorhand visualiseren hoe deze er ging uitzien. Zo nodig konden we het model aanpassen todat deze aan alle eisen die form finding ons oplegde voldeed. Tevens konden de fouten die gemaakt waren bij het ontwerp van deze koepel dankzij het parametrisch model dat we ontwikkeld hadden opgelost worden.

Page 72: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 73: DESIGN SYSTEMS | PARAMETRIC MODELLING

HET GRASSHOPPER MODEL

Het grasshopper model is opgebouwd uit 5 verschillende stappen:

1. De basis opbouw voor een geodesic sphere (grasshopper forum)

2. Het omvormen van de bol naar een koepel

3. Het ontwikkelen van een basiselement waaruit de koepel kan worden opgebouwd

4. Het maken van een rand rond het basiselement

5. Het plaatsen van een piramide in het basiselement

Page 74: DESIGN SYSTEMS | PARAMETRIC MODELLING

1. DE BASIS

De basis voor de geodesic dome haalden wevan het grasshopper forum (by Daniel Piker).De opbouw van de bol bestaat vooral uit eencomponent die hij zelf schreef. De bol kaningedeeld worden in verschillende driehoekigevlakken. Hij begint eerst met het makenvan dit driehoekig element, hiervoor deelt hijeen driehoek op in verschillende kleinere driehoeken(aantal te bepalen door slider). Daarnazorgt het script ervoor dat de hoekpuntenvan de kleinere driehoeken worden verplaatstzodat deze samen een kromming vormen.Tenslotte roteert hij het driehoekig vlak rond zijn eigen as en het middelpunt van de bol totdat alle vlakkenaaneensluiten.

Page 75: DESIGN SYSTEMS | PARAMETRIC MODELLING

2. VAN BOL NAAR KOEPEL

Aangezien we een koepel wilden en geen bol, moest erdus nog een stuk van de bol weg. Tevens wilden wedat de koepel volledig uit basiselementen bestonden er geen doorgesneden moesten worden aan de basis vande koepel. Hiervoor hadden we een band nodigvan mooi naast elkaar liggende driehoeken. Na dezegevonden te hebben, roteerden we de bol zodat dezeband parallel lag met het xy-vlak.Daarna verwijderden we alle driehoeken waarvan de middelpunten onder een vlak liggen parallel met het xy-vlak.Hiervan konden we zelf de hoogte regelen zodat we exactkonden bepalen welke driehoeken we wilden en welke niet.

Page 76: DESIGN SYSTEMS | PARAMETRIC MODELLING

3. HET BASISELEMENT

Nadat we de basisvorm van de koepel getekend hadden,moesten we de eigenlijke geometrieën van de basiselementen bepalen waaruit de koepel zou worden opgebouwd. Hiervoor moesten deze dus een hoogte krijgen, maar toch nog steeds in elkaar passen bij het stappelen. Dit konden we bereiken door edges van alle driehoeken te verschalen met als schaalpunt het centrum van het grondvlak (hier dus 0,0,0).Via de slider die de verschaling bepaald konden we nude hoogte van ons basiselement bepalen. Daarna verbonden we met een lijn alle oorspronkelijke punten met hun overeenkomstige verschaalde punten, waardoor met de loft functie, de zijvlakken van het element gevisualiseerd konden worden.

Page 77: DESIGN SYSTEMS | PARAMETRIC MODELLING

4. VORMEN VAN DE RAND

Nadat we de hoogte van onze elementen bepaald hadden,moesten we een kader maken binnen in de driehoek diede rand tussen de zijvlakken en de uitgeholde piramidezou vormen. Dit kader konden we verkrijgen door eerst envooral voor ieder van ons basiselement een bovenvlakte bepalen (of toch zeker de edges). Pas daarna konden we voor ieder element dit bovenvlak verschalen en verkleinen naar gelang hoe dik we de rand wilden. Voor ieder bovenvlak gebeurt de verschaling ten opzichte van hun eigen middelpunt.Door de oorspronkelijke en verschaalde nu te gaanverbinden via loft, kregen we een zichtbaar kader.

Page 78: DESIGN SYSTEMS | PARAMETRIC MODELLING

5. DE UITHOLLING

Tenslotte hadden we nog de piramidevormige uithollingvan ons element. Deze was makkelijk te verkrijgenmits het kennen van twee verschillende data. Eerst en vooral hadden we het grondvlak van de piramidenodig, die natuurlijk gelijk was aan de binnenkant van onzerand. Daarnaast hadden we nog het middelpunt nodigvan het ondervlak van ons element. Door deze twee tecombineerden konden we extruderen naar een punt.Natuurlijk lag de punt van de piramide nu vlak in hetgrondvlak en zou het materiaal dat we gebruikten voor hetmaken van de elementen daar kunnen breken, dus legdenwe dit punt wat meer naar binnen toe. Dit konden we simpelwegdoen door een punt te bepalen op de lijn tussen de middelpunten van zowel het boven -als grondvlak. Via een slider konden we nu zelf de diepte van de uitholling regelen.

Page 79: DESIGN SYSTEMS | PARAMETRIC MODELLING

VAN DIGITAAL MODEL NAAR FYSIEK MODEL

Nadat het digitaal model afgewerkt was, kwam het er nu op aan om alle parameters zo te bepalen zodat aan alle eisen voor Form Finding, en met name die van Casting and Moulding, werd voldaan.Toen we dit hadden bereikt, gingen we over naar het maken van een fysiek model. Dit proces bestond uit twee verschillende delen. Enerzijds was er het maken van een fysiek model van de volledige koepel. Ander-zijds moest er een mal ontwikkelt worden waarin een basiselement kon gemaakt worden met exact dezelfde dimensies als die van in ons model.

Voor het maken van de koepel hadden we een manier nodig om deze op een snelle en correcte manier te construeren. We konden dit bereiken door de contouren van één basiselement uit het Grasshopper model te halen en vervolgens te unrollen in Rhino. Het sjabloon dat we hierdoor verkregen, konden we dan zoveel als nodig uitsnijden met een lasercutter. Nadien werden de elementen aan elkaar verlijmd totdat de volledige koepel verkregen werd.

Om het basiselement waaruit de koepel is opgebouwd te kunnen maken, hadden we een mal nodig aangezien deze zou worden gegoten in een silicone rubber. Hiervoor gebruikten we hetzelfde sjabloon die we eerder maakten, maar we voegden er tanden aan toe. Deze techniek die eerder al in Form Finding werd ontwikkeld, maakte het mogelijk de mal makkelijk te verwijderen en meermaals te gebruiken. Tevens werd de piramidevormige uitholling via Rhino uit het Grasshopper model gehaald zodat deze in de mal kon gestoken worden.

Page 80: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 81: DESIGN SYSTEMS | PARAMETRIC MODELLING

DESIGN SYSTEMS | PARAMETRIC MODELLING Lodewijk Remmery Maxim Rotsaert Ruben Rosseel

Page 82: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 83: DESIGN SYSTEMS | PARAMETRIC MODELLING

(Atmo)sphere

Bij het begin van de opdracht was het plan een geodetische struc-tuur te maken, gebaseerd op het tropische project in Cornwall genaamd Eden. Een structuur bestaande uit knooppunten waar 5 of 6 driehoeken samen komen. De structuur staat los van de rest van het ontwerp. De structuur dient enkel om het waterdi-chte membraan vast te houden. Dit is een uitermate lichte en efficiënte structuur. Na enig zoekwerk op internet hieromtrent hadden we al snel een grasshopper file gevonden die eigenlijk het volledige idee weergaf, dus moesten we iets anders zoeken.

Vertrekkend vanuit deze gevonden file zijn we verder begin-nen denken. De geodedische bol met de structuur er rond bev-at op zich ook weinig parameters. Om wat meer bij de opdracht aan te sluiten was het plan om een perforatie te maken in elke driehoek van de structuur. Deze perforatie zou dus afhanke-lijk moeten zijn van één punt. We zoeken die ook kunnen uit-breiden naar meerdere punten. Omdat perforeren niet echt zo voor de hand ligt hebben we het anders opgevate en heb-ben we de originele driehoeken een offset gegeven. Die offset heeft een zeker afstand en hier komt dan ons attractor point naar boven. Afhankelijk van het punt in de ruimte wordt de af-stand tussen de originele driehoek en de offset groter of kleiner.

De bedoeling is om hiervan een maquette te maken en dus moeten we nog enkele parmeters invoegen omwille van prak-tische redenen. De minimum afstand die de offset moet zijn moet het mogelijk maken de verschillende driehoeken aan elkaar te hangen. De maximum afstand moet er natu-urlijk voor zorgen dat er nog altijd een perforatie zichtbaar is.

Arnaud Raemdonck, Matteo Lampaert

Deze structuur leent zich voor een breed gamma aan functies. Veelal wordt het bebruikt voor een dakstructuur om een mem-braan te dragen zodat op relatief korte tijd en met weinig midde-len bescherming kan geboden worden aan de natuurelemtnen. De schaal van het ontwerp kan ook kleiner gezien worden. Door de variatie in perforaties wordt er een leuk lichtspel gecreëerd en dus zou het ook perfect kunnen gebruikt worden als bijvoorbeeld een lamparmatuur. Door de frequentie van driehoeken te vermeer-deren of te verminderen kan het ontwerp ook gebruikt worden als zitmeumble, met andere woorden, een multifunctioneel ontwerp.

Page 84: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 85: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 86: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 87: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 88: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 89: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 90: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 91: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 92: DESIGN SYSTEMS | PARAMETRIC MODELLING

ARNAUD RAEMDONCK MATTEO LAMPAERT GROEP 8

Page 93: DESIGN SYSTEMS | PARAMETRIC MODELLING

Walkthrough

Een Parametrische tunnel paviljoen langs het water of in een park, die de mensen moet lokken, een nieuwe richting doet uitgaan en een interressante kijk op de omgeving moet geven. Dat is waar het bij Walkthrough om gaat.

Om dit te bekomen hebben we ons laten inspireren door verschillende projecten waarin parametrische tunnels in voorkwamen, vooral om wille van hun elegante organische vormen en de vele vormelijke mogelijkheden.

Ons model ging van start met het tekenen van vijf willekeurige curves in Rhino en ze daarna in Grasshopper over te brengen. De rest van de curves werden bepaald door parameters. Om vervolgens Lamellen te bekomen ontbonden we de curves over een gelijke afstand, ook bepaald door parameters, naar boven en naar beneden in het XZ-vlak. We gaven ze een hoogte, een dikte en boorden er gaten in om de verbind-ingsbuizen erin aan te brengen.Even twijfelden we om ook in de langse richting lamellen te gebruiken, maar we opteerden uiteindelijk voor de verbindingsbuizen om wille van de elegantere uitstraling en combinatie van twee materialen.

Het paviljoen bestaat uit Houten lamellen en geven een robuust gevoel, terwijl de elegante metalen buizen een stevige verbinding en richtinggevend gevoel teweeg brengt. Beiden genieten een hoge bewerkingsvrijheid.

David Chatchatrian, Floris De Clercq, Timothy Ghyssaert

Page 94: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 95: DESIGN SYSTEMS | PARAMETRIC MODELLING

Inspiratie; Frozen Motion The passage FLUX Fabrication

Page 96: DESIGN SYSTEMS | PARAMETRIC MODELLING

Rhinoceros en Grasshopper model

Page 97: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 98: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 99: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 100: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 101: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 102: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 103: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 104: DESIGN SYSTEMS | PARAMETRIC MODELLING

21

19 14

16

PRODUCED BY AN AUTO

DESK EDUCATIONAL PRO

DUCT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DUCE

D BY

AN

AUTO

DESK

EDU

CATI

ONA

L PR

ODU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

Uiteengelegde ribben omgezet in AutoCAD en met kleurcode klaargezet om te lasercutten

Page 105: DESIGN SYSTEMS | PARAMETRIC MODELLING

Uit het filmpje genomen screenshot van het 3D model, met materialen aangebracht

Page 106: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 107: DESIGN SYSTEMS | PARAMETRIC MODELLING

Fluid adaptable spaces

Ons project bestaat uit een wandsysteem dat zich binnen een glazen doos bevindt. De wand creëert ruimtes in deze glazen doos waardoor de lichtinval geregeld wordt en heeft een isolerende functie. De functies van deze ruimtes worden bepaald door de objecten of personen, die gerespecteerd worden door de wand. Door objecten in verschillende ruimtes te plaatsten krijgen ze elk een andere functie. Op deze manier treedt het wandsysteem op als een scheiding tussen publieke en private ruimtes, terwijl het nog steeds voldoet aan de conceptuele eis om interactief te zijn met de bezoekers. De verschil-lende taken van deze wand kunnen zeer verschillend zijn. Zo zal deze wand op bepaald momenten ruimtes met elkaar verbinden wanneer hij om andere momenten deze scheidt. Op andere momenten kan de wand ruimtes creëren die men als bezoeker niet kan betreden maar enkel naar binnen kan kijken. De wand kan ook een zeer interactieve taak hebben door op te treden als een soort labyrint waaruit de bezoeker zijn weg moet vinden. De eventuele uitvo-ering van ons project zou mogelijk kunnen zijn door middel van sensoren in de grond en in het plafond. Op deze manier behouden de verschillende wanden afstand tegenover de bezoekers. Andere objecten zoals banken en stoelen worden ook opgemerkt door de wand zodat deze niet worden omgegooid.

Kwinten Delvaux, Glenn Van Acoleyen

Page 108: DESIGN SYSTEMS | PARAMETRIC MODELLING
Page 109: DESIGN SYSTEMS | PARAMETRIC MODELLING

ORIGINEEL CONCEPTInteractieve wanden met omgeving

in een glazen box.

VARIATIEBlokkeren van ruimtes

Page 110: DESIGN SYSTEMS | PARAMETRIC MODELLING

VARIATIEVerbinden van verschillende ruimtes

VARIATIESpelen - labyrinth

5

Page 111: DESIGN SYSTEMS | PARAMETRIC MODELLING

De wanden bewegen volgens een vast patroon.Hierdoor is er weinig interactie tussen de wand en de bezoeker. Ook al zal de bezoeker niet aanwezig zijn, zal de wand toch bewegen. Daardoor zullen we bepaalde parameters moeten inschakelen.

Bij het volgende experiment hebben we param-eters aan de bezoekers gekoppeld. Rond de be-zoeker werd een cirkel geconstrueerd waarbinnen geen muren konden. Problemen met overlappende waden.

Wanden bewegen door middel van vectoren. Maxi-male interactie tussen de wanden en bezoekers.

Page 112: DESIGN SYSTEMS | PARAMETRIC MODELLING

Grasshopper model

Evaluate curve: onderzoekt elk punt op de curveResultaat: Wandeling die de bezoeker aflegt ( 0-1)

Divide curve: verdeelt een curve in verschillende puntenResultaat: curve waarbinnen bezoeker moet blijven

7

Page 113: DESIGN SYSTEMS | PARAMETRIC MODELLING

Circle: Creëert een cirkelUnit Z: vectorPlanar: creëert een vlakExtrude: extruderen langs een vectorResultaat: abstracte bezoeker in grasshopper

Division: deelt twee getallen door elkaarMinimum: neemt het kleinste van twee getallenResultaat: afstand wordt bepaald tussen bezoeker en wand

Move: punten van de divide curve worden verplaatstUnit Z: vectorLine: creëert een lijn gedefinieerd door startpunt, vector en lengteResultaat: uiteindelijk bewegen en tekenen van wand

Page 114: DESIGN SYSTEMS | PARAMETRIC MODELLING

Uiteindelijk Geometrie

9

Page 115: DESIGN SYSTEMS | PARAMETRIC MODELLING