Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres...

57
Design of Marine Debris Removal System Thomas Chrissley Morgan Yang Connor Maloy Anthony Mason

Transcript of Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres...

Page 1: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Design of Marine Debris Removal System

Thomas Chrissley Morgan Yang Connor Maloy Anthony Mason

Page 2: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Context Analysis

Marine Debris – any persistent solid material that is manufactured or

processed and directly or indirectly, intentionally or unintentionally,

disposed of or abandoned in the marine environment

• Seven major types of debris:

• Plastic, metal, glass, paper, cloth, rubber, wood

• Other types are abandoned vessels and fishing gear

• Biggest impacts of marine debris:

• Wildlife harm, habitat damage, vessel damage, and economic loss

MDRS | 2

Page 3: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Context Analysis

The sources of the debris are

either land or sea-based:

• 80% of the debris is land-based

• 20% of the debris is sea-based

(fishing vessels, oil rigs, cargo

ships, and cruise ships)

http://www.cnn.com/interactive/2016/12/world/midway-plastic-island/

MDRS | 3

Page 4: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Context Analysis

• Movement of the debris is affected by wind, ocean currents, and gyres

• A gyre is a large system of rotating currents that spiral around a central point. There are five major gyres in the world:

• North and South Subtropical Pacific

• North and South Atlantic

• Indian

• The largest is the North Pacific Subtropical Gyre, containing Great Pacific Garbage Patch (GPGP)

MDRS | 4

Page 5: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Context Analysis

• The Subtropical Convergence Zone (SCZ) is made up for four major ocean currents and is located between California, Hawaii, and China:

• North Pacific

• California

• North Equatorial

• Kuroshio

• The area this project focuses on is the Subtropical Convergence Zone

• 7 million square miles, which is approximately 3.8 billion football fields side by side

MDRS | 5

Page 6: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

White: Buoys Blue: Simulated particles

Page 7: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Stakeholder Analysis

Primary Stakeholder Risk Objective Conflict

Marine Environment Entanglement, ingestion, habitat destruction

Cleaner waters Harming wildlife when collecting debris

Fishing Industry Lower fish quality, reduced amount of fish to sell

Cleaner waters, healthier wildlife

Marine Transportation

Military Vessel damage, navigation hazard

Less blockage for vessels Vessel interference

Marine Transportation Vessel damage, navigation hazard

Clearer waters and shipping lanes

Insurance, fishing, harbors, resources

Competition Loss of profit Profit Expenses

Non-Profit Organizations

Lack of funding Cleaner waters Expenses

• “Tragedy of the Commons” • No stakeholder would stop

the cleanup

MDRS | 7

Page 8: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Problem Statement

8 million tons of debris in the ocean [1]

• Exponentially increases by 10% each year

• About 80% of the total debris is plastic waste

Marine debris is harming the marine wildlife:

• Habitat damage, ingestion, food chain, and food supply

Marine transportation and fishing industry are negatively impacted:

• Vessel damage, navigation hazards, increased costs in maintenance

• Cost of $1.2 billion yearly to the 21 Asia-Pacific Economic Cooperation

(APEC) members [2]

MDRS | 8

Page 9: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Need Statement

• Mitigate the harmful effects of marine debris on the marine wildlife

• Debris must be removed from the ocean before irreversible damage

is done to the planet

• A need for a vessels to traverse the ocean collecting the marine

debris efficiently and safely

MDRS | 9

Page 10: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Concept of Operations

• Deploy a vessel(s) in the vicinity of the marine debris such that it can

collect the debris efficiently

• Debris must then be retrieved and disposed of or repurposed

MDRS | 10

Page 11: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Concept of Operations

• Deploy – Positions MDRS in a location within the SCZ

• Collect – Removes the marine debris from the marine environment

into a collection area

• Retrieve – Empties the debris from MDRS to transport it back to land

• Dispose – Recycles or disposes of the marine debris

MDRS | 11

Page 12: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Requirements

1. MDRS shall focus on the surface debris - everything with 3

meters deep

2. MDRS shall produce no extra debris

3. MDRS shall not harm any pre-existing ecosystem

4. MDRS shall remove 150,000,000 kg per year

MDRS | 12

Page 13: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Functional Requirements

1. MDRS shall deploy the system within the SCZ

2. MDRS shall collect the debris from the marine environment into a

collection area

3. MDRS shall retrieve the debris and transport it back to land

4. MDRS shall properly dispose of the debris

MDRS | 13

Page 14: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Design - Technology Alternatives

Deploy Collect Retrieve Dispose

Fossil Fuel Propulsion

Vacuum Barge Landfills

Electric Propulsion

Conveyor Belts

Vessel Recycling

Ocean Currents

Propulsion

Nets - Incinerator

Wind and Ocean

Currents Propulsion

- - -

MDRS | 14

Page 15: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Design Alternatives

• The proposed solution is Marine Debris Removal System with seven design

alternatives

• Alternatives 1-4 use technology that already exist, while alternatives 5-7 are

concepts developed for this project

1. Autonomous Vacuum (AV)

2. Barge with Autonomous Surface Vehicle (B-ASV)

3. Barge with Unmanned Aerial Vehicles (B-UAV)

4. Vessel with Nets (VN)

5. Artificial Floating Island (AFI)

6. Artificial Floating Island with Sail (AFI-S)

7. Artificial Floating Island with Motor (AFI-M)

Exis

ting

New

MDRS | 15

Page 16: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Design Alternatives Overview AV B-ASV B-UAV VN AFI AFI-S AFI-M

Deploy

Fossil Fuel

Electric

Ocean Current

Wind and Ocean Current

Collect

Vacuum

Conveyer Belt

Nets

Retrieve

Barge

Vessel

Dispose

Landfill

Recycle

Incinerators

MDRS | 16

Page 17: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Autonomous Vacuum (AV)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Maintenance Cost

Maintenance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Operational Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars/Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

AV $3,000,000 1 8 Vacuum AV

136,000

5,000 - 24 $30,000 10 Yes - - - - - $3,214,000

Deploy Electric propulsion

Collect Vacuum

Retrieve Vessel

Dispose Landfill, recycle, incinerators

MDRS | 17

http://www.bluebird-electric.net/oceanography/Ocean_Plastic_International_Rescue/SeaVax_Ocean_Clean_Up_Robot_Drone_Ship_Sea_Vacuum.htm

Page 18: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Barge with Autonomous Surface Vehicles (B-ASV)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainten-ance Cost

Mainten-ance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

B-ASV

$76,000 50 5 Vacuum Barge

500

270 12 3 $3,750 5 Yes Barge

$400,000

$4,000 - - $4,737,500

Deploy Electric propulsion

Collect Vacuum

Retrieve Barge

Dispose Landfill, recycle, incinerators

MDRS | 18

http://www.popsci.com/waste-shark-is-garbage-collecting-sea-drone

Page 19: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Barge with Unmanned Aerial Vehicles (B-UAV)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainten-ance Cost

Mainten-ance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

B-UAV

$5,600 100 1 Net Barge

20

2,700 6 0.5 $280 3 Yes Barge

$400,000

$4,000 - - $588,000

Deploy Electric propulsion

Collect Nets

Retrieve Barge

Dispose Landfill, recycle, incinerators

MDRS | 19

https://www.prodrone.jp/wpdir/wp-content/themes/prodrone/common/images/single/PD6-AW/04.jpg

Page 20: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Vessel with Nets (VN)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainten-ance Cost

Mainten-ance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

VN $1,100 1 0.75 Net Vessel

1,500

2,700 - 16 $2,000 15 No Vessel

$31,000,000

$20,000

$5,000 24 $32,848,100

Deploy Fossil fuel propulsion

Collect Nets

Retrieve Vessel

Dispose Landfill, recycle, incinerators

MDRS | 20

http://www.alamy.com/stock-photo-fishing-boat-trawler-on-the-north-sea-dragging-fishing-nets-ostend-28120936.html

Page 21: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Artificial Floating Island (AFI)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainten-ance Cost

Mainten-ance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

AFI $500,000 1 8 Conveyor

Belt AFI

150,000

1,000

- 24 $5,000 10 Yes - - - - - $540,000

Deploy Ocean current propulsion

Collect Conveyer belts

Retrieve Vessel

Dispose Landfill, recycle, incinerators

MDRS | 21

Page 22: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Artificial Floating Island with Sail (AFI-S)

Cost of one Alternative

Fleet Number

Life-cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainten-ance Cost

Mainten-ance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars/ Day

Hours Dollars/Lifecycle

AFI-S $550,000 1 8 Conveyor

Belt AFI-S

150,000

2,000

- 24 $5,500 15 Yes - - - - - $594,000

Deploy Wind and ocean current

propulsion

Collect Conveyer belts

Retrieve Vessel

Dispose Landfill, recycle,

incinerators

MDRS | 22

Page 23: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Artificial Floating Island with Motor (AFI-M)

Cost of one Alternative

Fleet Number

Life cycle

Collection Method

Storage Method

Alternative Capacity

Rate of Removal

Alternative Charge Time

Alternative Operational Time

Mainte-nance Cost

Mainte-nance Time

Autonomous

Vessel Type

Vessel Cost

Vessel Opera-tional Cost

Vessel Fuel Cost

Vessel Fuel Time

Total Alternative Lifecycle Cost

Units Dollars Number Years Technology Place Kilograms Kilograms

/Day Hours Hours

Dollars /Year

Hours Yes/No Type Dollars Dollars/Year

Dollars /Day

Hours Dollars/Lifecycle

AFI-M

$600,000 1 8 Conveyor

Belt

In Alternativ

e

150,000

2,700

- 24 $6,000 15 Yes - - - - - $648,000

Deploy Electric and ocean current

propulsion

Collect Conveyer belts

Retrieve Vessel

Dispose Landfill, recycle,

incinerators

MDRS | 23

Page 24: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Wind Data (NOAA Buoys) #YY MM DD hh mm WDIR WSPD WSPD GST WVHT DPD APD MWD PRES ATMP ATMP WTMP DEWP VIS TIDE

#yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa degC degC degC degC mi ft

2016 6 18 11 30 137 3.6 3.6 5.1 99 99 99 999 1023 14.6 14 16.9 9.3 99 99

2016 6 18 11 40 149 3.5 3.5 5.1 1.11 16 7.48 185 1023 14.7 14 17 9.5 99 99

2016 6 18 11 50 162 4 4 5.8 99 99 99 999 1023 14.7 14 17 9.3 99 99

2016 6 18 12 0 168 4.7 4.7 7.2 99 99 99 999 1023 14.5 14 16.9 9.4 99 99

2016 6 18 12 10 165 5.1 5.1 7.5 99 99 99 999 1023 14.1 14 16.9 9.7 99 99

2016 6 18 12 20 145 4.1 4.1 5.8 99 99 99 999 1023 13.8 13 16.9 10 99 99

2016 6 18 12 30 132 3.7 3.7 4.9 99 99 99 999 1023 14 14 16.9 10.1 99 99

2016 6 18 12 40 141 5 5 6.8 1.25 16 8.04 187 1023 14.3 14 16.9 10.3 99 99

2016 6 18 12 50 142 4.9 4.9 6.3 99 99 99 999 1023 14.2 14 16.9 10.4 99 99

2016 6 18 13 0 154 5.4 5.4 7.7 99 99 99 999 1023 14.1 14 16.8 11.1 99 99

2016 6 18 13 10 144 5.8 5.8 7.4 99 99 99 999 1023 14 14 16.8 11.1 99 99

2016 6 18 13 20 147 6.1 6.1 7.2 99 99 99 999 1023 13.9 13 16.8 11.2 99 99

2016 6 18 13 30 138 5.7 5.7 7.4 99 99 99 999 1023 13.9 13 16.8 11.5 99 99

2016 6 18 13 40 135 5.8 5.8 7.2 1.15 16 6.57 185 1023 13.8 13 16.8 11.6 99 99

2016 6 18 13 50 136 5.7 5.7 7 99 99 99 999 1023 13.8 13 16.8 11.5 99 99

2016 6 18 14 0 135 5.4 5.4 6.9 99 99 99 999 1023 13.8 13 16.8 11.4 99 99

2016 6 18 14 10 129 5.3 5.3 6.6 99 99 99 999 1023 13.8 13 16.8 11.6 99 99

2016 6 18 14 20 124 5.2 5.2 6.4 99 99 99 999 1023 13.8 13 16.8 11.5 99 99

2016 6 18 14 30 131 5.2 5.2 7.9 99 99 99 999 1023 14 14 16.8 11.9 99 99

2016 6 18 14 40 134 5.7 5.7 7.1 1.13 16 6.22 188 1023 14 14 16.8 12 99 99

2016 6 18 14 50 135 5.5 5.5 6.9 99 99 99 999 1024 14 14 16.8 12 99 99

2016 6 18 15 0 138 5.7 5.7 6.9 99 99 99 999 1024 14.1 14 16.7 11.9 99 99

2016 6 18 15 10 143 5.3 5.3 6.7 99 99 99 999 1024 14.2 14 16.7 11.9 99 99

2016 6 18 15 20 142 5.2 5.2 6.9 99 99 99 999 1024 14.3 14 16.7 12.1 99 99

2016 6 18 15 30 142 5.2 5.2 6.6 99 99 99 999 1024 14.3 14 16.7 12 99 99

2016 6 18 15 40 139 5.4 5.4 6.9 1.29 16 6.82 181 1024 14.5 14 16.7 12.2 99 99

http://www.ndbc.noaa.gov/

MDRS | 24

Page 25: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Calculated Ocean Current Speed Date Time Wind Stress Current Density Current Viscosity Current Speed

6/18/2016 11:30 AM 0.0206388000 1026 0126 0046978278

6/18/2016 11:40 AM 0.0195081250 1026 0126 0044404623

6/18/2016 11:50 AM 0.0254800000 1026 0126 0057997874

6/18/2016 12:00 PM 0.0351783250 1026 0126 0080073315

6/18/2016 12:10 PM 0.0414209250 1026 0126 0094282795

6/18/2016 12:20 PM 0.0267699250 1026 0129 0060221314

6/18/2016 12:30 PM 0.0218013250 1026 0126 0049624431

6/18/2016 12:40 PM 0.0398125000 1026 0126 0090621679

6/18/2016 12:50 PM 0.0382359250 1026 0126 0087033060

6/18/2016 1:00 PM 0.0464373000 1026 0126 0105701126

6/18/2016 1:10 PM 0.0535717000 1026 0126 0121940531

6/18/2016 1:20 PM 0.0592569250 1026 0129 0133303693

6/18/2016 1:30 PM 0.0517403250 1026 0129 0116394437

6/18/2016 1:40 PM 0.0535717000 1026 0129 0120514277

6/18/2016 1:50 PM 0.0517403250 1026 0129 0116394437

6/18/2016 2:00 PM 0.0464373000 1026 0129 0104464813

6/18/2016 2:10 PM 0.0447333250 1026 0129 0100631571

6/18/2016 2:20 PM 0.0430612000 1026 0129 0096869978

6/18/2016 2:30 PM 0.0430612000 1026 0126 0098016408

6/18/2016 2:40 PM 0.0517403250 1026 0126 0117771934

6/18/2016 2:50 PM 0.0481731250 1026 0126 0109652231

6/18/2016 3:00 PM 0.0517403250 1026 0126 0117771934

6/18/2016 3:10 PM 0.0447333250 1026 0126 0101822518

6/18/2016 3:20 PM 0.0430612000 1026 0126 0098016408

6/18/2016 3:30 PM 0.0430612000 1026 0126 0098016408

6/18/2016 3:40 PM 0.0464373000 1026 0126 0105701126

T = CD ∗ ρ ∗ V2

V0 =T

2μρωsinφ

Wind Stress

CD = Coefficient of Drag ρ = density of air

V = velocity of wind

Ocean Surface Current Velocity

ρ = density of water μ = Viscosity of water

φ = latitude ω = angular velocity of

Earth

MDRS | 25

Page 26: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Ocean Current Data

• Wind Speed

• Mean: 7.23 m/s

• Standard Deviation: 3.46 m/s

• Wind Stress

• Mean: 0.103 N

• Standard Deviation: 0.093 N

• Ocean Current Speed

• Mean: 0.015 m/s

• Standard Deviation: 0.021 m/s

MDRS | 26

Page 27: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Functional Diagram

The objective of the

simulation is to

estimate the time, cost

and efficiency of each

design alternative

given the same inputs.

MDRS | 27

Page 28: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Design of Experiment

Input Output

Alternative Fleet Speed (kn) Collection Rate of Removal (μ,σ) (kg/day)

Cost ($) Time (Years)

AV 1 2 Vacuum 5000, 575 $3,447,100,000

1,432

B-ASV 50 1 Vacuum 248, 140 $17,900,000,000

72,500

B-UAV 100 2 Nets 4503, 9 $57,335,000

1,522

VN 1 2 Nets 2650, 2100 $48,006,000,000

3,688

AFI 1 0.03 Conveyor Belts 1000, 100 $16,995,000,000

8,219

AFI-S 1 7 Conveyor Belts 2000, 200 $11,368,000,000

5,479

AFI-M 1 5 Conveyor Belts 2700, 275 $5,703,600,000

2,740

MDRS | 28

Page 29: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Results – AV Rate of Removal

Mean:

5000 kg/day

Standard Deviation:

575 kg/day

10,000 replications run

This is the alternative with the highest rate

of removal

MDRS | 29

Page 30: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Results – B-ASV Rate of Removal

No Fleet Mean: 9.86 kg/day

Standard Deviation: 2.78 kg/day

Fleet of 50 Mean: 248.41 kg/day

Standard Deviation: 139.39 kg

MDRS | 30

Page 31: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Results – B-UAV Rate of Removal

No Fleet Mean: 44.88 kg/day

Standard Deviation: 2.93 kg/day

Fleet of 100 Mean: 4503 kg/day

Standard Deviation: 9.28 kg/day

MDRS | 31

Page 32: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Results – VN – Rate of Removal

Mean:

2650 kg/day

Standard Deviation:

2100 kg/day

MDRS | 32

Page 33: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Results – AFI, AFI-S, and AFI-M

• AFI

• Mean: 1000 kg/day

• Standard Deviation: 100 kg/day

• AFI – S

• Mean: 2000 kg/day

• Standard Deviation: 200 kg/day

• AFI – M

• Mean: 2700 kg/day

• Standard Deviation: 275 kg/day

MDRS | 33

Page 34: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Optimization

The time was set for 50 years.

Alternatives Optimal Number Cost ($)

AV 26 $ 7,662,378,082

B-ASV 487 $ 27,986,118,722

B-UAV 29 $ 4,781,004,566

VN 49 $ 31,703,072,146

AFI 132 $ 13,995,616,438

AFI-S 66 $ 9,416,712,329

AFI-M 49 $ 8,241,095,890

MDRS | 34

Page 35: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Utility Analysis - Attributes

Category Definition

Capacity Amount of debris the alternative can hold

Rate of Removal Rate at which the alternative can remove debris (Simulation)

Eco Friendly Alternative does not harm the environment (Subjective)

Life Cycle Life expectancy of the alternative

Reliability Consistency of the alternative (Subjective)

Security Risk of the alternative being used for a different purpose (Subjective)

TRL Technology readiness level

MDRS | 35

Page 36: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Utility Analysis

MDRS | 36

Page 37: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Utility vs. Cost

AV

AFI-M

AFI-S

[CELLREF]

[CELLREF]

[CELLREF]

[CELLREF]

[CELLREF]

[CELLREF] [CELLREF]

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

Utility

Cost (Billions)

MDRS | 37

Page 38: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Sensitivity Analysis

This shows how performance is the major factor in weight of each alternative. The better the performance the higher the utility.

MDRS | 38

Page 39: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Sensitivity Analysis

Weight on performance does not change the outcome.

MDRS | 39

Page 40: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Sensitivity Analysis

Shows the percent weight on Risk goal.

MDRS | 40

Page 41: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Recommendations

• The best options on AV, AFI-M, and AFI-S, due to the proximity on

utility analysis

• To further expand this project, we recommend combining different

alternatives together

MDRS | 41

Page 42: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Business Case – Types of Costs

• Cost of Alternative

• Cost of each, modifications, charging station, maintenance, operational cost

• Cost of Vessel

• Cost of each, fuel, modifications, operational cost (crew, maintenance, harboring)

• Debris Handling

• Landfill, incinerator, recycle

MDRS | 42

Page 43: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Business Case – Costs

MDRS | 43

Page 44: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Business Case - Potential Types of Revenue

• Electricity sales

• Waste-to-Energy (Burn Generator)

• Landfill Gas (Methane Burn Generator)

• Recycle sales

• Sales of Services

MDRS | 44

Page 45: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Business Case - Revenue

MDRS | 45

Page 46: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Business Case – Break Even

• The break even point is not attainable from debris revenue alone

• The greatest optimistic revenue, without site costs, comes to $371 million while MPL Total Design Cost comes to $7.66 billion

• Without electricity sales revenues and costs, optimistic total revenue still comes to $320 million

• The break even point however is attainable when including significant sales of the service to industries form multiple nations affected

• The APEC nations report yearly losses totaling $364 million in fishing industries and $279 million in shipping industries from marine debris

• If the APEC nations donated 25% of these costs per year for MDRS to remove the debris, $8.39 billion in revenues can be made over the 50 years

MDRS | 46

Page 47: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Break-Even Point

$0

$1,000,000,000

$2,000,000,000

$3,000,000,000

$4,000,000,000

$5,000,000,000

$6,000,000,000

$7,000,000,000

$8,000,000,000

$9,000,000,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Years

Break-Even

Costs Revenue

MDRS | 47

Page 48: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Break-Even Point

$8,020,330,000

$8,392,700,000

$0

$1,000,000,000

$2,000,000,000

$3,000,000,000

$4,000,000,000

$5,000,000,000

$6,000,000,000

$7,000,000,000

$8,000,000,000

$9,000,000,000

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Break-Even

Costs Revenue

MDRS | 48

Page 49: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Questions?

49

Page 51: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Appendix

51

Page 52: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Units B-ASV B-UAV VN AV AFI AFI-S AFI-M

Cost of one Alternative Dollars $76,000 $5,600 $1,100 $3,000,000 $500,000 $550,000 $600,000

Fleet number Number 50 100 1 1 1 1 1

Lifecycle Years 5 1 0.75 8 8 8 8

Collection Method Technology Vacuum Scoop Net Vacuum Conveyor Belt Conveyor

Belt Conveyor Belt

Storage Method Place Barge Barge Ship In Alternative In Alternative In

Alternative In Alternative

Alternative Capacity Kilograms 500 20 1,500 136,000 150,000 150,000 150,000

Rate of Removal Kilograms/ Day 270 4,500 2,700 5,000 1,000 2,000 2,700

Alternative Charge Time Hours 12 6 - - - - -

Alternative Operational Time Hours 3 0.5 16 24 24 24 24

Maintenance Cost Dollars/Year $3,750 $280 $2,000 $30,000 $5,000 $5,500 $6,000

Maintenance Time Hours 5 3 15 10 10 15 15

Autonomous Yes/No Yes Yes No Yes Yes Yes Yes

Vessel Type Type Barge Barge Ship - - - -

Vessel Cost Dollars $400,000 $400,000 $21,000,000 - - - -

Vessel Operational Cost Dollars/Year $4,000 $4,000 $20,000 - - - -

Vessel Fuel Cost Dollars - - $5,000/day - - - -

Vessel Fuel Time Time - - 24 hours - - - -

Total Alternative Lifecycle Cost

Dollars/ Lifecycle $4,737,500 $588,000 $2,600 $3,240,000 $540,000 $594,000 $648,000

MDRS | 52

Page 53: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Ekman Spiral φ = latitude

ω = angular velocity of the earth

f = Coriolis Force

ρ = fluid density

v = kinematic viscosity

p = pressure

𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝐹𝑜𝑟𝑐𝑒 = 2 × 𝜔 × sin 𝜑

−𝑓𝑣 = −1

𝜌0×

𝜕𝑝

𝜕𝑥+ 𝑣

𝜕2𝑢

𝜕𝑧2

+𝑓𝑢 = −1

𝜌0×

𝜕𝑝

𝜕𝑦+ 𝑣

𝜕2𝑣

𝜕𝑧2

{ Ekman Layer

http://oceanmotion.org/html/background/ocean-in-motion.htm

MDRS | 53

Page 54: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Simulation Assumptions

Vessel

used Vessel Cost

Vessel

Capacity

Vessel

Operationa

l Cost

Vessel

Fuel Cost

Vessel

Refueling

Time

Vessel

Lifecycle Barge Cost

Barge

Lifecycle

Barge

Operat-

ional Cost

UAV

Charge

Time

UAV

Flight

Time

UAV

Payload

Capacity

Assumption Capesize 21,000,000 400,000 $20,000 $10,000 24 15 $300,000 10 $4,000 6 10 to 30 0 to 20

Units Dollars tons Dollars Dollars Hours Years Dollars Years Dollars Hours Minutes Kilograms

UAV

Lifecycle

UAV Operat-

ional Cost

ASV

Capacity

ASV

Charge

Time

ASV

Lifecycle

ASV

Operat-

ional Cost

AV

Lifecycle

AV Operat-

ional Cost

AV

Capacity

Nets

Length

Nets

Width

Nets

Height Nets Cost

Nets

Lifecycle

Assumption 1 $280 500 10 5 $3,750 8 $30,000 130000 3 12 90 $0.30 0.75

Units Year Dollars Kilograms Hours Years Dollars Years Dollars Kilograms Meters Meters Meters

Per square

meter Years

MDRS | 54

Page 55: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

Overall Equations Name of Equation Overall Equation

Rate of removal Amount/time

Time to remove all ((weight/r)/365)+ET

# Alternative to finish in 50 years TR/50

Cost for 1 (((TR/L)*ci)+(TR*co))

Cost for optimal (50 years) ((5*ci)*n)+(n*(25*co))

Gyre growth x(y) = x(y-1) + (x(y-1)*0.2)

MPL Cost = Cai*La*xn + Cao*t*xn + Csi*Ls*xn + Cso*t*xn

Coriolios Force/Effect f = 2w(sin(phi))

Ekman Layer -fv = -(1/r0)(dp/dx) + (d/dz)(A*(du/dz))

Ekman Layer fu = -(1/r0)(dp/dy) + (d/dz)(A*(dv/dz))

MDRS | 55

Page 56: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

MATLAB Code

MDRS | 56

Page 57: Design of Marine Debris Removal System · #yy mm dd hh mm wdir wspd wspd gst wvht dpd apd mwd pres atmp atmp wtmp dewp vis tide #yr mo dy hr mn degT m/s m/s m/s m sec sec degT hPa

MPL Code

MDRS | 57