Design of a Dual Band Bandpass Filter Having

download Design of a Dual Band Bandpass Filter Having

of 38

  • date post

    28-Aug-2014
  • Category

    Documents

  • view

    81
  • download

    1

Embed Size (px)

Transcript of Design of a Dual Band Bandpass Filter Having

1 P a g e | 1 1 | P a g e DESIGN OF A DUAL BAND BANDPASS FILTER HAVING CUTOFF FREQUENCY 2.4 GHZ & 5.4 GHZ A PROJECT REPORT A compact DBBPF of 2.4/5.4 GHz cutoff frequency for WLAN application with good frequency selectivity and independently controllable bandwidth for each passband is proposed using an interdigital capacitor loop step impedance resonator (ICLSIR) and short-circuited stub loaded resonator (SSLR) 2012 ANKITSINGHAL (11533003) ASHWINI SAWANT(11533004) MTECH I YEAR (RF & MICROWAVE ENGG.) Indian Institute of Technology, Roorkee 4/ 26/ 2012 2 DESIGN OF A DUAL BAND BANDPASS FILTER HAVING CUTOFF FREQUENCY 2.4 GHZ & 5.4 GHZ A Project Submitted in partial fulfllment of the Coursework of subject RF RECEIVER CIRCUIT DESIGN of MASTER OF TECHNOLOGY in ELECTRONICS & COMMUNICATION ENGINEERING (Specialization in RF & Microwave Engineering) By ANKIT SINGHAL(11533003) ASHWINI SAWANT(11533004) Department of Electronics & Computer Engineering Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India MAY 2012 3 ABSTRACT As the demand for the wireless application products increases, low cost and highly integration have become the major issues in radio frequency (RF) circuit design. To meet various application requirements, the new WLAN standards such as IEEE 802.11a and IEEE 802.11g specifications have been developed. However, the rapid growth of the WLAN standards has brought significant challenges, especially in the design of the RF front-ends. It is critical for RF system that can offer multistandard operations and maintain a competitive hardware cost. In recent years, dual-band filters have been proposed and exploited extensively as a key circuit block in dual-band wireless communication systems. a compact DBBPF for 2.4/5.4 GHz WLAN application with good frequency selectivity and independently controllable bandwidth for each passband is proposed using an interdigital capacitor loop step impedance resonator (ICLSIR) and short-circuited stub loaded resonator (SSLR) .This DBBPF configuration is similar to but fewer resonators are used. ADS is a sophisticated circuit simulator. ADS can run on a variety of operating systems. The current version runs on a UNIX machine and windows XP. We have used ADS for simulating the desired DUAL BAND BANDPASS FILTER design . Momentum based simulation is performed by us which is based upon the method of moment technique. 4 Cont ent s I NTRODUCTI ON:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 6 LI TERATURE SURVEY:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 8 M I CROW AVE FI LTERS:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10 PROTOTYPE FI LTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 11 BUTTERW ORTH LOW PASS PROTOTYPE FI LTER:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 11 BUTTERW ORTH ( M AXI M ALLY FLAT) RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 12 CHEBYSHEV LOW PASS PROTOTYPE FI LTERS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 CHEBYSHEV OR EQUAL RI PPLE RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 14 I M PEDANCE AND FREQUENCY SCALI NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 15 FI LTER TRANSFORM ATI ONS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 RESONANT CI RCUI TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 18 QUALI TY FACTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 19 RF AND M I CROW AVE RESONATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 19 RESONATORS:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 21 A. ELECTRI C COUPLI NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 B. M AGNETI C COUPLI NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 HAI RPI N RESONATOR:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 26 DUAL BAND FI LTER DESI GNI NG:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 28 LAYOUT:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 35 SI M ULATED RESULT:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 36 CONCLUSI ON:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 37 REFEREN CES:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 37 5 Figure 1 Proposed Dual Band Filt er Based on OLRRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 2 prot ot ype of f ilt er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 Figure 3 but t erw ort h response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4 chebyshev response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 5 Low pass t o high pass t ransf ormat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 Figure 6 : Low pass t o band pass t ransf ormat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 7 Low pass t o band st op t ransf ormat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 Figure 8 :The perf ect f ilt er response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 18 Figure 9 A pract ical f ilt er response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 18 Figure 10 Typical I / O coupling st ruct ures f or coupled resonat or f ilt ers. ( a) Tapped-line coupling ( b) coupled line coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 21 Figure 11 Asynchronously t uned coupled resonat or circuit s w it h elect ric coupling. . . . . . . . . . . 22 Figure 12 Typical coupling st ruct ures of coupled resonat ors w it h elect ric coupling . . . . . . . . . . 22 Figure 13 Asynchronously t uned coupled resonat or circuit s w it h magnet ic coupling. . . . . . . . 24 Figure 14 Typical coupling st ruct ures of coupled resonat ors w it h magnet ic coupling. . . . . . 24 Figure 15 Equivalent circuits of g/2 hairpin resonator at resonance frequency a) Odd mode b) Even mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .