Design, Development and Analysis of Slat Conveyor for ...

15
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 387 Design, Development and Analysis of Slat Conveyor for Bagasse Handling in Sugar Industry Saurabh Dhemare 1 , Ajit Kadam 2 , Balasaheb Kanase 3 , Mahesh Mane 4 , Ajay Shinde 5 , Vikas Aute 6 , Mr. M. M. Kolekar 7 , Mr. N.S .Pisal 8 1,2,3,4,5,6B.E. MECH. Jaywant College of Engineering And Management, K.M. Gad. 7,8Professor, Mechanical Department, Jaywant College of Engineering and Management, K.M. Gad. ---------------------------------------------------------------------------------***------------------------------------------------------------------- Abstract:A conveyor system is a common piece of material handling equipment that moves materials from one location to another. Conveyors are especially useful in applications involving the transportation of heavy or bulky materials. Conveyor systems allow quick and efficient transportation for a wide variety of materials, which make them very popular in the material handling and packaging industries. Bagasse is the fibrous matter that remains after sugarcane are crushed to extract their juice. It is currently used as a bio-fuel and it is use to produce electricity. Over past many years, changes had to be made to chain slat conveyors to accommodate the much higher tonnages and to improve performance. Slats are the key components of any slat conveyor. Therefore to obtain better performance of slat conveyor, different theoretical cases have been studied by changing angle of slat, by changing height of slat. Keywords: Slat conveyor, Design, Development, Slat 1. Introduction Modern civilization requires handling of bulk materials in huge quantity. Our present civilization aims at producing innumerable items for utility and comfort of human race. All these items are produced from raw material from our unique planet with appropriate / modification. The bulk materials need installation of special bulk material handling system at source of raw materials, and also at process (consumption) unit. The raw materials being mined has to be temporarily stored in gigantic piles, to be retrieved on need. The bulk material handling system consists of numerous equipments, which work in co-ordinated pre planned manner to achieve functional need. The slat conveyors are very preeminent and important equipment in such system, to ensure flow of material through various parts of the system. 2. The Slat Conveyor Conveyor system is a mechanical system used in moving materials from one place to another and finds application in most processing and manufacturing industries such as: chemical, mechanical, automotive, mineral, pharmaceutical, electronics etc. There are various types of conveyor systems available such as gravity roller conveyor, belt conveyor, slat conveyor, bucket conveyor, flexible conveyor, belt driven live roller conveyor, chain conveyor, etc. The choice however depends on the volume to be transported, speed of transportation, size and weight of materials to be transported, height or distance of transportation, nature of material, method of production employed. Material handling equipment ranges from those that are operated manually to semi-automatic systems and to the ones with high degree of automation. The degree of automation however depends on handling requirements. Material handling involves movement of material in a manufacturing section. It includes loading, moving and unloading of materials from one stage of manufacturing process to another. A slat conveyor has the open links of chain drag material along the bottom of hard faced MS (mild steel) or SS (stainless steel) trough. The trough is fixed and slats are movable. The slats are the mechanical components that fixed between two strands of chain which drags the material from feeding end to the discharge end. These slats are available in different widths and lengths as per the site requirements. A small gap is made purposely between slats and trough. The slat conveyors are designed for horizontal and inclined transport of sawdust, chips, bagasse and other bulk goods. Slat conveyors are the traditional and most common means for distributing bagasse to boilers.

Transcript of Design, Development and Analysis of Slat Conveyor for ...

Page 1: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 387

Design Development and Analysis of Slat Conveyor for Bagasse Handling in Sugar Industry

Saurabh Dhemare1 Ajit Kadam2 Balasaheb Kanase3 Mahesh Mane4 Ajay Shinde5 Vikas Aute6 Mr M M Kolekar7 Mr NS Pisal8

123456BE MECH Jaywant College of Engineering And Management KM Gad 78Professor Mechanical Department Jaywant College of Engineering and Management KM Gad

---------------------------------------------------------------------------------------------------------------------------------------------------- AbstractA conveyor system is a common piece of material handling equipment that moves materials from one location to another Conveyors are especially useful in applications involving the transportation of heavy or bulky materials Conveyor systems allow quick and efficient transportation for a wide variety of materials which make them very popular in the material handling and packaging industries Bagasse is the fibrous matter that remains after sugarcane are crushed to extract their juice It is currently used as a bio-fuel and it is use to produce electricity Over past many years changes had to be made to chain slat conveyors to accommodate the much higher tonnages and to improve performance Slats are the key components of any slat conveyor Therefore to obtain better performance of slat conveyor different theoretical cases have been studied by changing angle of slat by changing height of slat

Keywords Slat conveyor Design Development Slat

1 Introduction

Modern civilization requires handling of bulk materials in huge quantity Our present civilization aims at producing innumerable items for utility and comfort of human race All these items are produced from raw material from our unique planet with appropriate modification

The bulk materials need installation of special bulk material handling system at source of raw materials and also at process (consumption) unit The raw materials being mined has to be temporarily stored in gigantic piles to be retrieved on need

The bulk material handling system consists of numerous equipments which work in co-ordinated pre planned manner to achieve functional need The slat conveyors are very preeminent and important equipment in such system to ensure flow of material through various parts of the system

2 The Slat Conveyor

Conveyor system is a mechanical system used in moving materials from one place to another and finds application in most processing and manufacturing industries such as chemical mechanical automotive mineral pharmaceutical electronics etc There are various types of conveyor systems available such as gravity roller conveyor belt conveyor slat conveyor bucket conveyor flexible conveyor belt driven live roller conveyor chain conveyor etc The choice however depends on the volume to be transported speed of transportation size and weight of materials to be transported height or distance of transportation nature of material method of production employed Material handling equipment ranges from those that are operated manually to semi-automatic systems and to the ones with high degree of automation The degree of automation however depends on handling requirements

Material handling involves movement of material in a manufacturing section It includes loading moving and unloading of materials from one stage of manufacturing process to another

A slat conveyor has the open links of chain drag material along the bottom of hard faced MS (mild steel) or SS (stainless steel) trough The trough is fixed and slats are movable The slats are the mechanical components that fixed between two strands of chain which drags the material from feeding end to the discharge end These slats are available in different widths and lengths as per the site requirements A small gap is made purposely between slats and trough The slat conveyors are designed for horizontal and inclined transport of sawdust chips bagasse and other bulk goods Slat conveyors are the traditional and most common means for distributing bagasse to boilers

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 388

21 Input parameters required for development of slat conveyor

While designing a slat conveyor only four input parameters will be given by customer which are as follows-

Guaranteed capacity =33mtph

Conveyor Length = 434m

Conveyor lift = 195m

Material to be handled = Bagasse (Density=150Kgm3)

Conveyor inclination =310

3 Numerical Analysis for Different Configurations

In slat conveyor number of components are used like slat trough chain chain resting part roller pin Sprocket drive shaft tail shaft gear box motor etc We have to design some of these components while using these components in system

The two main requirements in the design of the conveyor are the ability to convey all the bagasse from the final mill and sufficient strength in all parts to withstand any expected working stresses To meet these requirements from previous experience we fixed the-

speed of conveyor =04msec

width of flights =15m

Height of slight =275mm

spacing of flights = 08m

Also we know that Density of material =150 kg m 3

First of all we will calculate the the cross sectional area of bagasse on conveyor for two cases-

When conveyor is horizontal

When conveyor is inclined

When slat conveyor is horizontal maximum bagasse will be occupied between the two slats But when conveyor will become inclined then in such case the bagasse will fall down above its surcharge level So we will design the conveyor for the case when slat conveyor is inclined

At angle of slat is 90deg

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 389

i) When conveyor is horizontal

Figure 31 Cross-section of bagasse on horizontal conveyor

Material cross section on slat conveyor

The material cross section on conveyor is formed by the trough profile on bottom side and by surcharge angle for curved top The experience shows that the material being carried on slat conveyor will have cross section as shown in figure

The area is made up of two parts vizA1 and A2 The area A1 is known as level fill area The area A2 above fill is known as top area The fill area A1 shape and magnitude is fixed by trough profileshape Regarding shape of top area A2 ISO considers it to be arc of parabola where as USA practice considers it to be an arc ends are inclined at surcharge angle α It is obvious that the fill area A1 is same for both the shape of arc This topic explains the derivation of total cross section area A1+A2 with parabolic arc and also with circular arc The derivation also includes the calculation of material height on conveyor Since we know that height of slat is 275 mm ie0275 m and their spacing between slat and trough is 15 mm ie0015 m So the total height of slat will become 290 mm ie0290 m

ii)When conveyor is inclined at 31

Figure 32 Cross-section of bagasse on inclined conveyor

Let α = surcharge angle

=30deg (For bagasse surcharge angle =300)

In ∆ABC

Sin31=(ABdivideAC)

Therefore AC = 0563065 m

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 390

And tan31=(ABdivideBC)

Therefore BC =0482641 m

No fill area

ie A(∆ABC) = A1

= (1divide2 ) BC AB

A(∆ABC) = 00700 m2

Top area of parabola

A2 = (1divide 6)L2 tan α

Here L = Base = AC = 0563065 m

A2 = 00305 m2

There fore Total area = A1 + A2 = 0100488 m2

The total cross sectional area of bagasse is 01000488 m2 when slat angle is 900

Design calculations

Gauranted capacity 33 mtph

Design capacity 38 mtph

Conveyor length 434 m

Conveyor lift 195 m

Material handled Bagasse (Density = 150 Kgm3 )

Lump size = 100 mm

Flight size = 2751500 mm wide

Flights spacing = 800 mm

Flight thickness = 6 mm

Flight material = MS (Mild Steel Density = 7850 Kgm3 )

We know that Flight mass = Flight volume Flight material density

Flight mass = (0275 15 0006 ) 7850

= 19428750 Kg

As the spacing between two slats is 08 m

Flight mass per meter = (0275 15 00060 7850) divide (08)

= 2428594 Kg

Material carrying run = Material is conveyed in forward motion

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 391

Type of casing = independent enclosed casing for forward run and return run

Lift for forward run = 195 m

Conveying capacity for forward run = 33 mtph (Gauranted)

38 mtph (design capacity)

Material conveyed upper run = Fresh (wet) bagasse 150 Kgm3 50 moisture

Chain arrangement =double stand Each stand of 30kgm two stand total 60kgm 200mm pitch

80 tonne braking load

Chain mass per meter=302=60 kg

Chain and flight travel speed=04 msec

Chain pin diameter =28 mm

Chain roller diameter=75 mm

Type of motion for chain and flight = Rolling trough chain and rollers

Type of moction for bagasse = Dragging by flights in bottom portion of casing

Capacity Calculations

The total gross sectional area of bagasse is spreaded uniform over entire length

Figure 33 Height of Bagasse Layer

Therefore Mass of bagasse =Length of layerWidth of layerHeight of layer Density

2826225=115Height of layer 150

Material height of layer=[2826225divide(1times15times150)]m

=[2826225divide(1times15times150times00254)] inch

Material height of layer=4945276 inch

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 2: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 388

21 Input parameters required for development of slat conveyor

While designing a slat conveyor only four input parameters will be given by customer which are as follows-

Guaranteed capacity =33mtph

Conveyor Length = 434m

Conveyor lift = 195m

Material to be handled = Bagasse (Density=150Kgm3)

Conveyor inclination =310

3 Numerical Analysis for Different Configurations

In slat conveyor number of components are used like slat trough chain chain resting part roller pin Sprocket drive shaft tail shaft gear box motor etc We have to design some of these components while using these components in system

The two main requirements in the design of the conveyor are the ability to convey all the bagasse from the final mill and sufficient strength in all parts to withstand any expected working stresses To meet these requirements from previous experience we fixed the-

speed of conveyor =04msec

width of flights =15m

Height of slight =275mm

spacing of flights = 08m

Also we know that Density of material =150 kg m 3

First of all we will calculate the the cross sectional area of bagasse on conveyor for two cases-

When conveyor is horizontal

When conveyor is inclined

When slat conveyor is horizontal maximum bagasse will be occupied between the two slats But when conveyor will become inclined then in such case the bagasse will fall down above its surcharge level So we will design the conveyor for the case when slat conveyor is inclined

At angle of slat is 90deg

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 389

i) When conveyor is horizontal

Figure 31 Cross-section of bagasse on horizontal conveyor

Material cross section on slat conveyor

The material cross section on conveyor is formed by the trough profile on bottom side and by surcharge angle for curved top The experience shows that the material being carried on slat conveyor will have cross section as shown in figure

The area is made up of two parts vizA1 and A2 The area A1 is known as level fill area The area A2 above fill is known as top area The fill area A1 shape and magnitude is fixed by trough profileshape Regarding shape of top area A2 ISO considers it to be arc of parabola where as USA practice considers it to be an arc ends are inclined at surcharge angle α It is obvious that the fill area A1 is same for both the shape of arc This topic explains the derivation of total cross section area A1+A2 with parabolic arc and also with circular arc The derivation also includes the calculation of material height on conveyor Since we know that height of slat is 275 mm ie0275 m and their spacing between slat and trough is 15 mm ie0015 m So the total height of slat will become 290 mm ie0290 m

ii)When conveyor is inclined at 31

Figure 32 Cross-section of bagasse on inclined conveyor

Let α = surcharge angle

=30deg (For bagasse surcharge angle =300)

In ∆ABC

Sin31=(ABdivideAC)

Therefore AC = 0563065 m

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 390

And tan31=(ABdivideBC)

Therefore BC =0482641 m

No fill area

ie A(∆ABC) = A1

= (1divide2 ) BC AB

A(∆ABC) = 00700 m2

Top area of parabola

A2 = (1divide 6)L2 tan α

Here L = Base = AC = 0563065 m

A2 = 00305 m2

There fore Total area = A1 + A2 = 0100488 m2

The total cross sectional area of bagasse is 01000488 m2 when slat angle is 900

Design calculations

Gauranted capacity 33 mtph

Design capacity 38 mtph

Conveyor length 434 m

Conveyor lift 195 m

Material handled Bagasse (Density = 150 Kgm3 )

Lump size = 100 mm

Flight size = 2751500 mm wide

Flights spacing = 800 mm

Flight thickness = 6 mm

Flight material = MS (Mild Steel Density = 7850 Kgm3 )

We know that Flight mass = Flight volume Flight material density

Flight mass = (0275 15 0006 ) 7850

= 19428750 Kg

As the spacing between two slats is 08 m

Flight mass per meter = (0275 15 00060 7850) divide (08)

= 2428594 Kg

Material carrying run = Material is conveyed in forward motion

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 391

Type of casing = independent enclosed casing for forward run and return run

Lift for forward run = 195 m

Conveying capacity for forward run = 33 mtph (Gauranted)

38 mtph (design capacity)

Material conveyed upper run = Fresh (wet) bagasse 150 Kgm3 50 moisture

Chain arrangement =double stand Each stand of 30kgm two stand total 60kgm 200mm pitch

80 tonne braking load

Chain mass per meter=302=60 kg

Chain and flight travel speed=04 msec

Chain pin diameter =28 mm

Chain roller diameter=75 mm

Type of motion for chain and flight = Rolling trough chain and rollers

Type of moction for bagasse = Dragging by flights in bottom portion of casing

Capacity Calculations

The total gross sectional area of bagasse is spreaded uniform over entire length

Figure 33 Height of Bagasse Layer

Therefore Mass of bagasse =Length of layerWidth of layerHeight of layer Density

2826225=115Height of layer 150

Material height of layer=[2826225divide(1times15times150)]m

=[2826225divide(1times15times150times00254)] inch

Material height of layer=4945276 inch

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 3: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 389

i) When conveyor is horizontal

Figure 31 Cross-section of bagasse on horizontal conveyor

Material cross section on slat conveyor

The material cross section on conveyor is formed by the trough profile on bottom side and by surcharge angle for curved top The experience shows that the material being carried on slat conveyor will have cross section as shown in figure

The area is made up of two parts vizA1 and A2 The area A1 is known as level fill area The area A2 above fill is known as top area The fill area A1 shape and magnitude is fixed by trough profileshape Regarding shape of top area A2 ISO considers it to be arc of parabola where as USA practice considers it to be an arc ends are inclined at surcharge angle α It is obvious that the fill area A1 is same for both the shape of arc This topic explains the derivation of total cross section area A1+A2 with parabolic arc and also with circular arc The derivation also includes the calculation of material height on conveyor Since we know that height of slat is 275 mm ie0275 m and their spacing between slat and trough is 15 mm ie0015 m So the total height of slat will become 290 mm ie0290 m

ii)When conveyor is inclined at 31

Figure 32 Cross-section of bagasse on inclined conveyor

Let α = surcharge angle

=30deg (For bagasse surcharge angle =300)

In ∆ABC

Sin31=(ABdivideAC)

Therefore AC = 0563065 m

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 390

And tan31=(ABdivideBC)

Therefore BC =0482641 m

No fill area

ie A(∆ABC) = A1

= (1divide2 ) BC AB

A(∆ABC) = 00700 m2

Top area of parabola

A2 = (1divide 6)L2 tan α

Here L = Base = AC = 0563065 m

A2 = 00305 m2

There fore Total area = A1 + A2 = 0100488 m2

The total cross sectional area of bagasse is 01000488 m2 when slat angle is 900

Design calculations

Gauranted capacity 33 mtph

Design capacity 38 mtph

Conveyor length 434 m

Conveyor lift 195 m

Material handled Bagasse (Density = 150 Kgm3 )

Lump size = 100 mm

Flight size = 2751500 mm wide

Flights spacing = 800 mm

Flight thickness = 6 mm

Flight material = MS (Mild Steel Density = 7850 Kgm3 )

We know that Flight mass = Flight volume Flight material density

Flight mass = (0275 15 0006 ) 7850

= 19428750 Kg

As the spacing between two slats is 08 m

Flight mass per meter = (0275 15 00060 7850) divide (08)

= 2428594 Kg

Material carrying run = Material is conveyed in forward motion

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 391

Type of casing = independent enclosed casing for forward run and return run

Lift for forward run = 195 m

Conveying capacity for forward run = 33 mtph (Gauranted)

38 mtph (design capacity)

Material conveyed upper run = Fresh (wet) bagasse 150 Kgm3 50 moisture

Chain arrangement =double stand Each stand of 30kgm two stand total 60kgm 200mm pitch

80 tonne braking load

Chain mass per meter=302=60 kg

Chain and flight travel speed=04 msec

Chain pin diameter =28 mm

Chain roller diameter=75 mm

Type of motion for chain and flight = Rolling trough chain and rollers

Type of moction for bagasse = Dragging by flights in bottom portion of casing

Capacity Calculations

The total gross sectional area of bagasse is spreaded uniform over entire length

Figure 33 Height of Bagasse Layer

Therefore Mass of bagasse =Length of layerWidth of layerHeight of layer Density

2826225=115Height of layer 150

Material height of layer=[2826225divide(1times15times150)]m

=[2826225divide(1times15times150times00254)] inch

Material height of layer=4945276 inch

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 4: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 390

And tan31=(ABdivideBC)

Therefore BC =0482641 m

No fill area

ie A(∆ABC) = A1

= (1divide2 ) BC AB

A(∆ABC) = 00700 m2

Top area of parabola

A2 = (1divide 6)L2 tan α

Here L = Base = AC = 0563065 m

A2 = 00305 m2

There fore Total area = A1 + A2 = 0100488 m2

The total cross sectional area of bagasse is 01000488 m2 when slat angle is 900

Design calculations

Gauranted capacity 33 mtph

Design capacity 38 mtph

Conveyor length 434 m

Conveyor lift 195 m

Material handled Bagasse (Density = 150 Kgm3 )

Lump size = 100 mm

Flight size = 2751500 mm wide

Flights spacing = 800 mm

Flight thickness = 6 mm

Flight material = MS (Mild Steel Density = 7850 Kgm3 )

We know that Flight mass = Flight volume Flight material density

Flight mass = (0275 15 0006 ) 7850

= 19428750 Kg

As the spacing between two slats is 08 m

Flight mass per meter = (0275 15 00060 7850) divide (08)

= 2428594 Kg

Material carrying run = Material is conveyed in forward motion

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 391

Type of casing = independent enclosed casing for forward run and return run

Lift for forward run = 195 m

Conveying capacity for forward run = 33 mtph (Gauranted)

38 mtph (design capacity)

Material conveyed upper run = Fresh (wet) bagasse 150 Kgm3 50 moisture

Chain arrangement =double stand Each stand of 30kgm two stand total 60kgm 200mm pitch

80 tonne braking load

Chain mass per meter=302=60 kg

Chain and flight travel speed=04 msec

Chain pin diameter =28 mm

Chain roller diameter=75 mm

Type of motion for chain and flight = Rolling trough chain and rollers

Type of moction for bagasse = Dragging by flights in bottom portion of casing

Capacity Calculations

The total gross sectional area of bagasse is spreaded uniform over entire length

Figure 33 Height of Bagasse Layer

Therefore Mass of bagasse =Length of layerWidth of layerHeight of layer Density

2826225=115Height of layer 150

Material height of layer=[2826225divide(1times15times150)]m

=[2826225divide(1times15times150times00254)] inch

Material height of layer=4945276 inch

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 5: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 391

Type of casing = independent enclosed casing for forward run and return run

Lift for forward run = 195 m

Conveying capacity for forward run = 33 mtph (Gauranted)

38 mtph (design capacity)

Material conveyed upper run = Fresh (wet) bagasse 150 Kgm3 50 moisture

Chain arrangement =double stand Each stand of 30kgm two stand total 60kgm 200mm pitch

80 tonne braking load

Chain mass per meter=302=60 kg

Chain and flight travel speed=04 msec

Chain pin diameter =28 mm

Chain roller diameter=75 mm

Type of motion for chain and flight = Rolling trough chain and rollers

Type of moction for bagasse = Dragging by flights in bottom portion of casing

Capacity Calculations

The total gross sectional area of bagasse is spreaded uniform over entire length

Figure 33 Height of Bagasse Layer

Therefore Mass of bagasse =Length of layerWidth of layerHeight of layer Density

2826225=115Height of layer 150

Material height of layer=[2826225divide(1times15times150)]m

=[2826225divide(1times15times150times00254)] inch

Material height of layer=4945276 inch

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 6: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 392

Moving masses per meter of run

Chain and flight mass per meter of run ie Rolling mass per meter of run =Mcf

Mcf = Flight mass + Chain Mass

Mcf = 2428594 + 60

Mcf = 8428594 Kgm

Mass of bagasse per meter =Mmu = 2826225 Kgm

Conveying Resistance Factors

Conveying Resistance Factors for rolling mass f1

Friction coefficient steel pin on steel roller micro = 04

f1=04(2875) = 01493 (for rolling mass)

Bagasse sliding dragging factor f2 =035 to 045

Applicable to vertical load f2 = 045

Bagasse Horizontal pressure factor f3 = 00055

(For resistance = f3(Material Height in inch)

Upper run resistance per meter

Chain and Flight rolling ie Rolling Resistance=

1 Mcf f1

= 1 8428594 01493 =1264289 Kgfm

Bagasse Rubbing on sides = 1 f3 (Material Height in inch)2 =1 00055 (4945276)2 = 0134507 Kgfm

Total upper resistance = Chain and Flight rolling ie Rolling Resistance +Bagasse sliding Dragging on Bottom casing + Bagasse Rubbing onsides

=1264289 +1271801 +0134507 =2549541

Upper run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) - (Conveyor Height Chain and flight mass per meter of run ie Rolling mass per meter of runMcf)

= (4341264289)ndash(195 8428594) = - 109487 kgf

Lower run resistance = (Conveyor length Chain and Flight rolling ie Rolling Resistance) +(Conveyor length Bagasse slidingDragging on Bottom casing ) +(Conveyor length Bagasse Rubbing on sides) +[ Conveyor height ( Chain and flight mass per meter of run ie rolling mass per meter of Run Mcf +Mass of bagasse per meter Mmu) ]

Lower run resistance =330119 kgf

Total resistance R= Upper run resistance + Lower run resistance+[( Upper run resistance +Lower run resistance) 15] =2537264 kgf

Now Power required at sprocket shaft = Total resistance Rtimes(Chain and Flight travel speeddivide 102)

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 7: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 393

= 9951148 KW

Since Here Drive efficiency =90 ie 09

Power required at Motor shaft = Power required at sprocket shaft Drive efficiency =1105683 KW

Since Here we are selected

Safety factor = 16

Motor required in HP= (Power required at Motor shaft Safety factor) divide 075

=2358787 HP

So we are using 25 HP motor

Now we will calculate different iterations by changing slat angle The calculations of these iterations are shown below in the table

First we will go on increasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area

A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 91 58 029 0562911 0477498 0069226 0030496 0099723 3 92 57 029 0562652 0472219 0068429 0030468 0098898 4 93 56 029 0562221 0466796 0067592 0030422 0098013 5 94 55 029 0561618 046123 0066714 0030357 0097071 6 95 54 029 0560845 0455525 0065798 0030273 0096071 7 96 53 029 05599 044968 0064845 0030171 0095016 8 97 52 029 0558785 0443699 0063855 0030051 0093906 9 98 51 029 05575 0437582 006283 0029913 0092742

10 99 50 029 0556045 0431332 006177 0029757 0091527 11 100 49 029 055442 042495 0060679 0029583 0090262 12 101 48 029 0552626 0418439 0059556 0029392 0088948 13 102 47 029 0550664 0411801 0058403 0029184 0087587 14 103 46 029 0548535 0405037 0057221 0028959 008618 15 104 45 029 0546238 0398149 0056013 0028717 0084729 16 105 44 029 0543774 0391141 0054779 0028458 0083237 17 106 43 029 0541145 0384013 005352 0028184 0081704 18 107 42 029 0538352 0376768 005224 0027893 0080133 19 108 41 029 0535394 0369408 0050938 0027588 0078525 20 109 40 029 0532273 0361936 0049616 0027267 0076883 21 110 39 029 0528989 0354353 0048277 0026932 0075209 22 111 38 029 0525545 0346663 0046922 0026582 0073504 23 112 37 029 052194 0338867 0045552 0026219 0071771 24 113 36 029 0518177 0330967 004417 0025842 0070011 25 114 35 029 0514255 0322967 0042776 0025452 0068228

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 8: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 394

26 115 34 029 0510177 0314868 0041372 002505 0066422 27 116 33 029 0505943 0306674 0039961 0024636 0064597 28 117 32 029 0501555 0298386 0038544 0024211 0062755 29 118 31 029 0497015 0290007 0037123 0023774 0060897 30 119 30 029 0492323 0281539 0035698 0023328 0059026 31 120 29 029 0487481 0272986 0034273 0022871 0057144

Table 1 Cross-sectional area calculation by change slat angle

After this we will take iterations by decreasing the slat angle by 10

Sr No

ltABC ieθ1

ltBAC ieθ2

Height of slat

AB

AC BC fill area A1

Top Area A2

Total Area A=A1+A2

1 90 59 029 0563 0482631 0069982 0030506 0100488 2 89 60 029 0562916 0487618 0070694 0030497 0101191 3 88 61 029 0562661 0492456 0071363 0030469 0101833 4 87 62 029 0562235 0497144 0071988 0030423 0102411 5 86 63 029 0561637 050168 0072568 0030359 0102926 6 85 64 029 0560869 0506063 0073101 0030276 0103377 7 84 65 029 0559929 0510293 0073589 0030174 0103763 8 83 66 029 0558819 0514367 0074029 0030055 0104084 9 82 67 029 0557538 0518284 0074422 0029917 0104339

10 81 68 029 0556087 0522043 0074767 0029762 0104528 11 80 69 029 0554468 0525643 0075063 0029588 0104652 12 79 70 029 0552679 0529083 0075311 0029398 0104708 13 78 71 029 0550721 0532362 0075509 002919 0104699 14 77 72 029 0548596 0535478 0075658 0028965 0104623 15 76 73 029 0546304 0538432 0075757 0028724 0104481 16 75 74 029 0543845 0541221 0075807 0028466 0104273 17 74 75 029 0541221 0543845 0075807 0028192 0103999 18 73 76 029 0538432 0546304 0075757 0027902 0103659 19 72 77 029 0535478 0548596 0075658 0027596 0103254 20 71 78 029 0532362 0550721 0075509 0027276 0102785 21 70 79 029 0529083 0552679 0075311 0026941 0102252 22 69 80 029 0525643 0554468 0075063 0026592 0101655 23 68 81 029 0522043 0556087 0074767 0026229 0100996 24 67 82 029 0518284 0557538 0074422 0025853 0100275 25 66 83 029 0514367 0558819 0074029 0025463 0099493 26 65 84 029 0510293 0559929 0073589 0025062 009865 27 64 85 029 0506063 0560869 0073101 0024648 0097749 28 63 86 029 050168 0561637 0072568 0024223 009679 29 62 87 029 0497144 0562235 0071988 0023787 0095775 30 61 88 029 0492456 0562661 0071363 002334 0094703 31 60 89 029 0487618 0562916 0070694 0022884 0093578

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 9: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 395

32 59 90 029 0482631 0563 0069982 0022418 00924 33 58 91 029 0477498 0562911 0069226 0021944 009117 34 57 92 029 0472219 0562652 0068429 0021461 0089891 35 56 93 029 0466796 0562221 0067592 0020971 0088563 36 55 94 029 046123 0561618 0066714 0020474 0087188 37 54 95 029 0455525 0560845 0065798 0019971 0085769 38 53 96 029 044968 05599 0064845 0019462 0084306 39 52 97 029 0443699 0558785 0063855 0018947 0082802 40 51 98 029 0437582 05575 006283 0018428 0081258 41 50 99 029 0431332 0556045 006177 0017906 0079676

Table 2 Cross-sectional area calculation by change slat angle

In above both the casesthe maximum cross sectional area of bagasse will got at 790 slat angle So for further iterations we will fix the slat angle at 790 The power calculation results are shown in following table

Sr No

Heigt of slat (m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Width of slat

(m)

Thickness of slat (m)

Angle of slat

Cross sectional

Area of bagasse filled between two

slats (m2)

Slat material density

(Kgm3)

Slat Mass per

meter (Kg)

Chain Mass for

two Strands

per meter (Kg)

1 0275 0015 029 15 0006 90 0100488 7850 242859 60 2 0275 0015 029 15 0006 89 0101191 7850 242859 60 3 0275 0015 029 15 0006 88 0101833 7850 242859 60 4 0275 0015 029 15 0006 87 0102411 7850 242859 60 5 0275 0015 029 15 0006 86 0102926 7850 242859 60 6 0275 0015 029 15 0006 85 0103377 7850 242859 60 7 0275 0015 029 15 0006 84 0103763 7850 242859 60 8 0275 0015 029 15 0006 83 0104084 7850 242859 60 9 0275 0015 029 15 0006 82 0104339 7850 242859 60

10 0275 0015 029 15 0006 81 0104528 7850 242859 60 11 0275 0015 029 15 0006 80 0104652 7850 242859 60 12 0275 0015 029 15 0006 79 0104708 7850 242859 60

Table 3 Power calculations by changing angle

Chain and slat mass per meter of run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run(inch)

Rolling resistance

ie chain amp flight rolling

mtr R1

Bagasse sliding

dragging Resistanc

e on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R 3

Upper run resistance

(Kgf)

8428594 226098 2826225 4945276 1264289 1271801 0134507 2549541 -109487 8428594 2276798 2845997 4979872 1264289 1280699 0136395 2558627 -109487 8428594 2291243 2864053 5011467 1264289 1288824 0138131 2566926 -109487 8428594 2304248 2880309 5039911 1264289 1296139 0139704 2574399 -109487 8428594 2315835 2894794 5065256 1264289 1302657 0141112 2581057 -109487

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 10: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 396

8428594 2325983 2907478 5087451 1264289 1308365 0142352 2586889 -109487 8428594 2334668 2918334 5106447 1264289 131325 0143417 2591881 -109487 8428594 234189 2927363 5122244 1264289 1317313 0144306 2596033 -109487 8428594 2347628 2934534 5134793 1264289 132054 0145014 2599331 -109487 8428594 235188 293985 5144094 1264289 1322933 0145539 2601776 -109487 8428594 235467 2943338 5150197 1264289 1324502 0145885 2603379 -109487 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 -109487

Table 4 Power calculations by changing angle

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required at sprocket shaft

(KW)

Drive efficiency

Power required at motor shaft

(KW)

HP of motor (HP)

330119 2537264 9951148 09 1105683 2358787 3308989 2546232 9986323 09 1109591 2367125 3316112 2554423 1001845 09 1113161 237474 3322525 2561798 1004737 09 1116375 2381596 332824 256837 1007315 09 1119239 2387705

3333244 2574125 1009572 09 1121747 2393056 3337527 2579051 1011504 09 1123893 2397635 334109 2583148 1013111 09 1125678 2401443 334392 2586402 1014387 09 1127097 2404469

3346017 2588814 1015333 09 1128148 2406711 3347393 2590397 1015954 09 1128837 2408183 3348015 2591112 1016234 09 1129149 2408847

Table 5 Power calculations by changing angle

From the above table it is seen that the optimum result will get at 79 0 slat angle using 25 HP Motor

4 Iterations for Various Heights of Slat

Now we will gone on increasing the slat height by 2 mm for each iterations Here Since we are taking height of slat on trial and error basic as 283mm ie0283 m and their spacing between slat and trough is 15 mm ie0015 m So total height of slat becomes 298 mm

Figure 34 Cross-sectional of bagasse at slat angle 790

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 11: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 397

Sr No

θ1 B

θ2 C

Slat Height

Spacing between

slat amp Trough

Total Height of slat l(AB)

l(AC) b l(BC) c fill area A1

Top Area A2

Total Area A=A1+A2

1 79 70 0275 0015 029 0552679 0529083 0075311 0029398 0104708 2 79 70 0277 0015 0292 055649 0532732 0076353 0029805 0106158 3 79 70 0279 0015 0294 0560302 0536381 0077403 0030214 0107617 4 79 70 0281 0015 0296 0564113 054003 0078459 0030627 0109086 5 79 70 0283 0015 0298 0567925 0543678 0079523 0031042 0110565 6 79 70 0285 0015 03 0571737 0547327 0080594 003146 0112054 7 79 70 0287 0015 0302 0575548 0550976 0081672 0031881 0113553 8 79 70 0289 0015 0304 057936 0554625 0082758 0032305 0115062 9 79 70 0291 0015 0306 0583171 0558274 008385 0032731 0116581

10 79 70 0293 0015 0308 0586983 0561923 008495 003316 011811 11 79 70 0295 0015 031 0590794 0565572 0086057 0033593 0119649 12 79 70 0297 0015 0312 0594606 056922 0087171 0034027 0121198 13 79 70 0299 0015 0314 0598418 0572869 0088292 0034465 0122757 14 79 70 0301 0015 0316 0602229 0576518 008942 0034905 0124325 15 79 70 0303 0015 0318 0606041 0580167 0090555 0035349 0125904 16 79 70 0305 0015 032 0609852 0583816 0091698 0035795 0127493 17 79 70 0307 0015 0322 0613664 0587465 0092848 0036244 0129091 18 79 70 0309 0015 0324 0617476 0591114 0094005 0036695 01307 19 79 70 0311 0015 0326 0621287 0594762 0095169 003715 0132319 20 79 70 0313 0015 0328 0625099 0598411 009634 0037607 0133947 21 79 70 0315 0015 033 062891 060206 0097519 0038067 0135586 22 79 70 0317 0015 0332 0632722 0605709 0098704 003853 0137234 23 79 70 0319 0015 0334 0636533 0609358 0099897 0038995 0138893 24 79 70 0321 0015 0336 0640345 0613007 0101097 0039464 0140561 25 79 70 0323 0015 0338 0644157 0616655 0102304 0039935 0142239 26 79 70 0325 0015 034 0647968 0620304 0103519 0040409 0143927 27 79 70 0327 0015 0342 065178 0623953 010474 0040886 0145626 28 79 70 0329 0015 0344 0655591 0627602 0105969 0041365 0147334 29 79 70 0331 0015 0346 0659403 0631251 0107204 0041848 0149052 30 79 70 0333 0015 0348 0663214 06349 0108447 0042333 015078 31 79 70 0335 0015 035 0667026 0638549 0109697 0042821 0152518 32 79 70 0337 0015 0352 0670838 0642197 0110955 0043312 0154266

Table 6 Cross ndashSectional area calculations by changing height of slat

The power calculations of above each configuration are shown in following table

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 12: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 398

Sr No

Height of slat

(m)

Spacing between slat and trough

(m)

Total height of slat

(m)

Thickness of slat

(m)

Width of slat

(m)

Angle of slat

Cross sectional Area of Bagass filled between

two slats (m2)

Slat material density

(Kgm3)

Slat Mass per meter

(Kg)

1 0275 0015 029 0006 15 79 0104708 7850 2428594 2 0277 0015 0292 0006 15 79 0106158 7850 2446256 3 0279 0015 0294 0006 15 79 0107617 7850 2463919 4 0281 0015 0296 0006 15 79 0109086 7850 2481581 5 0283 0015 0298 0006 15 79 0110565 7850 2499244 6 0285 0015 03 0006 15 79 0112054 7850 2516906 7 0287 0015 0302 0006 15 79 0113553 7850 2534569 8 0289 0015 0304 0006 15 79 0115062 7850 2552231 9 0291 0015 0306 0006 15 79 0116581 7850 2569894

10 0293 0015 0308 0006 15 79 011811 7850 2587556 11 0295 0015 031 0006 15 79 0119649 7850 2605219 12 0297 0015 0312 0006 15 79 0121198 7850 2622881 13 0299 0015 0314 0006 15 79 0122757 7850 2640544 14 0301 0015 0316 0006 15 79 0124325 7850 2658206 15 0303 0015 0318 0006 15 79 0125904 7850 2675869 16 0305 0015 032 0006 15 79 0127493 7850 2693531 17 0307 0015 0322 0006 15 79 0129091 7850 2711194 18 0309 0015 0324 0006 15 79 01307 7850 2728856 19 0311 0015 0326 0006 15 79 0132319 7850 2746519 20 0313 0015 0328 0006 15 79 0133947 7850 2764181 21 0315 0015 033 0006 15 79 0135586 7850 2781844 22 0317 0015 0332 0006 15 79 0137234 7850 2799506 23 0319 0015 0334 0006 15 79 0138893 7850 2817169 24 0321 0015 0336 0006 15 79 0140561 7850 2834831 25 0323 0015 0338 0006 15 79 0142239 7850 2852494 26 0325 0015 034 0006 15 79 0143927 7850 2870156 27 0327 0015 0342 0006 15 79 0145626 7850 2887819 28 0329 0015 0344 0006 15 79 0147334 7850 2905481 29 0331 0015 0346 0006 15 79 0149052 7850 2923144 30 0333 0015 0348 0006 15 79 015078 7850 2940806 31 0335 0015 035 0006 15 79 0152518 7850 2958469 32 0337 0015 0352 0006 15 79 0154266 7850 2976131

Table 7 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 13: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 399

Chain Mass for two

Strands per meter (Kg)

Chain and slat mass per meter of

run Mcf

Mass of bagasse per slat

Mass of bagasse

per meter Mmu

Material height in

upper run

(inch)

Rolling resistance ie chain amp

flight rollingmtr R1

Bagasse sliding

dragging Resistance on bottom

R2

Bagasse rubbing on sides

R3

R1+R2+R3

60 8428594 235593 2944913 5152953 1264289 1325211 0146041 2604104 60 8446256 2388555 2985694 5224311 1266938 1343562 0150114 2625512 60 8463919 2421383 3026728 5296112 1269588 1362028 0154268 2647042 60 8481581 2454435 3068044 5368406 1272237 138062 0158509 2668708 60 8499244 2487713 3109641 5441191 1274887 1399338 0162836 2690508 60 8516906 2521215 3151519 5514469 1277536 1418183 0167251 2712445 60 8534569 2554943 3193678 5588238 1280185 1437155 0171756 2734516 60 8552231 2588895 3236119 56625 1282835 1456253 0176351 2756723 60 8569894 2623073 3278841 5737254 1285484 1475478 0181038 2779066 60 8587556 2657475 3321844 58125 1288133 149483 0185818 2801545 60 8605219 2692103 3365128 5888238 1290783 1514308 0190692 282416 60 8622881 2726955 3408694 5964469 1293432 1533912 0195662 2846911 60 8640544 2762033 3452541 6041191 1296082 1553643 0200728 2869798 60 8658206 2797313 3496641 6118356 1298731 1573488 0205889 2892808 60 8675869 283284 354105 6196063 130138 1593473 0211152 2915968 60 8693531 2868593 3585741 6274262 130403 1613583 0216515 2939264 60 8711194 2904548 3630684 6352904 1306679 1633808 0221977 2962685 60 8728856 294075 3675938 6432087 1309328 1654172 0227545 2986255 60 8746519 2977178 3721472 6511762 1311978 1674662 0233217 3009962 60 8764181 3013808 3767259 659188 1314627 1695267 0238991 3033793 60 8781844 3050685 3813356 6672539 1317277 171601 0244875 3057774 60 8799506 3087765 3859706 6753642 1319926 1736868 0250864 308188 60 8817169 3125093 3906366 6835285 1322575 1757865 0256966 3106136 60 8834831 3162623 3953278 6917372 1325225 1778975 0263175 3130517 60 8852494 3200378 4000472 6999951 1327874 1800212 0269496 3155036 60 8870156 3238358 4047947 7083022 1330523 1821576 0275931 3179693 60 8887819 3276585 4095731 7166634 1333173 1843079 0282484 32045 60 8905481 3315015 4143769 7250689 1335822 1864696 0289149 3229433 60 8923144 335367 4192088 7335236 1338472 1886439 0295931 3254504 60 8940806 339255 4240688 7420276 1341121 1908309 0302833 3279714 60 8958469 3431655 4289569 7505807 134377 1930306 0309854 3305062 60 8976131 3470985 4338731 7591831 134642 1952429 0316997 3330548

Table 8 Power calculations by changing height of slat

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 14: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 400

Table 9 Power calculations by changing height of slat

From the above table it is seen that the optimum result will get at 79 0 slat angle and 283 mm slat height using 25 HP Motor

Upper run resistance

(Kgf)

Lower run resistance

(Kgf)

Total resistance

(Kgf) R

Power required

at sprocket

shaft (KW)

Drive efficiency

Power required at motor

shaft (KW)

HP of motor (HP)

-109487 3348015 2591112 1016234 09 1129149 2408847 -109717 3368702 2612264 102453 09 1138367 2428511 -109946 3389493 2633534 1032872 09 1147636 2448285 -110176 3410396 2654934 1041265 09 1156961 2468181 -110405 3431413 2676466 104971 09 1166344 2488197 -110635 3452544 2698127 1058206 09 1175784 2508335 -110864 3473788 271992 1066753 09 1185281 2528595 -111093 3495146 2741843 1075351 09 1194834 2548976 -111323 3516618 2763897 1084 09 1204445 2569478 -111552 3538204 2786082 1092701 09 1214113 2590103 -111782 3559903 2808398 1101454 09 1223837 2610849 -112011 3581716 2830845 1110257 09 1233619 2631717 -112241 3603644 2853423 1119112 09 1243458 2652707 -11247 3625674 2876119 1128014 09 1253349 2673806

-1127 3647829 2898959 1136972 09 1263302 269504 -112929 3670099 292193 1145981 09 1273312 2716395 -113158 3692471 294502 1155037 09 1283374 2737861 -113388 3714969 2968255 1164149 09 1293499 2759461 -113617 3737582 299162 1173313 09 1303682 2781183 -113847 3760297 3015104 1182524 09 1313916 2803015 -114076 3783138 3038733 1191791 09 1324212 2824982 -114306 3806082 3062481 1201105 09 1334561 2847059 -114535 3829152 3086373 1210475 09 1344973 286927 -114764 3852326 3110383 1219892 09 1355436 2891592 -114994 3875614 3134526 1229361 09 1365957 2914037 -115223 3899017 3158801 1238882 09 1376535 2936604 -115453 3922545 318322 1248459 09 1387177 2959306 -115682 3946178 3207759 1258083 09 139787 2982118 -115912 3969925 323243 1267759 09 1408621 3005054 -116141 3993787 3257233 1277487 09 141943 3028112 -116371 4017764 3282168 1287266 09 1430296 3051293

-1166 4041856 3307235 1297098 09 144122 3074597

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955

Page 15: Design, Development and Analysis of Slat Conveyor for ...

International Research Journal of Engineering and Technology (IRJET) e-ISSN 2395-0056 Volume 07 Issue 03 | Mar 2020 wwwirjetnet p-ISSN 2395-0072

copy 2020 IRJET | Impact Factor value 734 | ISO 90012008 Certified Journal | Page 401

5 Results

The traditional slat conveyor can carry maximum 226098 Kg m3 bagasse per slat by using 25 HP motor By using the our optimum configuration the slat conveyor can carry maximum 2487713 Kg m3 bagasse per slat for the same motor That means mass each slat can carry 226733 Kg m3 extra bagasse per slat It ultimately impacts on the capacity of the slat conveyor system In other words the optimum configuration of slat conveyor will increase the performance by 10028

6 Conclusion

We wish to state that by using our optimum configuration we can increase the capacity of the slat conveyor for the same motor In our opinion the above method of conveying and storing the bagasse is by no means the ideal one the storage shed and the slat conveyor used overseas is considered far superior Belt conveyors and slat conveyors as used in some mills appear to be an effortless means of conveying bagasse but there are limitations to these as regards a satisfactory method of feeding to the individual fire openings also their limit of elevation appears to be between 300 and 350 These limitations can no doubt be quite easily overcome

7 References

1 ASeyam F SunrdquoManufacturing Technology for Apparel Automation ndash ldquoLayup Module Part II The Impact of Fabric Properties on the Gap Length Between Two Slatsrdquo International Journal of Clothing Science and Technology Issue 1Vol6 PP 3-131Jan1994

2 B Stc MoorldquoBeltvs Chain-Slat Bagasse Conveyors for Boiler Feedingrdquo Proc S AfrSugTechnolAssVol 74PP285- 2892000

3 Edward Kaliika The Late Robin Renton Johan Groenewald And Garry Wenham rdquoFeeding Bagasse to Multiple Boilers with a lsquoSmartfeedrsquo Bagasse Fuel Conveyance and Distribution System Incorporating lsquoRenton Ploughsrdquo Proc S AfrSugTechnolAssVol76PP349-3542002

4 Jianjun Dai Heping Cui John R Grace rdquoBiomass Feeding for Thermo-chemical Reactorsrdquo Progress in Energy and Combustion Science Issue 5Vol 38PP716-736Oct2012

5 Xiaolun Liu Wencheng Wang Wei SunTiansong Wu Jiajun Liu Jianfang Liu-ldquoDesign and Experimental Analysis of Low Noise Double- Pitch Silent Chain for ConveyorrdquoProcediaEngineeringVol29PP2146-21502012

6 FLD Cloete STR WilkinsrdquoA Drag Chain FeederConveyor Based on Standard Engineering Componentsrdquo Powder TechnologyIssue 1Vol 20PP21-27MayndashJune1978

7 DariuszMazurkiewicz ldquoAnalysis of the Ageing Impact on the Strength of the Adhesive Sealed Joints of Conveyor Beltsrdquo Journal of Materials Processing TechnologyIssues 1-3Vol 208PP477-485Nov2008

8 Daniel J Fonseca Gopal Uppal Timothy J GreenerdquoA Knowledge-based System for Conveyor Equipment Selectionrdquo Expert Systems with ApplicationsIssue 4Vol 26PP 615ndash623May2004

9 Yingna Zheng Yang Li QiangLiurdquoMeasurementof Mass Flow Rate of Particulate Solids in Gravity Chute Conveyor Based on Laser Sensing Arrayrdquo Optic and Laser TechnologyIssue 2Vol 39PP298-305March2007

10 T Deng AR Chaudhry M Patel I Hutchings MSA Bradleyrdquo Effect of Particle Concentration on Erosion rate of Mild Steel Bends in a Pneumatic ConveyorrdquoWear Issues 1-4Vol 258PP480-487Jan2005

11 REBicklerdquoThe Design Of Bagasse Conveyor And Elevatorrdquo Twenty secondconferencePP61-681955