Design Calculation Draft

50
Document title: Design Calculation Jetty Structure of Terminal C 0 05.06.2012 Issued for approval Storm REV. DATE DESCRIPTION PREP’D CHK’D APP’D Client: NIGERIAN PORTS AUTHORITY Consultant: YOLAS CONSULTANTS Contractor: JULIUS BERGER Project: WARRI PORT REHABILITATION

description

Design Calculation Draft

Transcript of Design Calculation Draft

Page 1: Design Calculation Draft

Document title:

Design Calculation

Jetty Structure

of

Terminal C

0 05.06.2012 Issued for approval Storm REV. DATE DESCRIPTION PREP’D CHK’D APP’D

Client:

NIGERIAN PORTS AUTHORITY

Consultant:

YOLAS CONSULTANTS

Contractor:

JULIUS BERGER

Project:

WARRI PORT REHABILITATION

Page 2: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 2 of 50 Julius Berger International GmbH

Revision Log

Revision Description Pages revised

Page 3: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 3 of 50 Julius Berger International GmbH

Section No. Description Page 1  Introduction ............................................................................................................................................. 5 

2  Facility ..................................................................................................................................................... 5 

3  Codes and Standards ............................................................................................................................. 7 

4  Subsoil conditions ................................................................................................................................... 7 

5  Material ................................................................................................................................................... 8 

5.1  Concrete .................................................................................................................................... 8 

5.1.1  Strength Grade ........................................................................................................................ 8 

5.1.2  Concrete Cover ....................................................................................................................... 8 

5.1.3  Reinforcement ......................................................................................................................... 8 

5.2  Partial Safety Factors ................................................................................................................ 8 

6  Software ................................................................................................................................................ 10 

7  Loading ................................................................................................................................................. 10 

7.1  Quayside .................................................................................................................................. 10 

7.1.1  Dead Load ............................................................................................................................. 10 

7.1.2  Life Load ................................................................................................................................ 10 

7.1.3  Mooring Loads ....................................................................................................................... 10 

7.1.4  Berthing load ......................................................................................................................... 10 

Max reaction force = 2*553 = 1106 kN ............................................................................................... 12 

7.2  Load combinations................................................................................................................... 13 

8  Design Section 1 ................................................................................................................................... 14 

8.1  Preface .................................................................................................................................... 14 

8.2  Design Section ......................................................................................................................... 14 

8.3  Predesign evaluations ............................................................................................................. 15 

8.3.1  Estimation of anchor elasticity ............................................................................................... 15 

8.3.2  Distribution of bollard load ..................................................................................................... 15 

8.3.3  Additional Loads for the sheet pile design ............................................................................ 16 

8.4  Calculation ............................................................................................................................... 17 

8.4.1  Preface .................................................................................................................................. 17 

8.4.2  Wall calculation ...................................................................................................................... 17 

8.4.3  Check of Profile ..................................................................................................................... 20 

8.4.4  Intermediate Sheet piling ....................................................................................................... 20 

8.4.5  Selection of anchor ................................................................................................................ 21 

8.4.6  Anchor wall ............................................................................................................................ 21 

8.4.7  Anchor wall ............................................................................................................................ 22 

8.5  Sketch with results ................................................................................................................... 23 

9  Section 2 ............................................................................................................................................... 24 

9.1  Preface .................................................................................................................................... 24 

Page 4: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 4 of 50 Julius Berger International GmbH

9.2  Design Section ......................................................................................................................... 24 

9.3  Predesign evaluations ............................................................................................................. 25 

9.4  Calculation ............................................................................................................................... 26 

9.4.1  Preface .................................................................................................................................. 26 

9.4.2  Wall calculation ...................................................................................................................... 26 

9.4.3  Results of electronic calculation ............................................................................................ 28 

9.4.4  Check of Profile ..................................................................................................................... 29 

9.4.5  Intermediate Sheet piling ....................................................................................................... 29 

9.4.6  Selection of anchor ................................................................................................................ 29 

9.4.7  Anchor wall ............................................................................................................................ 29 

9.4.8  Anchor wall ............................................................................................................................ 31 

9.5  Sketch with results ................................................................................................................... 31 

9.5.1  Results ................................................................................................................................... 32 

9.6  Options for optimisation of Section 2 ....................................................................................... 33 

9.6.1  Check of Profile ..................................................................................................................... 33 

9.6.2  Intermediate Sheet piling ....................................................................................................... 33 

9.6.3  Selection of anchor ................................................................................................................ 33 

9.6.4  Anchor wall ............................................................................................................................ 34 

9.6.5  Anchor wall ............................................................................................................................ 35 

9.6.6  Conclusion ............................................................................................................................. 35 

10  Construction stage ................................................................................................................................ 36 

11  Wingwall................................................................................................................................................ 38 

11.1  Preface ................................................................................................................................. 38 

11.2  Elevation .............................................................................................................................. 38 

11.3  Cantilever wing wall ............................................................................................................. 39 

11.4  Anchored wing wall section .................................................................................................. 40 

12  Design of capping beam ....................................................................................................................... 44 

12.1  Preface ................................................................................................................................. 44 

12.2  Size and loadings ................................................................................................................. 44 

12.3  Connection to king piles ....................................................................................................... 45 

12.4  Insitu beam design ............................................................................................................... 47 

12.5  PC-U-Beam .......................................................................................................................... 49 

12.6  Reinforcement sketches ...................................................................................................... 50 

13  Conclusion ............................................................................................................................................ 50 

Page 5: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 5 of 50 Julius Berger International GmbH

1 Introduction

The following calculation proofs the waterfront structures which are proposed to use for

the reconstruction of the Terminal C. Changes due to additional requirements or

agreements with the client in respect to the minimising of the quantities are considered

in this calculation.

Further detailed design issues for connections and reinforcement are investigated in the

following.

Instead of use the tendered “Peine Piling system” it is foreseen to install the “Arcelor

Piling system” and to consider a higher steel quality (S430 instead of S355).

The following items of the “Arcelor system” are foreseen:

king piles: HZM1080A (S430) and HZM 880A (S430)

Intermediate piles: AZ 14/770 (SW355)

Anchor wall AU 25 (S355)

Following additional changes are required in the design:

• Bollard load of 800 kN instead of 600 kN

• No additional anchor at bollards

2 Facility

The present berth structure Terminal C was constructed in the late 1970’s. Due to the

serve damages at the sheet piles and at the capping beam and heavy settlements at the

Land side the stability of the structure could not be verified. Further the berth should be

upgraded for a water depth of 10m below CD.

Therefore the whole berth with a length of about 500 m will be equipped with a new

sheet piling system. The system contains a main king pile wall anchored by lightly

inclined tie rods and a continuous anchor wall. The king pile wall is equipped by a

concrete capping beam which bears the fender and mooring equipment.

The system of the berth consists of two different Sections depending on the

encountered subsoil condition. The Section 1 covers a length of 300 m, the Section 2 a

length of 180m.

Page 6: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 6 of 50 Julius Berger International GmbH

LAYOUT:

TYPICAL SECTION:

Acc, to Tender

Section 1 Section 2

Page 7: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 7 of 50 Julius Berger International GmbH

3 Codes and Standards

The design is based on the following standards:

Engineering Drawings and Details prepared by Yolas Consultants (MAY 2011)

EAU 2004 Recommendations of the Committee for waterfront structures, harbours

and waterways

DIN 1045-1 Structural use of Concrete

4 Subsoil conditions

Subsoil strategraphy and soil conditions according to „Geotechnical Interpretative

Report „ (TB-GEO/April 10,2012)

Page 8: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 8 of 50 Julius Berger International GmbH

The following water levels are specified: HHWL +1,6 m (Warri Datum) LWL + 0,0 m (Warri Datum) GW +1,1 m (Warri Datum) in the design considered by +1,5m.

5 Material

5.1 Concrete

The design of the concrete structures is executed according to the requirements of BS

6349 which refers to BS 5400.

5.1.1 Strength Grade The following concrete strengths as specified in BS EN 206 will be used for the

construction:

Concrete Grade C32/40 with a characteristic compressive strength at 28 days 40.0

N/mm² for reinforced concrete.

5.1.2 Concrete Cover

structural element 

Exposure class  required cover [mm] 

Min. concrete grade 

In‐situ concrete  XS 3  60 (exposed to air)  C32/40 XS 3  30 (exp. to concrete)  C32/40 

Precast elements  XS 3  60 (exposed to air)  C32/40 XS 3  30 (exp. to concrete)  C32/40 

5.1.3 Reinforcement The design is based on hot rolled high yield deformed reinforcement bars grade 500 in

accordance with BS 4449.

strength grade 500: yield strength 500 N/mm2

5.2 Partial Safety Factors

For sheet piling design

Partial Safety factors acc. to EAU and DIN 1054/2005

Page 9: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 9 of 50 Julius Berger International GmbH

Structural steel γm = 1.1

For concrete design

Concrete γm = 1.5

Reinforcement γm = 1.15

Page 10: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 10 of 50 Julius Berger International GmbH

6 Software

Various software will be used for the structural analysis depending on the investigated

structural problem. The sheet pile wall structure will be analyzed by means of the

software developed by DC-Software, Munich, Germany.

Generally MICROSOFT Excel sheets will be used to facilitate calculations of repetitive

nature.

7 Loading

7.1 Quayside

7.1.1 Dead Load For reinforced concrete a dead load of 25 kN/m³ shall be used.

7.1.2 Life Load On the quayside a general live load of 50 kN/m² is specified.

7.1.3 Mooring Loads For the berth 800 kN bollards are required.

7.1.4 Berthing load The following vessel are specified

Page 11: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 11 of 50 Julius Berger International GmbH

Calculation of necessary absorption energy (by Fender Team)

Page 12: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 12 of 50 Julius Berger International GmbH

Selected Fender system

Max reaction force = 2*553 = 1106 kN

Max absorption energy = 2* 203 = 406 kNm

Page 13: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 13 of 50 Julius Berger International GmbH

7.2 Load combinations

For the Design two load combinations are investigated:

Loadcomb 1 (max Live load, max water pressure, max water depth)- decisive for wall

length

Loadcomb 2 ( as Loadcomb.1 + hawser pull) decisive for anchor force

Both load combinations belong to loading case 2 “rare Combinations” acc. to EAU. The

corresponding safety factors are considered in the design.

Page 14: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 14 of 50 Julius Berger International GmbH

8 Design Section 1

8.1 Preface

The Section 1 is valid for the South area of the berth for a length of about 300 m. The

length is specified in the Tender drawings and the corresponding soil profile is evaluated

in the GIR. The Soil profile in Section 1 is more favourable for the Sheet piling System

as the Soil profile in Section 2.

8.2 Design Section

Page 15: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 15 of 50 Julius Berger International GmbH

8.3 Predesign evaluations

8.3.1 Estimation of anchor elasticity Due to the very long anchors the elasticity of the anchors is evaluated. The elasticity of

the anchorage is important for the load distribution of the bollard load and the moment

calculation of the sheet piling structure.

Spring rate K = E x A/ l

E = 2.1 *105 N/mm²

A = 90²x 3,14/4 = 6360 mm²

L = 30 m

K = 44500 N/mm = 44,5 MN/m

8.3.2 Distribution of bollard load Depending on the stiffness of the concrete head beam and the elasticity of the

supporting anchorage the bollard load is distributed over several anchors. The

determination of the load distribution a continuous beam supported by Springs

(Anchors) is investigated.

The distance of the supports are 2,07 m as the spacing of the anchorage and the beam

itself is considered by 1,4mx1,4m (size of the insitu concrete of head beam, continuous

reinforced).

The bollard load is considered with 800 kN (characteristic load)

System of head beam

Page 16: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 16 of 50 Julius Berger International GmbH

Load distribution due to capping beam (Shear force)

The Anchor load is distributed due to the head beam to about 10 anchors with a

maximum load of 130 kN per anchor.

8.3.3 Additional Loads for the sheet pile design Bollard

Due to the hawser pull and the bollard height of about 50 cm a moment will be

transferred to the top sheet piling.

Horizontal force for sheetpile design 130/2,07 = 63 kN/m

Moment 64*0,5 = 32 kNm/m

Selfweight

Page 17: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 17 of 50 Julius Berger International GmbH

For the Check of the sheet piles the normalforce due to dead load is considered

Normal force in sheet pile at max M

Due to earth pressure and deadweight of wall automatic considered by PC software

Due to capping beam 1,8*1,6*25 = 72 kN/m

Due to anchor 500 * tan 5° = 45 kN/m

8.4 Calculation

8.4.1 Preface The Sheet piling is calculated by means of the Software DC-PIT. The relevant data of

the calculation are printed below – the whole calculation is tabled in the attachment.

The wall itself is considered as full restrained in the soil.

For the sheet piling Structure the ARCELOR Profile HZ 880M A-12/AZ 14-770 are

foreseen.

For the Design two loadcombinations are investigated:

LC1 (max Live load, max water pressure, max water depth)- decisive for wall length

LC 2 ( as LC1 + hawser pull) decisive for anchor force

I

8.4.2 Wall calculation

Loadcomb 1

Page 18: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 18 of 50 Julius Berger International GmbH

Load comb 2

Page 19: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 19 of 50 Julius Berger International GmbH

Results of electronic calculation

Page 20: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 20 of 50 Julius Berger International GmbH

Load

comb

Load case

Acc. to EAU

Md

wall

Nd L

wall

Ak Ad Lk Ad/2,07m

(kN/m) (kN) (m) (kN/m) (kN/m) (m) (kN)

1 2 1630 -430 23,8 450 622 26,3 1290

2 2 1534 -440 23,7 522 722 27,9 1500

8.4.3 Check of Profile Selected Profile HZ 880M A-12/AZ 14-770 (S430)

A = 292,4 / 2,067 = 141 cm²/m

Wy = 4830 cm³/m

Check

440/141 * 10 + 1630/4830*10³ = 31,2 + 337,4 = 368,7 MN/m²

368,7/430*1,1 = 0,94 < 1,0

8.4.4 Intermediate Sheet piling Selected AZ 14 /770 S 355

Check of length of intermediate sheet piles

(recommendation acc. to EAU 1990 2,5 m below sea bed)

Length are calculated with check of hydraulic failure

Check of hydraulic failure

Considered pile toe at -13,1 (pile length 15 m)

Page 21: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 21 of 50 Julius Berger International GmbH

8.4.5 Selection of anchor For the anchorage anchor of grade 500 are foreseen:

Max Ad = 1500 kN selected upset anchor grade 500 M90 (Rd = 1624 kN)

8.4.6 Anchor wall For the anchor wall a dead man system is considered.

With the check of the lower failure plane the required depth of the anchor is evaluated.

For the check the biggest anchor force are considered. The soil conditions for the wall

are considered as uniform with a friction angle of 35° due to the compaction of the fill

and the subsoil compaction by pile driving this assumption is verified. The LL is

considered by 20 kN/m².

The check is executed by means of a excel-calculation sheet.

Design acc. to EAU 2006 8.4.9.7 Safety against Failure of Anchoring Soil 

Conditions: One soil layer with Ground water Limit State Case 1B ‐ Failure of structure 

INPUT CELLS    RESUT CELLS    

Symbol  description  unit  value 

Soil parameters    φ' friction  (°)  35 γ weight  (kN/m³)  20 γ' weight  (kN/m³)  11 

Geometry parameters    h  wall toe below GS  (m)  7,3 h'  GW below GS  (m)  2 P  uniform live load  (kN/m²)  20 

Load case  for selction of safety parameters    LC  Load case   (1/2/3)  2 

Anchor force    Ad  Design anchorforce  (kN/m)  722 

Design Vaues    γEP earth resistance  ()  1,3 γG Permanent actions  ()  1,2 γQ variable actions  ()  1,3    kah (δ = 2/3 phi)  ()  0,22 

Page 22: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 22 of 50 Julius Berger International GmbH

   kph (δ = 0)  ()  3,69 Eah,k (G)  active earth pressure (soil)  (kN/m)  67 Eah,k (P)  active earth pressure (Live Load)  (kN/m)  33 Eph,k   passive earthpressure  (kN/m)  1109 

     

check  Rd/Ed  ()  1,01  

OK 

 

 

The required toe of the wall is 7,2 m below surface. By consideration of a 5m long wall

the top of wall is CD+1,3m and the anchor elevation at CD -1,2 m.

Check of the passive friction angle by the verification of the equilibrium of the vertical

forces (Characteristic).

V anchor = 522* tan 5,5° = 50 kN/m

V active earth pressure = (67+33)*tan 23.3° = 43 kN/m

V dead weight of wall = 5* 1,5 = 7,5 kN

43+7,5 = 50,5 > 50 OK

8.4.7 Anchor wall Wall length 5 m

Md wall = (722/5,0 )*(5,0/2)²/2 = 451 kNm

Nec W (S355) = 451/0,355*1,1 = 1398 cm³

Propoased profile:

AU 20 (S355) (wy = 2000 cm³) (same profile will be used for Section 2 too)

Selected Profile AU 25 (Arcelor proposal)

Walling

 

GW

ϑp(δ=0)

h‘

Ad

p

EphEah

ϑa(δ=2/3φ)

Page 23: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 23 of 50 Julius Berger International GmbH

Walling force Wd = 722 kN/m

Md = 722*2,07²/10 = 309 kNm

Nec W (S355) = 309/0,355*1,1 = 957 cm³

Proposed 2* U 300 (S355) (W = 1070cm³)

Selected Profile 2U 320 (Arcelor proposal)

8.5 Sketch with results

Page 24: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 24 of 50 Julius Berger International GmbH

9 Section 2

9.1 Preface

The Section 2 is valid for the North area of the berth for a length of about 180 m. The

length is specified in the Tender drawings and the corresponding soil profile is evaluated

in the GIR. The Soil profile in Section 2 is more unfavourable for the Sheet piling

System as the Soil profile in Section 1. Therefore heavier profiles will be necessary.

9.2 Design Section

Page 25: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 25 of 50 Julius Berger International GmbH

9.3 Predesign evaluations

For the Section 2 the same pre-design evaluations and loadings are valid as for

Section1.

Horizontal force for sheetpile design 130/2,07 = 63 kN/m

Moment 64*0,5 = 32 kNm/m

Due to earth pressure and deadweight of wall automatic considered by PC software

Due to capping beam 1,8*1,6*25 = 72 kN/m

Due to anchor 500 * tan 5° = 45 kN/m

Page 26: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 26 of 50 Julius Berger International GmbH

9.4 Calculation

9.4.1 Preface The Sheet piling is calculated by means of the Software DC-PIT. The relevant data of

the calculation are printed below – the whole calculation is tabled in the attachment.

For the sheet piling Structure the ARCELOR Profile HZ 1080M A-12/AZ 14-770 are

foreseen.

The pile toe shall be at elevation -24m (pile 100% restrained)

For the Design two loadcombinations are investigated:

LC1 (max Live load, max water pressure, max water depth)- decisive for wall length

LC 2 (as LC1 + hawser pull) decisive for anchor force

9.4.2 Wall calculation Load comb 1

Page 27: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 27 of 50 Julius Berger International GmbH

Load comb 2

Page 28: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 28 of 50 Julius Berger International GmbH

9.4.3 Results of electronic calculation Load

comb

Load case

Acc. to EAU

Md Nd Lw Ak Ad Lk Ad/2,07m

Page 29: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 29 of 50 Julius Berger International GmbH

(kN/m) (kN) (m) (kN) (kN/m) (m) (kN)

1 2 1983 - 406 27,2 505 703 30,2 1457

2 2 1876 -408 27 578 813 31,9 1682

9.4.4 Check of Profile Selected Profile HZ 1080M A-12/AZ 14-770 (S430)

A = 371/2,07 = 179 cm²/m

Wy = 7080 cm³/m

406/179 * 10 + 1983/7080*10³ = 22,8 + 280 = 302,8 MN/m²

302,8/430*1,1 =0,77 < 1,0

9.4.5 Intermediate Sheet piling Selected AZ 14 /770 S 355

Check of length of intermediate sheet piles

(recommendation acc. to EAU 1990 2,5 m below sea bed)

Length are calculated with check of hydraulic failure

Check of hydraulic failure - Considered pile toe at -13,1 (pile length 15 m)

9.4.6 Selection of anchor For the anchorage anchor of grade 500 are foreseen:

Max Ad = 1682 kN selected upset anchor grade 500 M95 (Rd = 1822 kN)

9.4.7 Anchor wall For the anchor wall a dead man system is considered.

With the check of the lower failure plane the required depth of the anchor is evaluated.

For the check the biggest anchor force are considered. The soil conditions for the wall

are considered as uniform with a friction angle of 35° due to the compaction of the fill

and the subsoil compaction by pile driving this assumption is verified. The LL is

considered by 20 kN/m².

The check is executed by means of a excel-calculation sheet.

Page 30: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 30 of 50 Julius Berger International GmbH

The required toe of the wall is 8 m below surface. By consideration of a 6m long wall the

top of wall is CD+1,5m and the anchor elevation at CD -1,5 m.

Page 31: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 31 of 50 Julius Berger International GmbH

Check of the passive friction angle by the verification of the equilibrium of the vertical

forces (Characteristic).

V anchor = 578* tan 5,4° = 55 kN/m

V active earth pressure = (80+36)*tan 23.3° = 50 kN/m

V dead weight of wall = 6* 1,5 = 9 kN/m

50+9 = 5) > 50 OK

9.4.8 Anchor wall Wall length 6 m

Md wall = (813/6,0 )*(6,0/2)²/2 = 609 kNm

Nec W (S355) = 609/0,355*1,1 = 1889 cm³

Proposed profile

AU 20 (S355) (wy = 2000 cm³) (same profile will be used for Section 2 too)

Selected Profile AU 25 (Arcelor Proposal)

Walling

Walling force Wd = 813 kN/m

Md = 813*2,07²/10 = 348 kNm

Nec W (S355) = 348/0,355*1,1 = 1078 cm³

Proposed 2* U 300 (S355) (W = 1070cm³)

Selected Profile 2U 320 (Arcelor proposal)

9.5 Sketch with results

Page 32: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 32 of 50 Julius Berger International GmbH

9.5.1 Results As proofed the utilisation of the main wall is not very high – for the optimisation of the wall the wall length could be reduced (restrain grade reduced) in respect to the increasing anchor forces.

Page 33: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 33 of 50 Julius Berger International GmbH

9.6 Options for optimisation of Section 2

In order to create a higher utilization of the Sheet piling profile the restrain grade is

reduced to 80% which leads to a shorter wall..

In the following the checks for the reduced restrain grade is executed.

Results of electronic calculation

Load

comb

Load case

Acc. to EAU

Md Nd Lw Ak Ad Lk Ad/2,07m

(kN/m) (kN) (m) (kN) (kN/m) (m) (kN)

1 2 2173 -412 26 527 703 30,2 1578

2 2 2060 -415 25,8 599 813 32 1798

9.6.1 Check of Profile Selected Profile HZ 1080M A-12/AZ 14-770 (S430)

A = 371/2,07 = 179 cm²/m

Wy = 7080 cm³/m

412/179 * 10 + 2173/7080*10³ = 23 + 307 = 330 MN/m²

330/430*1,1 =0,84 < 1,0

9.6.2 Intermediate Sheet piling Selected AZ 14 /770 S 355

Check of length of intermediate sheet piles

(recommendation acc. to EAU 1990 2,5 m below sea bed)

Length are calculated with check of hydraulic failure

Check of hydraulic failure

Considered pile toe at -13,1 (pile length 15 m)

9.6.3 Selection of anchor For the anchorage anchor of grade 500 are foreseen:

Max Ad = 1798kN selected upset anchor grade 500 M95 (Rd = 1822 kN)

Page 34: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 34 of 50 Julius Berger International GmbH

9.6.4 Anchor wall For the anchor wall a dead man system is considered.

With the check of the lower failure plane the required depth of the anchor is evaluated.

Page 35: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 35 of 50 Julius Berger International GmbH

The required toe of the wall is 8 m below surface. By consideration of a 6m long wall the

top of wall is CD+1,5m and the anchor elevation at CD -1,5 m.

Check of the passive friction angle by the verification of the equilibrium of the vertical

forces (Characteristic).

V anchor = 599* tan 5,4° = 57 kN/m

V active earth pressure = (80+36)*tan 23.3° = 50 kN/m

V dead weight of wall = 6* 1,5 = 9 kN/m

50+9 = 59 > 57 OK

9.6.5 Anchor wall Wall length 6 m

Md wall = (868/6,0 )*(6,0/2)²/2 = 651 kNm

Nec W (S355) = 651/0,355*1,1 = 2017 cm³

proposed profile

AU 20 (S355) (wy = 2000 cm³)

Walling

Walling force Wd = 868 kN/m

Md = 868*2,07²/10 = 372 kNm

Nec W (S355) = 372/0,355*1,1 = 1152 cm³

proposed 2 U 320 (S355) (w=1358 cm³)

9.6.6 Conclusion With the selected Sheet piling profile the piling length could be reduced by 1 m without

changing the anchorage system.

Page 36: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 36 of 50 Julius Berger International GmbH

10 Construction stage

Due to the installation of the new sheet piling structure in front of the existing and the

partial dismantling of the existing the new structure has to secure the stability meantime

without anchor.

In the following it is proofed the loading conditions for these construction stage in order

not minimise the deflection of the cantilever system to 10 cm at the top of wall. The

purpose is to guaranty the use of the PC elements of the headbeam.

The investigation is executed for the condition of Section 1 with the small wall profile.

The following Construction sequence are foreseen:

• Installation of King piles

• Installation of intermediated sheet piling

• Check of sea bed – ensure sea bed elevation of -5,0m (possible fill)

• Fill of gab between new and old wall up to Elevation 0,0 m

• Partial excavation at anchor wall

• Installation of anchor wall

• Remove of subsoil up to 0,0 m over 10 m length

• Dismantling of existing capping beam and removal of existing anchors if necessary

• Installation of new Anchor

• Refill to final elevation

• Installation of capping beam

Page 37: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 37 of 50 Julius Berger International GmbH

Result: Due to the above described construction sequence the deformation of the wall is in the specified limit.

Page 38: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 38 of 50 Julius Berger International GmbH

11 Wingwall

11.1 Preface

The wing wall secures the sheet piling structure to the South. For the neighbouring

embankment a design is not yet existing – for the wing wall design it is assumed that the

embankment is sloped 1:2 and protected by an adequate system.

11.2 Elevation

Page 39: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 39 of 50 Julius Berger International GmbH

11.3 Cantilever wing wall

For the area of a height less than 7 m a cantilever system is designed. The loading and

the soil properties are considered as for Section 1. Due to the capping beam the loads

will be distributed of the whole wall. Therefore for the design a height of 5,5 m is

considered.

Page 40: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 40 of 50 Julius Berger International GmbH

Profile Check

(HZ 880N A-12/AZ14-770) S430

σ = 1534/4830*10³= 317 N/mm² < 430/1,1 = 390 N/mm²

Wall length 17 m

11.4 Anchored wing wall section

For the area of a height of 7m to 14 m an anchored system is designed. The loadings

and the soil properties are considered as for Section 1. Due to the capping beam the

loads will be distributed of the whole wall. Therefore for the design a height of 11 m is

considered.

Page 41: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 41 of 50 Julius Berger International GmbH

Profile Check

(HZ 880N A-12/AZ14-770) S430

σ =837/4830*10³= 173 N/mm² < 430/1,1 = 390 N/mm²

Wall length 20 m (1 m more than calculated because of scour)

Anchor

Ak = 317 kN/m

Ad = 443 kN/m

Ad = 917 kN/anchor

Nec. Upset anchor M72 , grade 500 (Frd = 1005 kN), = 22,5 m

Anchor wall

Page 42: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 42 of 50 Julius Berger International GmbH

Due to the anchor layers of the main wall the anchors have to be positioned horizontal.

Therefore for the anchor wall a restrained wall is required.

Page 43: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 43 of 50 Julius Berger International GmbH

Profile Check

Nec W ((AU 25) S355

σ =706/2500*10³= 282 N/mm² < 355/1,1 = 322 N/mm²

Wall length 8,5 m (top 1m below Ground surface)

Waling

Ad = 443 kN

Md = 443 *2,07²/10 = 199 kNm

Nec W (S355) = 199/355*1,1*10.³ = 616 cm³

2 U 260 (Wy = 742 cm³)

Page 44: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 44 of 50 Julius Berger International GmbH

12 Design of capping beam

12.1 Preface

For the concrete capping beam an U-shaped PC-element as “lost formwork” is used.

The concrete-infill itself is used as bearing structure. The capping beam is stressed by

the bollard and mooring loads and the outer surface are designed to resist to the

environmental conditions.

12.2 Size and loadings

PC-U-beam

The PC-U-beam is designed with the following size

Loadings

Bollard load HBk = 800 kN, bollard height ca. 50 cm

MXk = 1.3*800 = 1300 kNm

Fender load HVk = 1100 kN

Mxk = 1100*0,2 = 220 kNm

Mzk = 1100*0,15*1,5 = 250 kNm

Page 45: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 45 of 50 Julius Berger International GmbH

12.3 Connection to king piles

To ensure the connection of the head beam to the king piles connectors are necessary.

For the connectors 4 bars Ø28 mm BSt 500 are foreseen as shown below:

Allowable Md for connection = 616*2*500/1,1*0,8/10³ = 448 kNm

Max Md (Top of pile due to bollard) = 1,5*130 * (1,4+0.5) = 370 kNm

Max Md (Top of pile due to impact) = 1,5*1100/6*0,7 = 192 kNm

Welding length a = 10 mm

L = 500/1,1*616/(10*430/1,1) = 72 mm

Page 46: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 46 of 50 Julius Berger International GmbH

Chosen both sides 2 * 20 cm

The shear force is transferred by the contact area pile/Grout to PC element.

Max shear force Vd = 1,5 *130 = 195 kN

Vrd = 0,2*0,45*20= 1,8 MN

Vrd >> Vd

Page 47: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 47 of 50 Julius Berger International GmbH

12.4 Insitu beam design

For the beam design the following system are considered:

For bollard load – continuous beam supported by springs (anchors)

For fender impact – continuous beam bedded on spil

h = 140 cm

d = 132 cm

Max Md = 1810 kNm

Kd = 132/√1810/1,4 =3,67 → Ks = 2,36

Nec As = 2,36*1810/132 = 32, 4 cm²

Max Vd = 547 kN

Page 48: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 48 of 50 Julius Berger International GmbH

Vessel impact

Max Md = 2050 kNm

Max Qd = 825 kN

Page 49: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 49 of 50 Julius Berger International GmbH

Required As side = 35,3 + 21.1/4 = 40,3 cm²

As stirrup 14 cm²/m

Chosen reinforcement

Bothe sides 9 Ø 25 (44,2 cm²)

Top and bottom 8 Ø 20 ( 25,1 cm²)

Stirrups generell Ø 14/15 ( 20,5 cm²), at bolloard and fenders Ø 14/12,5 (24,7 cm²) for

3m.

12.5 PC-U-Beam

The PC u-beam is reinforced in respect to structural reasons by an crosswise uniform

reinforcement Ø10/15 inside and outside

Check of Wall reinforcement(due to insitu fill)

Considered safety factor for casting 1.5 dyn effects

Md = 1.5*1.4*25*1.4²/6*1,5 = 25,7 kNm

Nec as = 2,6 *25,7/15 = 4.5 cm²/m

Chosen reinforcement Ø10/15 crosswise inside and out side at the edges bars Ø12

Page 50: Design Calculation Draft

Warri Port Rehabilitation Document No: 07 01 1 23 001 Rev: 0 Part: Design Calculation Date: 05.06.2012

07 01 1 23 001 design Calculation.docx Page 50 of 50 Julius Berger International GmbH

12.6 Reinforcement sketches

13 Conclusion

The above executed calculation verifies that the structures are able to bear the loadings

in respect to the specified safety factors.