Design Basics on Power Amplifiers

47
Design Basics on Power Amplifiers Wednesday, 16 th December 2015 Pascual D. Hilario Re

Transcript of Design Basics on Power Amplifiers

Page 1: Design Basics on Power Amplifiers

Design Basics on Power Amplifiers

Wednesday, 16th December 2015

Pascual D. Hilario Re

Page 2: Design Basics on Power Amplifiers

Outline1. Introduction2. Design3. Manufacturing4. Results5. Conclusions and Future work

Page 3: Design Basics on Power Amplifiers

What is amplification?

1. Introduction

3

The operation of an electronic device increasing the power of a signal.

Page 4: Design Basics on Power Amplifiers

Amplifiers depending on operating frequency

1. Introduction

4

Low frequency High frequency or RF

Page 5: Design Basics on Power Amplifiers

Transistor

Inpu t MatchingNetwork

Outpu t MatchingNetwork

Bias Network(Gate)

Bias Netwo rk(Drain)

RF in

RF out

VgsVds

1. Introduction

5

Basic Microwave Amplifier scheme

Page 6: Design Basics on Power Amplifiers

1. Introduction

6

Main concepts to work with:

β€’ Linearity: capability of an amplifier to reproduce

increased exact copies of the input signal.

β€’ Efficiency: how much of the DC power supplied to the

amplifier is transformed into amplification.

They are in inverse proportion.These characteristics determine the class of the amplifier!

Page 7: Design Basics on Power Amplifiers

Transistor Characteristic IV Curves

1. Introduction

7

𝑉 𝐢𝐸

𝐼𝐢

𝐼𝐡=100πœ‡ 𝐴10π‘šπ΄

C (Collector) or D (Drain)

E (Emitter) or S (Source)

B (Base) or G (Gate)

V

+ _

𝑉 𝐢𝐸

𝐼𝐢

𝑰 𝑩

Page 8: Design Basics on Power Amplifiers

Load-line

1. Introduction

8

DC equivalent

AC equivalent

𝑉 𝐢𝐸

𝐼𝐢

𝑉 πΆπΆβˆ’π‘‰ π‘…πΆβˆ’π‘‰ πΆπΈβˆ’π‘‰ 𝑅𝐸

=0

𝑉 πΆπΆβˆ’ 𝐼𝐢 π‘…πΆβˆ’π‘‰ πΆπΈβˆ’ 𝐼𝐸 𝑅𝐸=0

𝑉 πΆπΆβˆ’ 𝐼𝐢 (𝑅¿¿ 𝐢+𝑅𝐸)βˆ’π‘‰ 𝐢𝐸=0ΒΏ

Load-line equation (y = mx+n):

𝐼𝐢=βˆ’1

𝑅𝐢+ 𝑅𝐸𝑉 𝐢𝐸+

𝑉 𝐢𝐢

𝑅𝐢+𝑅𝐸

In saturation… Cut-off… 𝑉 𝐢𝐢

𝑅𝐢+𝑅𝐸

𝑉 𝐢𝐢

Q-Point

DC Load-line

Page 9: Design Basics on Power Amplifiers

Load-line

1. Introduction

9

DC equivalent

AC equivalent

𝑣𝐢𝐸=βˆ’π‘–πΆπ‘Ÿ 𝐢

𝑉 πΆπΈβˆ’π‘‰ 𝐢𝐸𝑄=βˆ’ ( πΌπΆβˆ’ 𝐼𝐢𝑄)π‘ŸπΆ

Load-line equation (y = mx+n):

𝐼𝐢=βˆ’ 1π‘ŸπΆ

𝑉 𝐢𝐸+𝑉 𝐢𝐸𝑄

π‘Ÿ 𝐢+𝐼𝐢𝑄

𝑖𝐢

𝑉 𝐢𝐸

In saturation… In Cut-off…

Q-Point

𝑰 π‘ͺ𝑸+𝑽 π‘ͺ𝑬𝑸

𝒓 π‘ͺ

𝑽 π‘ͺ 𝑬𝑸+ 𝑰π‘ͺ𝑸𝒓 π‘ͺ

𝐼𝐢

AC Load-line

Page 10: Design Basics on Power Amplifiers

Load-line

1. Introduction

10

Q-Point

𝑰 π‘ͺ𝑸+𝑽 π‘ͺ𝑬𝑸

𝒓 π‘ͺ

𝑽 π‘ͺ 𝑬𝑸+ 𝑰π‘ͺ𝑸𝒓 π‘ͺ 𝑉 𝐢𝐸

𝐼𝐢

AC Load-line

𝑣 𝐢𝐸

/𝐷𝑆≑

𝑣 𝑅𝐹 π‘œ

𝑒𝑑

𝑖𝐢𝐸 /𝐷𝑆≑𝑖𝑅 πΉπ‘œπ‘’π‘‘

𝑖 𝐡≑𝑖 𝑅

𝐹 𝑖𝑛

𝑣 𝐺𝑆≑𝑣 𝑅

𝐹 𝑖𝑛

or

Page 11: Design Basics on Power Amplifiers

Power Amplifier Classes

1. Introduction

11

Class Conduction Angle

A ΞΈ = 2Ο€

AB Ο€ < ΞΈ < 2Ο€

B ΞΈ = Ο€

C ΞΈ < Ο€

D – T ΞΈ β‰ˆ 0

Page 12: Design Basics on Power Amplifiers

Power Amplifier Classes

1. Introduction

12

Clase A Clase B

Clase AB Clase C

Page 13: Design Basics on Power Amplifiers

Power Amplifier Classes

1. Introduction

13

Page 14: Design Basics on Power Amplifiers

Outline1. Introduction2. Design3. Manufacturing4. Results5. Conclusions and Future work

Page 15: Design Basics on Power Amplifiers

Transistor Tecnology Selectionβ€’ GaN HEMT:

High Efficiency High Gain Great Bandwidth Low Power Consumption

SelecciΓ³n del Transistor

β€’ CGH40010F (Cree Inc.)

2. Design

15

Page 16: Design Basics on Power Amplifiers

IV Characteristics and Q-Point

2. Design

16

0 30 60 84Vds (V)

IV Curves

0

500

1000

1500

2000

2400

Ids

(mA

)

IV Curves (mA)

Q-Point (28V, 482mA)

S.O.A.

TrVi Ii

S

1 2

3

4 5 6

CGH40010F_R6_VAID=Q1Tbase=25Rth=8

Swp Step

IVCURVEID=IV1VSWEEP_start=0 VVSWEEP_stop=84 VVSWEEP_step=1 VVSTEP_start=-10 VVSTEP_stop=2 VVSTEP_step=0.2 V

β€’ Maximum drain voltage (84 V)β€’ Maximum drain current (1500 mA)β€’ Cut-off threshold (67 mA)β€’ Saturation thresholdβ€’ Maximum dissipated power (14 W)

Page 17: Design Basics on Power Amplifiers

Dynamic/AC Load-line

2. Design

17

TrVi Ii

S

1 2

3

4 5 6

CGH40010F_R6_VAID=Q1Tbase=25Rth=8

0.000399 mA

-2.2 V

482 mA

28 V

482 mA0 V

0 mA27.7 V

482 mA0 V

0 mA107 V

I_METERID=Id_intr

482 mAV_METERID=Vd_intr

DCVSID=VgsV=-2.2 V

0.000398 mA-2.2 V

I_METERID=I_in

0 mA

0 V

0 V

I_METERID=Ig

0.000399 mA

-2.2 V

DCVSID=VdcV=28 V

482 mA28 V

V_METERID=Vd

I_METERID=Id

482 mA

28 V

3:Bias

12

LTUNER2ID=TU3Mag=0Ang=0 DegZo=50 Ohm

0.000399 mA0 mA

0.000398 mA

3:Bias

1 2

LTUNER2ID=TU1Mag=0Ang=0 DegZo=50 Ohm

482 mA 0 mA

0 V

482 mA

V_METERID=VM_trise

PORTP=2Z=50 Ohm

0 mA

PORT_PS1P=1Z=50 OhmPStart=0.6 dBmPStop=40.6 dBmPStep=1 dB

0 mA

PORT1P=1Z=50 OhmPwr=27.6 dBm

Conn_Vi

27.7 V

Conn_Vi

27.7 V

Conn_Ii

0 V

Conn_Ii

0 V

0 30 60 84Vds (V)

IV Curves

0

500

1000

1500

2000

2400

Ids

(mA

)

28 V482.3 mAVstep = -2.2 V

IV Curves (mA)

DLL @ 7.6dBm (mA)

DLL @ 17.6dBm (mA)

DLL @ P1dB (mA)

0 0.3 0.6 0.816Time (ns)

RF in VS. RF out

-600

-400

-200

0

200

400

600

P1d

B In

put

Pow

er

-300

-200

-100

0

100

200

300

20dB

m I

nput

Pow

er

RF IN @ 20dBm (mA)

RF OUT @ 20dBm (mA)RF IN @ P1dB (mA)

RF OUT @ P1dB (mA)

DCVSID=VgsV=-2.2 V

0.000398 mA-2.2 V

I_METERID=I_in

0 mA0 V

0 V

I_METERID=Ig

0.000399 mA-2.2 V

3:Bias

12

LTUNER2ID=TU3Mag=0Ang=0 DegZo=50 Ohm

0.000399 mA0 mA

0.000398 mA

Page 18: Design Basics on Power Amplifiers

Gain, Output Power and PAE

2. Design

18

0.6 10.6 20.6 30.6 40.6Power (dBm)

Pin VS Pout and Gain

0

10

20

30

40

50

27.6 dBm10.9 dB

18.52 dBm11.89 dB

Pout (dBm)

PGain (dB)

PAE (%)

Page 19: Design Basics on Power Amplifiers

Stability

β€’ Critical factor in order to avoid oscillations ()

β€’ This is due to the negative either input or output resistance

2. Design

19

𝑅𝑒 {𝑍𝑆+𝑍 𝑖𝑛}<0 𝑅𝑒 {π‘π‘œπ‘’π‘‘ +𝑍 𝐿 }<0

TransistorInput Matching Network

Output Matching Network

S in out L

0Z

0Z

𝑍=𝑍 01+Ξ“1βˆ’ Ξ“

Page 20: Design Basics on Power Amplifiers

Conditional Stability

Stabilityβ€’ Border which delimits between stable and unstable

regions:

2. Design

20

|Ξ“ 𝑖𝑛|>1 |Ξ“ 𝑖𝑛|<1

|Ξ“ 𝑖𝑛|>1|Ξ“ 𝑖𝑛|<1

Page 21: Design Basics on Power Amplifiers

Unconditional Stability Unconditional Unstability

Stabilityβ€’ Border which delimits between stable and unstable

regions:

2. Design

21

|Ξ“ 𝑖𝑛|>1

|Ξ“ 𝑖𝑛|<1

|Ξ“ 𝑖𝑛|<1

|Ξ“ 𝑖𝑛|>1

Page 22: Design Basics on Power Amplifiers

Stability2. Design

22

0 1.0

1.0

-1.0

10.0

10.0-10.0

5.0

2.0

3.0

4.0

0.2

0.4

0.6

0.8

0.8

-0.8

Stability CirclesSwp Max

1

Swp Min-1

Input Circle

Output Circle

β€’ Stability circles @ β†’ Potentially unstable

β€’ Dashed lines β†’ Unstable region

Page 23: Design Basics on Power Amplifiers

Stability Factor: K-Ξ” Test

β€’ It is convenient to have a design with in a reasonable BW

2. Design

23

Page 24: Design Basics on Power Amplifiers

Stabilization methods

2. Design

24

50 2050 4050 6050 8050 10000Frequency (MHz)

Initial K Factor

0

2

4

6

8

2450 MHz4.424

2450 MHz0.5643

K (no resistor)

K (gate resistor)

0 1.0

1.0

-1.0

10.0

5.0

2.0

3.0

4.0

0.2

0.4

0.6

0.8

Stability Circles before stabilizationSwp Max3000MHz

Swp Min2000MHz

Input Stability Circles

Output Stability Circles

0 1.0

1.0

-1.0

10.0

5.0

2.0

3.0

4.0

0.2

0.4

0.6

0.8

Stability Circles after stabilizationSwp Max3000MHz

Swp Min2000MHz

Input Stability Circles

Output Stability Circles

Page 25: Design Basics on Power Amplifiers

Unilateral Approximation

2. Design

25

π‘ˆ=| 𝑆11𝑆12𝑆21𝑆22

(1βˆ’|𝑆11|2 ) (1βˆ’|𝑆22|

2 )|βˆ’20 log (1+π‘ˆ )<𝐺𝑇 βˆ’πΊπ‘‡π‘ˆ (𝑑𝐡 )<βˆ’20 log (1βˆ’π‘ˆ )

Maximum gain design. Bilateral case:

Ξ“ 𝐼𝑁=𝑆11+𝑆12𝑆21πšͺ𝑳

1βˆ’π‘†22πšͺ𝑳=Γ𝑆

βˆ—

Ξ“π‘‚π‘ˆπ‘‡=𝑆22+𝑆12𝑆21πšͺ𝑺

1βˆ’π‘†11πšͺ𝑺=Ξ“ 𝐿

βˆ—

Maximum gain design. Unilateral case:

Ξ“ 𝐼𝑁=𝑆11=Ξ“ π‘†βˆ—

Ξ“π‘‚π‘ˆπ‘‡=𝑆22=Ξ“ πΏβˆ—

2-Port Device11S 22S

21S

?012 S

βˆ’3.7225 𝑑𝐡 ΒΏ πΊπ‘‡βˆ’πΊπ‘‡π‘ˆ (𝑑𝐡 )<ΒΏ 4.5775𝑑𝐡¿

Page 26: Design Basics on Power Amplifiers

Load-Pull

2. Design

26

Process whereby a set of points of the Smith Chart are evaluated in

terms of good performance as potential candidates to be the final

reflection coefficient for the Output Matching Network.

Page 27: Design Basics on Power Amplifiers

Load-Pull

2. Design

27

DCVSID=VDSV=28 VDCVS

ID=VGSV=-2.2 V

V_METERID=Vd

V_METERID=Vg

I_METERID=Ig

I_METERID=Id

Xo Xn. . .

SWPVARID=BiasVarName="iBias"Values=stepped(3,4,0.5)UnitType=None

Xo Xn. . .

SWPVARID=GammaL3VarName="iGammaL3"Values=stepped(-180,180,60)UnitType=None

Xo Xn. . .

SWPVARID=GammaL2VarName="iGammaL2"Values=stepped(0,360,90)UnitType=None

TrVi Ii

S

1 2

3

4 5 6

CGH40010F_R6_VAID=Q1Tbase=25Rth=8

3:Bias

12

LTUNER2ID=SourceTuner1Mag=0.5Ang=0 DegZo=50 Ohm

3:Bias

1 2

LTUNER2ID=LoadTuner1Mag=0.5Ang=0 DegZo=50 Ohm

PORTP=2Z=50 Ohm

PORT_PS1P=1Z=50 OhmPStart=0.600000000000001 dBmPStop=30.6 dBmPStep=1 dB

7

⦁ Attach gate / base current & voltage meters to desired device pin ⦁ Attach drain / collector current & voltage meters to desired device pins ⦁ Note that current should always defined into the desired pin

4

⦁ Set the Source Tuner to the desired impedance. ⦁ For 50 Ohms, set:

Mag1 = 0Ang1 = 0

2

⦁ Set power sweep ⦁ Disable power sweep by

replacing with PORT1

1

⦁ Enable / Disable SWPVAR blocks based on your needs ⦁ Set enabled SWPVAR sweep values ⦁ Do not change any swept variable names. ⦁ Contact technical support to sweep additional

variables

6

⦁ Replace with your DUT

iBias=3

iGammaL3=0iGammaL2=0

5

⦁ Replace DCVS with DCCS as needed

⦁ Do not delete any of the tuners or voltage and current meters; they are all needed for load pull simulation due to the switch to A/B wave file formats

⦁ It is okay to rename this schematic

3

⦁ Set schematic frequencies under schematic options

β€’ AWR has its own script that automates the process

β€’ Source-Pull is still in beta phase β†’

Page 28: Design Basics on Power Amplifiers

Load-Pull

2. Design

28

Once the Load-Pull has been performed, the points that agree with the design

specifications are chosen.

0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Output Matching NetworkSwp Max2.6e+009

Swp Min11.1

Desired MN Impedance (Ohm)

Obtained MN Impedances (from 2.3 to 2.6 GHz)

GTrans Contours

PAE Contours

Output Stab. Circle

LTUNERID=TU1Mag=0.44152Ang=149.3904 DegZo=50 Ohm

TLINID=50Z0=50 OhmEL=47 DegF0=2450 MHz

CAPID=C1C=50 pF

TLINID=TL1Z0=50 OhmEL=45 DegF0=2450 MHz

OPENID=J1

PORTP=1Z=50 Ohm

PORTP=2Z=50 Ohm

PORTP=3Z=50 Ohm

PORTP=4Z=50 Ohm

Ξ“ π‘œπ‘’π‘‘=0.44152∠149.3904 Β°

0 1.0

1.0

-1.0

10.0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Load PullSwp Max51.2778

Swp Min11.1

12.008 dBr 0.409879x 0.152749

51.278 %r 0.395923x 0.261322

Max. PAE @ P1dB

PAE @ P1dB

Max. GTrans @ P1dB

GTrans @ P1dB

Output Stability Circle

Page 29: Design Basics on Power Amplifiers

LTUNERID=TU1Mag=0.44152Ang=149.3904 DegZo=50 Ohm

TLINID=50Z0=50 OhmEL=47 DegF0=2450 MHz

CAPID=C1C=50 pF

TLINID=TL1Z0=50 OhmEL=45 DegF0=2450 MHz

OPENID=J1

PORTP=1Z=50 Ohm

PORTP=2Z=50 Ohm

PORTP=3Z=50 Ohm

PORTP=4Z=50 Ohm

Load-Pull

2. Design

29

𝑍 𝑖𝑛=𝑍0𝑍𝐿+ 𝑗 𝑍0 tan (𝛽𝑙)𝑍 0+ 𝑗 𝑍𝐿 tan (𝛽𝑙)

01.0

-1.0

1.0

10.0

-1 0.0

10.0

5.0

-5 .0

5.0

2.0

-2 .02.0

3.0

-3 .0

3.0

4.0

-4 .0

4.0

0.2

-0.2

0.20.4

-0.4

0. 4

0.6

-0.6

0.6

0.8

-0.8

0.8

0 1.0

1.0

-1.0

10.0

10 .0

-10.0

5.0

5. 0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

OMNSwp Max2450MHz

Swp Min2450MHz

Series TXLine

Open STUB

Ξ“ π‘œπ‘’π‘‘πšͺ𝒐𝒖𝒕 Ξ“ 1

πšͺ𝟏

Page 30: Design Basics on Power Amplifiers

Input Matching Network

2. Design

30

0 1.0

1.0

-1.0

10.0

10 .0

-10.0

5.0

5. 0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0 .2

0.4

0.4

-0.4

0.6

0.6

-0.6

0.8

0.8

-0.8

Input Matching NetworkSwp Max2.6e+009

Swp Min2.3e+009

2450 MHzr 1.14997e-005x -0.435895

2450 MHzr 0.159695x -0.366266

Desired MN Impedance (Ohm)Obtained MN Impedances (from 2.3 to 2.6 GHz)Input Stab. CircleAfter parallelOpen Stub

β€’ Conjugate Matching

TLINID=TL2Z0=17.93 OhmEL=24.3 DegF0=2450 MHz

OPENID=J1

TLINID=TL1Z0=48.27 OhmEL=65.7 DegF0=2450 MHz

PORTP=1Z=50 Ohm

PORTP=2Z=50 Ohm

Page 31: Design Basics on Power Amplifiers

Bias Network

2. Design

31

β€’ Critical design part in order to avoid RF leakage through the bias network.

β€’ Many possible configurations:a. Low BWb. Acceptable BWc. Good BW and reduced size

Page 32: Design Basics on Power Amplifiers

Bias Network

2. Design

32

TrVi Ii

S

1 2

3

4 5 6

CGH40010F_R6_VAID=Q1Tbase=25Rth=8

I_METERID=Id1

V_METERID=Vd1

I_METERID=Ig1

CAPID=C2C=20 pF

I_METERID=I_in1

MLINID=TL6W=2.1394617455677 mmL=9.00788441856134 mmMSUB=RO_RO4350B1

MLINID=TL7W=1.13179 mmL=18.2827939523261 mmMSUB=RO_RO4350B1

MLINID=TL14W=1.13179 mmL=8.42648946346399 mmMSUB=RO_RO4350B1

MLINID=TL20W=1.13179 mmL=3.44366958458732 mmMSUB=RO_RO4350B1

MLINID=TL27W=1.13179 mmL=6.2 mmMSUB=RO_RO4350B1

MLINID=TL28W=1.13179 mmL=3.9182030314894 mmMSUB=RO_RO4350B1

MOPEN$ID=TL12MSUB=RO_RO4350B1

1 2

3

MTEE$ID=TL15MSUB=RO_RO4350B1

RESID=R1R=6.81 Ohm

1 2

1 2

GPROBE2ID=GP1

1 2

1 2

GPROBE2ID=GP2

V_METERID=Vd2

I_METERID=Id2

V_METERID=VM_triseFinal

12

3

MTEE$ID=TL13MSUB=RO_RO4350B1

CAPID=C5C=47000 pF

DCVSID=Vgs1V=-2.2 V

MLINID=TL4W=W_TLStub mmL=L_TL2Stub mmMSUB=RO_RO4350B1

MLINID=TL22W=1.09377006058279 mmL=1.0929717637931 mmMSUB=RO_RO4350B1

MLINID=TL23W=5 mmL=5 mmMSUB=RO_RO4350B1

MLINID=TL26W=1.11213944458008 mmL=2.49627311533999 mmMSUB=RO_RO4350B1

MSRSTUB2ID=ST1Ro=Ro_stub mmWg=Wg_stub mmW=W_TLStub mmTheta=Theta_stub DegMSUB=RO_RO4350B1

1

2

3MTEE$ID=TL9MSUB=RO_RO4350B1

MVIA1PID=V4D=1 mmH=0.52578 mmT=0.017 mmW=5 mmRHO=0.7MSUB=RO_RO4350B1

RESID=R2R=37.4 Ohm

MLINID=TL8W=W_TLStub mmL=L_TL1Stub mmMSUB=RO_RO4350B1

PORT_PS1P=1Z=50 OhmPStart=0 dBmPStop=40 dBmPStep=1 dB

PORT1P=1Z=50 OhmPwr=10 dBm

Conn_ViConn_Ii

Low Freq. Stabilization Resistor

Bypass Capacitor

Page 33: Design Basics on Power Amplifiers

Final design

2. Design

33

TrVi Ii

S

1 2

3

4 5 6

CGH40010F_R6_VAID=Q1Tbase=25Rth=8

I_METERID=Ig1

CAPID=C2C=20 pF

I_METERID=I_in1

MLINID=TL6W=2.1394617455677 mmL=9.00788441856134 mmMSUB=RO_RO4350B1

MLINID=TL7W=1.13179 mmL=18.2827939523261 mmMSUB=RO_RO4350B1

MLINID=TL14W=1.13179 mmL=8.42648946346399 mmMSUB=RO_RO4350B1

MLINID=TL20W=1.13179 mmL=3.44366958458732 mmMSUB=RO_RO4350B1

MLINID=TL27W=1.13179 mmL=6.2 mmMSUB=RO_RO4350B1

MLINID=TL28W=1.13179 mmL=3.9182030314894 mmMSUB=RO_RO4350B1

MOPEN$ID=TL12MSUB=RO_RO4350B1

1 2

3

MTEE$ID=TL15MSUB=RO_RO4350B1

RESID=R1R=6.81 Ohm

1 2

1 2

GPROBE2ID=GP1

V_METERID=Vd2

I_METERID=Id2

12

3

MTEE$ID=TL13MSUB=RO_RO4350B1

MLINID=TL4W=W_TLStub mmL=L_TL2Stub mmMSUB=RO_RO4350B1

MLINID=TL22W=1.09377006058279 mmL=1.0929717637931 mmMSUB=RO_RO4350B1

MLINID=TL26W=1.11213944458008 mmL=2.49627311533999 mmMSUB=RO_RO4350B1

MSRSTUB2ID=ST1Ro=Ro_stub mmWg=Wg_stub mmW=W_TLStub mmTheta=Theta_stub DegMSUB=RO_RO4350B1

1

2

3MTEE$ID=TL9MSUB=RO_RO4350B1

RESID=R2R=37.4 Ohm

MLINID=TL8W=W_TLStub mmL=L_TL1Stub mmMSUB=RO_RO4350B1

PORT_PS1P=1Z=50 OhmPStart=0 dBmPStop=40 dBmPStep=1 dB

PORT1P=1Z=50 OhmPwr=10 dBm

Conn_ViConn_Ii

CAPID=C1C=47 pF

CAPID=C4C=47000 pF

MLINID=TL1W=1.13179 mmL=9.1 mmMSUB=RO_RO4350B1

MLINID=TL2W=1.15424925832038 mmL=8.8091341147881 mmMSUB=RO_RO4350B1

MLINID=TL3W=1.13179 mmL=2.83546915660083 mmMSUB=RO_RO4350B1

MLINID=TL5W=W_DoubleStub mmL=L_DoubleStub mmMSUB=RO_RO4350B1

MLINID=TL11W=W_DoubleStub mmL=L_DoubleStub mmMSUB=RO_RO4350B1

MLINID=TL17W=1.13179 mmL=1.83798534101102 mmMSUB=RO_RO4350B1

MLINID=TL19W=1.13179 mmL=3.27959942836177 mmMSUB=RO_RO4350B1

MLINID=TL21W=W_TLStub mmL=L_TL2Stub mmMSUB=RO_RO4350B1

MLINID=TL25W=1.13179 mmL=2.36734037034666 mmMSUB=RO_RO4350B1

MLINID=TL29W=1.09977380371094 mmL=1.09910240478516 mmMSUB=RO_RO4350B1

MLINID=TL34W=W_TLStub mmL=L_TL1Stub mmMSUB=RO_RO4350B1

MOPEN$ID=TL10MSUB=RO_RO4350B1

MOPEN$ID=TL18MSUB=RO_RO4350B1

MOPEN$ID=TL33MSUB=RO_RO4350B1

MSRSTUB2ID=ST3Ro=Ro_stub mmWg=Wg_stub mmW=W_TLStub mmTheta=Theta_stub DegMSUB=RO_RO4350B1

12

3

MTEE$ID=TL16MSUB=RO_RO4350B1

1 2

3

MTEE$ID=TL24MSUB=RO_RO4350B1

1

2

3MTEE$ID=TL32MSUB=RO_RO4350B1

1 2

1 2

GPROBE2ID=GP2

1

2

3

4

MCROSSX$ID=MX1MSUB=RO_RO4350B1

PORTP=2Z=50 Ohm

W_DoubleStub=0.948360421001726L_DoubleStub=3.48189099549556

Input Matching Network

Output Matching Network

β€’ Some changes were made after using real transmission lines

0 1.0

1.0

-1.0

10.0

5.0

2.0

3.0

4.0

0.2

0.4

0.6

0.8

Matching Networks ComparisonSwp Max

10

Swp Min-30

Mag 0.4531Ang 148.7 Deg

Mag 0.4151Ang 152 Deg

Mag 0.5691Ang -159.8 Deg

Mag 0.7377Ang -162.5 Deg

rhoS IDEAL

rhoS REAL

Input Stability Circle

rhoL IDEAL

rhoL REAL

Output Stability Circle

Page 34: Design Basics on Power Amplifiers

Final design

2. Design

34

β€’ RO4350B substrate with low thickness to take care about termal conductivity

50 2050 4050 6050 8050 10000Frequency (MHz)

Rollet's Condition in Final Design

0

5

10

15

20

0

0.5

1

1.5

2K (L)

B1 (R)

2000 2200 2400 2600 2800 3000

Frequency (MHz)

S-Parameters of the PA

-35

-30

-25

-20

-15

-10

-5

0

-5

-1.429

2.143

5.714

9.286

12.86

16.43

20

2450 MHz

2506 MHz-10 dB

2392 MHz-10 dB

2450 MHz-27.67 dB

2450 MHz15 dB

S11(dB) (L)

S21(dB) (R)

S12(dB) (L)

S22(dB) (L)

0 10 20 30 40Power (dBm)

Comparison

0

5

10

15

20

Gai

n (d

B)

10

20

30

40

50

Pou

t (d

Bm

)

0

20

40

60

80P

AE

(%)

26.16 dBm

26.16 dBm40.16 dBm

26.16 dBm53.3

26.16 dBm14 dB

PAE After

PAE Before

Pout After (dBm)

Pout Before (dBm)

Gain(dB) After

Gain(dB) Before

Page 35: Design Basics on Power Amplifiers

2. Design

35

β€’ RO4350B substrate with low thickness to take care about termal conductivity

Final design

RF OUTRF IN

Page 36: Design Basics on Power Amplifiers

Outline1. Introduction2. Design3. Manufacturing4. Results5. Conclusions and Future work

Page 37: Design Basics on Power Amplifiers

Heat Sink Selection

3. Manufacturing

37

πœƒ π‘—π‘Ž=πœƒ 𝑗𝑐+πœƒπ‘π‘ +πœƒπ‘ π‘Ž=𝑇 π‘—βˆ’π‘‡ π‘Ž

𝑄 =14.8192º𝐢 /π‘Š

πœƒπ‘π‘ =𝜌 ·𝑑𝐴 =0.5 º𝐢 /π‘Š (𝑇𝑦𝑝 .𝑖𝑛 h𝑑 π‘’π‘Ÿπ‘šπ‘Žπ‘™ π‘π‘œπ‘šπ‘π‘œπ‘’π‘›π‘‘)

πœƒπ‘ π‘Ž=𝑇 π‘—βˆ’π‘‡π‘Ž

𝑄 βˆ’(πœƒ jc+πœƒπ‘π‘ )

πœƒ 𝑗 𝑐=8.0 º𝐢 /π‘Š (π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘–π‘ π‘‘π‘œπ‘Ÿ hπ·π‘Žπ‘‘π‘Žπ‘  𝑒𝑒𝑑)

πœƒπ‘ π‘Žπ‘€π‘Žπ‘₯=6.31921 º𝐢 /π‘Š

Page 38: Design Basics on Power Amplifiers

Heat Sink Selection

3. Manufacturing

38

πœƒΒΏ ΒΏ

Page 39: Design Basics on Power Amplifiers

Assembly

3. Manufacturing

39

Page 40: Design Basics on Power Amplifiers

Assembly

3. Manufacturing

40

Page 41: Design Basics on Power Amplifiers

Outline1. Introduction2. Design3. Manufacturing4. Results5. Conclusions and Future work

Page 42: Design Basics on Power Amplifiers

4. Results

42

Page 43: Design Basics on Power Amplifiers

4. Results

43

2000 2200 2400 2600 2800 3000

Frequency (MHz)

S-Parameters of the PA

-35

-30

-25

-20

-15

-10

-5

0

-5

-1.429

2.143

5.714

9.286

12.86

16.43

20

2195 MHz 2450 MHz

Simulated S11(dB) (L)

Simulated S21(dB) (R)

Simulated S12(dB) (L)

Simulated S22(dB) (L)

Measured S11(dB) (L)

Measured S21(dB) (R)

Measured S12(dB) (L)

Measured S22(dB) (L)

β€’ To correct the frequency shift:

Page 44: Design Basics on Power Amplifiers

4. Results Inconvenients and unexpected stuff

After 4 minutes working, the transistor was BURNT!

Potential causes:

a. Thermal compound

b. Q-Point too close to the maximum dissipation curve

c. Testing with LOW Input Power. LOW PAE. HIGH dissipation

d. When frequency shift occurs, at 2.45GHz we have a totally different behaviour

β€’ IT HAS NOT BEEN POSSIBLE TO MEASURE ANYMORE

44

Page 45: Design Basics on Power Amplifiers

Outline1. Introduction2. Design3. Manufacturing4. Results5. Conclusions and Future work

Page 46: Design Basics on Power Amplifiers

Conclusions

β€’ Initial thermal analysis is critical

β€’ Project with high didactic potential

Future Work

β€’ Fix the overheating issue

β€’ Design other amplifier classes such as AB and B to be

able to compare its performance, efficiency and so

forth

5. Conclusions and Future Work

46

Page 47: Design Basics on Power Amplifiers

Thanks!

Any Question?