Design and Analysis of a Hyperspectral Microwave Receiver ...

26
W. Blackwell, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, M. Shields, P. Racette (NASA GSFC), L. Hilliard (NASA GSFC) IGARSS 2012 Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

Transcript of Design and Analysis of a Hyperspectral Microwave Receiver ...

W. Blackwell, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, M. Shields, P. Racette (NASA GSFC), L. Hilliard (NASA GSFC)

IGARSS 2012

Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

IGARSS - 2 WJB 7/25/12

• Project summary, key objectives, and roles/responsibilities • RF receiver electronics and scan head • IF processor module • Next steps

Outline

IGARSS - 3 WJB 7/25/12

• Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance

• HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth

• A principal challenge is Size/Weight/Power scaling

• Objectives of this work: – Demonstrate ultra-compact (100 cm3)

52-channel IF processor (enabler) – Demonstrate a hyperspectral

microwave receiver subsystem – Deliver a flight-ready system to

validate HM sounding

Project Summary and Key Objectives

Factor of ten reduction in

sensor volume!!

IGARSS - 4 WJB 7/25/12

HyMAS System Components Roles and Responsibilities

Scan Head Assembly (GSFC CoSMIR/CoSSIR)

IGARSS - 5 WJB 7/25/12

HyMAS (9-channel) IF Frequency Plan

IGARSS - 6 WJB 7/25/12

• K-connector (18-29 GHz) input from RF front-end • Two IF amplifiers (18-29 GHz)

– Buffered with attenuators for gain adjustment and matching at IF input/output • Provides termination for RF front-end output and multiplexer input • Nominally 3 dB at input/output, “0 dB” in between stages

• Multiplexer channelizes IF band • Detectors detect power at output of each channel • Op-amp fed by detectors, drives ADC • Microcontroller sequences data flow

IF Processor Description

IGARSS - 7 WJB 7/25/12

HyMAS – IF Processor

IGARSS - 8 WJB 7/25/12

• Single port feeds 9-channels through a corporate feed power splitting network – Reduces interaction among contiguous channels – Low-risk for initial demonstration

• IF channel filters are LTCC-based substrate integrated waveguide (SIW) cavity types – High unloaded Q resonators (500+) in small volume for low insertion

loss and sharp filter skirts – Probe/bond pads for S-parameter testing and assembly

• First 9-channel design completed and in fabrication – Omega Micro Technology (DuPont 9K7), expect parts in 9/2012

IF Multiplexer

IGARSS - 9 WJB 7/25/12

• Substrate Integrated Waveguide (SIW) filters offer lower insertion loss and better filter shape factor than stripline interdigital filters due to their higher Q (> 500) resonators – Filters are realized in two-layer LTCC stack with via “fences”

creating the waveguide side walls – Via “posts” control coupling in between resonator cavities

HyMAS LTCC SIW Filters

21.00 22.00 23.00 24.00 25.00Freq [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Y1

SIW resonatorXY Plot 1 ANSOFT

Curve InfodB(S(Port1,Port1))

Setup1 : Sw eep1dB(S(Port2,Port1))

Setup1 : Sw eep1

HFSS Simulation HFSS Model

WG cavity

Coupling (“iris”)

IGARSS - 10 WJB 7/25/12

IF Channel 1 (HFSS)

18 20 22 24 26 2816 30

-80

-60

-40

-20

-100

0

freq, GHz

dB(S

(2,1

))dB

(S(1

,1))

Out of band response to be attenuated by detector roll-off

IGARSS - 11 WJB 7/25/12

IF Channel 2 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))m1 m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.218

23.96GHz

m2freq=dB(S(2,1))=-6.059

24.50GHz

IGARSS - 12 WJB 7/25/12

IF Channel 3 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-30

-20

-10

-40

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.197

24.57GHz

m2freq=dB(S(2,1))=-5.964

25.13GHz

IGARSS - 13 WJB 7/25/12

IF Channel 4 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-30

-25

-20

-15

-10

-5

-35

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.757

25.16GHz

m2freq=dB(S(2,1))=-6.092

25.79GHz

IGARSS - 14 WJB 7/25/12

IF Channel 5 (HFSS)

24 25 26 27 28 2923 30

-140

-120

-100

-80

-60

-40

-20

-160

0

-30

-20

-10

-40

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.070

25.79GHz

m2freq=dB(S(2,1))=-6.051

26.42GHz

IGARSS - 15 WJB 7/25/12

IF Channel 6 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.924

26.46GHz

m2freq=dB(S(2,1))=-5.833

26.98GHz

IGARSS - 16 WJB 7/25/12

IF Channel 7 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.974

27.04GHz

m2freq=dB(S(2,1))=-5.876

27.65GHz

IGARSS - 17 WJB 7/25/12

IF Channel 8 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.739

27.68GHz

m2freq=dB(S(2,1))=-5.522

28.24GHz

IGARSS - 18 WJB 7/25/12

IF Channel 9 (HFSS)

24 25 26 27 28 2923 30

-200

-150

-100

-50

-250

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.070

28.33GHz

m2freq=dB(S(2,1))=-6.134

28.86GHz

IGARSS - 19 WJB 7/25/12

IF Filter Layout (LTCC)

30 mm

8 m

m

4.5 mm

IGARSS - 20 WJB 7/25/12

IF Processor Form Factor 1 Horizontal Resonators

Top View: 8/9-channel Panel Side View: 52-ch IF Processor

IGARSS - 21 WJB 7/25/12

IF Processor Form Factor 2 Horizontal+Vertical (Stacked) Resonators

Top View: 26-channel Panel Side View: 52-ch IF Processor

IGARSS - 22 WJB 7/25/12

IF Processor Form Factor 3 (Project Goal) Vertical (Stacked) Resonators

Top View: 52-channel Panel Side View: 52-ch IF Processor

IGARSS - 23 WJB 7/25/12

• Hyperspectral microwave sensors could change the landscape of atmospheric sounding for both LEO and GEO systems.

• An intermediate frequency processor fabricated in LTCC technology is a key innovation enabling ultracompact microwave radiometry in a variety of applications with severe constraints on size, weight, and power.

• Fabrication and testing of the hyperspectral microwave receiver subsystem will occur in 2012/2013 with airborne validation in 2014/2015.

Summary

IGARSS - 24 WJB 7/25/12

Backup

IGARSS - 25 WJB 7/25/12

CoSMIR/CoSSIR Scan Head

IGARSS - 26 WJB 7/25/12

Frequency Plan