Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia,...

18
Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang

Transcript of Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia,...

Page 1: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

Deployment Analysis in Underwater Acoustic Wireless Sensor Networks

Dario Pompili, Tommaso Melodia, lan F. AkyildizACM WUWNet’06

2008. 12. 9.Ahn Jung-Sang

Page 2: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

2

Content

• Introduction

• Communication Architectures

• Deployment Strategies in 2D

• Deployment Strategies in 3D

• Conclusion

Page 3: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

3

Introduction

• Underwater Acoustic Sensor Network (UW-ASN)– Challenges

• Harsh environment• Limited bandwidth• High & variable propagation delay, error rates• Etc.

• This Paper– Propose a mathematical & hydrodynamics model in 2D

• Considering depth, current, and so on.• Determine the minimum number of sensors• Provide guidelines on how to choose the optimal deploy-

ment– And extend this 3D briefly

Page 4: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

4

Communication Architec-tures

• 2D Architecture

Page 5: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

5

Communication Architec-tures

• 3D Architecture

Page 6: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

6

Deployment in 2D

• Triangular-grid Coverage Properties– Sensors with same sensing range r– Optimal deployment to cover a 2D area with minimum

number of sensors

Page 7: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

7

Deployment in 2D

• Triangular-grid Coverage Properties– Sensing coverage η

– We can estimate d/r when we set η.• In this paper, η=0.95, and corresponding d/r = 1.95

Overlap

Non-overlap

Page 8: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

8

Deployment in 2D

• Triangular-grid Coverage Properties

Coverage=0.95

Ratio of sensor distance and sensing range=d/r=1.95

Page 9: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

9

Deployment in 2D

• Triangular-grid Coverage Properties

100 x 100 m^2 300 x 200 m^2

Page 10: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

10

Deployment in 2D

• Trajectory of a Sinking Object

Page 11: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

11

Deployment in 2D

• Trajectory of a Sinking Object

– Assumptions in this paper:• No vertical movement of ocean water• The considered area is neither an upwelling nor a down-

welling• The velocity of the ocean current depends on depth

– H: # of different ocean current layers– Current in each layer has a fixed module and angular

deviation (with known statistics)– Thermohaline Circulation (ocean’s conveyor belt)

Page 12: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

12

Deployment in 2D

• Trajectory of a Sinking Object– Kind of Hydrodynamics

Page 13: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

13

Deployment in 2D

• Trajectory of a Sinking Object

Page 14: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

14

Deployment in 2D

• Communication Properties of 2D UW-ASNs– Every sensed data should pass gate-way– Sensor & gate-way have different weights

• Gate-way is heavier than sensor

Page 15: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

15

Deployment in 2D

• Deployment Surface Area: Side Margins

Page 16: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

16

Deployment in 3D

• 3 Strategies– 3D-random

• The simplest strategy.• Random deploy, random depth.

– Bottom-random• Random deploy.• Surface station calculates the depth for each sensor.

– Bottom-gird• Assisted by one or multiple AUV• Grid deploy.• Assigned a desired depth by the AUV

Page 17: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

17

Deployment in 3D

• 3 Strategies

Page 18: Deployment Analysis in Underwater Acoustic Wireless Sensor Networks Dario Pompili, Tommaso Melodia, lan F. Akyildiz ACM WUWNet’06 2008. 12. 9. Ahn Jung-Sang.

18

Conclusion

• Deployment strategies for 2D and 3D architec-tures for UW-ASNs

• Deployment analysis in order to:– Determine the minimum number of sensors– Provide guidelines on how to choose the deployment– Determine the minimum number of uw-gateways, given

some desired communication properties of clusters