Dependence from target’s atomic mass of the cross section

45
1 A.Litvinenko 1 Dependence from target’s atomic mass of the cross section of deuterons fragmentation into cumulative and twice-cumulative pions A.Litvinenko , E. Litvinenko LHEP JINR [email protected]

description

Dependence from target’s atomic mass of the cross section of deuterons fragmentation into cumulative and twice-cumulative pions. A.Litvinenko , E . Litvinenko LHEP JINR [email protected]. 1. Outline Introduction d efinition s motivation S imulation structure - PowerPoint PPT Presentation

Transcript of Dependence from target’s atomic mass of the cross section

Page 1: Dependence from target’s atomic  mass of the cross section

1A.Litvinenko 1

Dependence from target’s atomic mass of the cross section

of deuterons fragmentation into cumulative and twice-cumulative pions

A.Litvinenko , E. LitvinenkoLHEP JINR

[email protected]

Page 2: Dependence from target’s atomic  mass of the cross section

2A.Litvinenko 2

OutlineOutlineIntroduction

definitionsmotivation

Simulationstructure contribution of the various mechanisms

Results for cumulative pionscomparison with experimental datapredictions

Simulation for twice-cumulative pions Results for twice-cumulative pions Conlusions

Page 3: Dependence from target’s atomic  mass of the cross section

3A.Litvinenko 3

Cumulative particle(с) defenition

1. subthreshold

XcAB Xcpp

2. Produced in the fragmentation region of one of the primary particles |YY||YY|

cBcA

2|YY|AB

GeV54Tb

Colliding particles are included in the definition of asymmetric!

}p,{EP ccc

Page 4: Dependence from target’s atomic  mass of the cross section

4A.Litvinenko 4

Target fragmentation

beam target

cum. part.

Beam fragmentation

beam target

cum. part.

X

X

+

+

Geometry

Colliding particles are included in the definition of asymmetric!

Page 5: Dependence from target’s atomic  mass of the cross section

5

Not fragmenting nucleus

A.Litvinenko 5

measured effect

Dependence from the atomic mass of the colliding nuclei

fragmenting nucleus

Colliding particles are included in the definition of asymmetric!

θ),f(XA~dσ cnt

V.K.Bondarev et al., JINR Rapid Comm., No.4,4, (1984) Yu.S.Anisimov at al., Nucl.Phys., 60, 1070,

(1997).

)(0πAD O-t

)(180πAp O-t

0.4tA~dσ 1.1

tA~dσ

Page 6: Dependence from target’s atomic  mass of the cross section

6A.Litvinenko 6

Experimental data

)π(0Pb)Cu,(C,AC)He,D,( Ot

4

Pb Cu, C,A ; AC pd

dσE t

nt3

L.Anderson et al., Phys.Rev.C, C28, 1224, (1983).

)p(0Pb)Cu,(C,AC)He,D,( Ot

4

E.Moeller et al., Phys.Rev.C, C28, 1246, (1983).

Page 7: Dependence from target’s atomic  mass of the cross section

7A.Litvinenko 7

hot flucton

Models of cumulative particles production

cold flucton

CC

Page 8: Dependence from target’s atomic  mass of the cross section

8

Simulation(structure)

INITIAL STATATEcoordinates of the nucleons

Beam nuclei

Target nuclei

PRODUCTION+

RESCATERING Of HADRONS

Page 9: Dependence from target’s atomic  mass of the cross section

9

INITIAL STATATEcoordinates of the nucleons

DEUTERONHulthen DWF

M.Sagavara L.Hulthen. Handb. Phys., 39, 1, (1957).

11

2

181 ,2280

)r

b)r)-(aexp(2--2br)exp()-2arexp((

)(2

)()(

-- fm.b fm.a

ba

baabrP

D

Page 10: Dependence from target’s atomic  mass of the cross section

10

INITIAL STATATEcoordinates of the

nucleons

Barlet R.C., Jakson D.F.Nuclea Sizes and StructureN.Y.: Oxford Univ.Press., (1997)He4

fmd

drd

rP

7.1

)/-exp(4

)( 22

3

Page 11: Dependence from target’s atomic  mass of the cross section

11

INITIAL STATATEcoordinates of the nucleons

Barlet R.C., Jakson D.F.Nuclea Sizes and StructureN.Y.: Oxford Univ.Press., (1997)

12A t

3/11/3- )16.11(16.1

; 54.0

)/)exp((1)(

AAR

fmd

dRr

NmrP

A

A

Page 12: Dependence from target’s atomic  mass of the cross section

12A.Litvinenko 12

Scattered particles == particles from entering the cylinder

fm 197.1 Rmb; 45 NNNN

fm 977.0R mb; 30 NN

)10/()(R mb

S.G. Mashnik et al., nucl-th/0210065v2.

Page 13: Dependence from target’s atomic  mass of the cross section

13

Simulation of inelastic deuteron-nuclei cross section

A.Auce and et al., Phys.Rev.C, C53, 2919, (1996).

open circles –experimental data

closed circles – simulated data

Page 14: Dependence from target’s atomic  mass of the cross section

14

--probability of the deuteron scatter

A.Litvinenko 14

Simulation of the pion production

)0(ND Ot

)(0AD Ot

DW

-- probability of pion leave the target without scattering

)p(W

«direct» mechanism

dbb)b(W)b(Wn)NN( ~ d DNc

Page 15: Dependence from target’s atomic  mass of the cross section

15

Pions production

«direct» mechanism

b

L

RR

fm 3.4L

fm 4.2

fm 1

L

d

d

22 )2/(LRb

Page 16: Dependence from target’s atomic  mass of the cross section

16

fm 4.4)2/L(Rb 22

fm 9.6)2/L(Rb 22

Pions production

«direct» mechanism

C

Cu

Pb

Page 17: Dependence from target’s atomic  mass of the cross section

17

experiment vs theory

X)3(AC ot

V.K.Bondarev at al.,JINR Communication, E93-84, (1984)

X)0(AD ot

Yu.S.Anisimov at al., Nucl.Phys.,

60, 1070, (1997).

Simulation

Page 18: Dependence from target’s atomic  mass of the cross section

18A.Litvinenko 18

Pions production

2 «cascads»

2O

t

1t

X)0(pNp~

Xp~ND

2O

t

1t

X)0(pN~

X~ND

%1direct

1#cascade %5.0

direct

2#cascade

- direct

- cascades (#1+#2) x 100

Page 19: Dependence from target’s atomic  mass of the cross section

19

The reaction of the fragmentation of the incident deuterons into cumulative pions on targets with different atomic was discussed. The simulation, based on the nucleon-nucleon scattering gives a gooddescription of the experimental data on the dependence of the cross-section from atomic mass of the target.

The contribution of cascade mechanisms was studied. It was shown that even for the heaviest nuclei, this contribution does not exceed one percent.

Conclusions

Page 20: Dependence from target’s atomic  mass of the cross section

20

Cumulative region

Page 21: Dependence from target’s atomic  mass of the cross section

21

Impulse approximation for pion productionin deuteron proton scattering

2intNND |pd(...)f|d

Page 22: Dependence from target’s atomic  mass of the cross section

22

Integration over internal momentum

kp int

2intNND |pd(...)f|d

minint )p( minint )p(

Page 23: Dependence from target’s atomic  mass of the cross section

23

Twice-cumulative region

Page 24: Dependence from target’s atomic  mass of the cross section

24

221NN2D1D |kdkd(...)f)k()k(|d

Impulse approximation for pion productionin deuteron deuteron scattering

Page 25: Dependence from target’s atomic  mass of the cross section

25

Non cumulative region

Cumulative region

Twice-cumulative region

minint,2 )k(

minint,1 )k(

minint,1 )k(

Page 26: Dependence from target’s atomic  mass of the cross section

26

Blokhintsev D.I., JETF (RUS), 33, 1295, (1957 ) :

«flucton – two (or greate) nucleon at short distance»

c/GeV 2.0k fm; 1 l

)c/GeV(0.2/k )fm(l

intNN

intNN

short distance

high internal momentum

Page 27: Dependence from target’s atomic  mass of the cross section

27

Simulation.Difference between production of cumulative

and twice cumulative pions

cumulative ~ density of nucleon

Nn

twice cumulative ~ density of fluctons Fn

221NN2D1D |kdkd(...)f)k()k(|d

dbb)b(W)b( Wn)NN( ~ d DNc

dbb)b(W)b( Wn)FN( ~ d DFcc

Page 28: Dependence from target’s atomic  mass of the cross section

28

for simulation one needs model needs a model of flucton

Next part of report.Volume model of flucton will be usedA.M.Baldin, PEPAN, 8(3), 429, (1977)

0

221

2ctt2

ct1

A drr))r(p2)r(p(4

))r(pV)(2/)1A(A(C p

)r(pVCAp

fm 7R

fm 9.0r

Au

c

3Au

3c

fm 400 1 R

fm 3V

Page 29: Dependence from target’s atomic  mass of the cross section

29

Dependence of the cross section from atomic mass of targetnuclei in cumulative and twice cumulative

(volume model of flucton )

)0(AD t

- twice cumulative

simulation

-cumulative

exp. data (cum) Yu.S.Anisimov at al., Nucl.Phys., 60, 1070, (1997).

Page 30: Dependence from target’s atomic  mass of the cross section

30

Dependence of the cross section from atomic mass of targetnuclei in cumulative and twice cumulative

(volume model of flucton )

)0(AD t

Pb Cu, C, A; AC pd

dσE t

nt3

Page 31: Dependence from target’s atomic  mass of the cross section

31

Conclusions

The reaction of the fragmentation of the incident deuterons into twice cumulative pions on targets with different atomic was discussed. The simulation, based on the nucleon-nucleon scattering shows that cross section dependence from atomic mass is sensitive to the model of flucton.

The simulation with volume model of flucton was performed. From this simulaion was obtained that dependence from target anomic mass in twice cumulative region is more stronger than in cumulative region.

Page 32: Dependence from target’s atomic  mass of the cross section

32A.Litvinenko 32

Backup Slides

Page 33: Dependence from target’s atomic  mass of the cross section

3333

Cumulative number (Scale variable)

)N/GeV(PB

)N/GeV(PXAc

CP

} XP

minP2

X

2Nttb

2b

Cm)PP()PP(

2/m)PP(X

Page 34: Dependence from target’s atomic  mass of the cross section

346 March 2006 34

Cumulative number (Scale variable)

Page 35: Dependence from target’s atomic  mass of the cross section

3535

)X/Xexp(~d0c

Скейлинг (Суперскейлинг? ):

Независимость от начальной энергии;

Независимость от типа детектируемой (кумулятивной) частицы;

Независимость от типа налетающей частицы; Независимость от ядра мишени для средних и тяжелых ядер;

GeV4005EB

d,p,K,c Налетающие частицы: лептоны, мезоны, ядра

Ядра мишени: дейтрон - свинец

Page 36: Dependence from target’s atomic  mass of the cross section

3636

Independence of the cross section behavior from cumulative particle

p

+K

K

Page 37: Dependence from target’s atomic  mass of the cross section

3737

Independence from initial energy.

30-40 %

Page 38: Dependence from target’s atomic  mass of the cross section

3838

Independence from fragmenting nuclei

Page 39: Dependence from target’s atomic  mass of the cross section

39A.Litvinenko 39

пионы

Ю.С.Анисимов и др., ЯФ, 60, 1070, (1997).

V.K.Bondarev et al., JINR Communication,E1-93-84,Dubna, (1993). )GeV,120 p(0.5CGeV/(cN)) 5.4)(,D,B(p, O4 CHe )GeV,3 p(4.6),,,(GeV/(cN)) 5.4( O4 CHeDpC

Page 40: Dependence from target’s atomic  mass of the cross section

4040

Theory

2.0pint

)c/GeV(p/2.0~.)фм(l

intNN

Non nucleon degrees of freedoms

Empirical approaches

);q6( );NN( ** );( ...);q9(

)q(F~dq

.фм1lNN

Page 41: Dependence from target’s atomic  mass of the cross section

41

Simulation.Difference between production of cumulative

and twice cumulative pions

dbb)b(W)b()Wn( ~ d DNc

dbb)b(W)b()Wn( ~ d DFc

cumulative ~ density of nucleon

Nn

twice cumulative ~ density of fluctons Fn

221NN2D1D |kdkd(...)f)k()k(|d

Page 42: Dependence from target’s atomic  mass of the cross section

A.Litvinenko 42

PbCu,C,H,A ; pd

dσE t3

)π(0Pb)Cu,C,(H,AD Ot

tA

CX

Yu.S.Anisimov at al., Nucl.Phys., 60, 1070, (1997).

Page 43: Dependence from target’s atomic  mass of the cross section

A.G.Litvinenko, A.I.Malakhov,P.I.Zarubin,JINR Rapid Communication №1(58) ,27,(1993)

Page 44: Dependence from target’s atomic  mass of the cross section

4444

ДУАЛИЗМ – HOW IT IS LOOKS LIKE

Page 45: Dependence from target’s atomic  mass of the cross section

456 45