Department of Physics and Astronomy Introduction to phase ...

88
Department of Physics and Astronomy William Meier Physics 590B Fall 2018 Introduction to phase diagrams ASM Phase Diagram Database Diagram No. 901229

Transcript of Department of Physics and Astronomy Introduction to phase ...

Department of Physics and Astronomy

William Meier

Physics 590B

Fall 2018

Introduction to phase diagrams

AS

M P

has

e D

iagra

m D

atab

ase

Dia

gra

m N

o.

90

12

29

William Meier November 2, 2018

Outline• Part 1 – Introduction and basics

• Part 2 – Fundamental concepts

• Part 3 – Using phase diagrams

2

William Meier November 2, 2018

A phase diagram is a map

• Regions on a phase diagram

indicate the stable phases for

a set of parameters.

3

htt

ps:

//en

.wik

iped

ia.o

rg/w

iki/

Worl

d_

map

#/m

edia

/Fil

e:B

lan

kM

ap-W

orl

d-1

62E

-fla

t.sv

g

William Meier November 2, 2018

Water phase diagram at 1 atm

4

• Phases of H2O vs temperature

• Single phase regions

• Co-existence

https://commons.wikimedia.org/wiki/File:Ice_Water_(5685106294).jpg

Solid

(ice)

Liquid

Vapor

(steam)373

273

0

T (K)

William Meier November 2, 2018

Water p-T phase diagram

5

Solid

(ice)

Liquid

Vapor

(steam)373

273

0

T (K)

http://www1.lsbu.ac.uk/water/water_phase_diagram.html

William Meier November 2, 2018

Other p-T phase diagrams

6

htt

ps:

//co

mm

on

s.w

ikim

edia

.org

/wik

i/F

ile:

Car

bon

_d

ioxid

e_p

ress

ure

-tem

per

ature

_phas

e_dia

gra

m.s

vg

CO2

https://commons.wikimedia.org/wiki/File:Pure_iron_phase_diagram_(EN).svg

Fe• Phase fields

• Boundaries and coexistence

William Meier November 2, 2018

T-x phase diagrams

7

• Temp v. overall composition

• Liquid solution

• Solid solution

• Boundaries

https://commons.wikimedia.org/wiki/File:Face-centered-cubic-unitcell.png

Liquid solution

(Ag,Au)

Solid solution

Liquid + Solid (Ag,Au)

William Meier November 2, 2018

T-x phase diagrams

8

• Limited solid solubility

• Liquid stable below Tmelt

of elements

• Eutectic reaction

• (Ag) + (Cu) → Liquid

Liquid + Solid (Cu)

Liquid + Solid (Ag)

Solid (Ag) + Solid (Cu)

Liquid

William Meier November 2, 2018

• Compound (KNa2)

• “Line compound”

• Peritectic reaction

• KNa2 → Liquid + (Na)

T-x phase diagrams

9

Solid (K) + KNa2

KNa2 +

Solid (Na)

Liquid

Liquid +

Solid (Na)

Solid (K) + Liquid

Liquid + KNa2

William Meier November 2, 2018

T-H phase diagram

• Magnetic field suppresses

the superconducting states

10

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scbc.html

William Meier November 2, 2018

Application

Steel (Fe-C)

11

htt

ps:

//co

mm

on

s.w

ikim

edia

.org

/wik

i/F

ile:

Ste

el_

pd

.svg

• Carbon modifies phase

stability

• Heat treatments

https://www.e-education.psu.edu/matse81/node/2121

α + Fe3C

γ + Fe3C

BCC αFCC γ

William Meier November 2, 2018

Part 2 – Fundamental concepts

• Definitions

• Reactions and transitions

• The lever rule (conservation of matter)

13

William Meier November 2, 2018

Definition

Phase

• A region of space

occupied by a

homogeneous material

• Mechanically separable?

Examples

• Water vapor

• Liquid water

• Ice

• Diamond

• Graphite

• Paramagnet

• Ferromagnet

14

William Meier November 2, 2018

Definition

Phase• Distinguished by

• Properties

• Structure

• Composition

• “Phase field”

15

https://commons.wikimedia.org/wiki/File:Pure_iron_phase_diagram_(EN).svg

https://commons.wikimedia.org/wiki/File:Carbon_dioxide_pressure-temperature_phase_diagram.svg

CO2

Fe

William Meier November 2, 2018

Definition

State variables• Parameters that determine

the configuration of the

system

16

Examples

• Composition

• Temperature

• Pressure

• Electric field

• Magnetic field

William Meier November 2, 2018

Definition

Components

• The chemical constituents

needed to describe the

compositions of interest

• Often elements

• Sometimes compounds

17

Al Si

O

Al2O3SiO2

Mullite

Al2O3 SiO2

Mullite

William Meier November 2, 2018

Definition

Equilibrium

• System configuration with

minimum free energy

Remember

• Equilibrium is a

thermodynamic concept

• Kinetics plays an

important role

18

Unstable

(balanced) Meta-stable

Stable

William Meier November 2, 2018

Definition

Equilibrium

• Practical definition:

• The configuration is

independent of time

• Changes could be slow

• Is the equilibrium

configuration accessible?

19

Nar

ayan

et

al.,

Jou

rnal

of

Ap

pli

ed P

hysi

cs 1

18

, 2

15

30

3 (

20

15

)

Department of Physics and Astronomy

Batman (William Meier)

Physics 590B

Fall 2018

Introduction to phase diagrams

Day 2

AS

M P

has

e D

iagra

m D

atab

ase

Dia

gra

m N

o.

90

12

29

William Meier November 2, 2018

Review

• Phase diagrams are maps

• Equilibrium phases as a function of state variables

21

William Meier November 2, 2018 22

1. Find single phase regions

Determining the stable phases 80% Er and 20% Sb

@ 1800°C80% Er and 20% Sb

@ 1800°C

William Meier November 2, 2018 23

1. Find single phase regions

(Er)

(Sb)

Liquid (L)

Er5Sb3

ErSb rt (room temperature)

ErSb ht (high temperature)

ErSb2 hp

Determining the stable phases 80% Er and 20% Sb

@ 1800°C80% Er and 20% Sb

@ 1800°C

Phases:

Er0.80Sb0.20 Liquid

Phases:

Er0.80Sb0.20 Liquid

William Meier November 2, 2018

Determining the stable phases

24

1. Find single phase regions

2. Draw tie line

Constant temp. line to single

phase regions on left and right

30% Er and 70% Sb

@ 1000°C30% Er and 70% Sb

@ 1000°C

William Meier November 2, 2018

Determining the stable phases

25

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

30% Er and 70% Sb

@ 1000°C30% Er and 70% Sb

@ 1000°C

ErSb rtErSb rt

Liquid

Er0.09,Sb0.91

Liquid

Er0.09,Sb0.91LiquidLiquid

William Meier November 2, 2018

Determining the stable phases

26

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rtErSb rt

Liquid

Er0.09,Sb0.91

Liquid

Er0.09,Sb0.91

ErSb rtErSb rt

Liquid

Er0.20,Sb0.80

Liquid

Er0.20,Sb0.80

William Meier November 2, 2018

Determining the stable phases

27

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

Er5Sb3Er5Sb3(Er0.99,Sb0.01)(Er0.99,Sb0.01)

William Meier November 2, 2018

Determining the stable phases

28

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

(Er) +

Er5Sb3

William Meier November 2, 2018

Determining the stable phases

29

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

William Meier November 2, 2018

Determining the stable phases

30

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

L + ErSb rt

William Meier November 2, 2018

Determining the stable phases

31

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

Er 5

Sb

3+

ErS

b r

t

L + ErSb rt

ErSb ht + LErSb ht + L

William Meier November 2, 2018

Determining the stable phases

32

1. Find single phase regions

2. Draw tie line

3. Endpoints identify the

composition of stable

phases

• Same phases in whole field

• Different compositions

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

Er 5

Sb

3+

ErS

b r

t

L + ErSb rt

L + ErSb htL + ErSb ht ErSb ht + LErSb ht + L

William Meier November 2, 2018

Stable phases

33

William Meier November 2, 2018

Stable phases

34

William Meier November 2, 2018

Stable phases

35

William Meier November 2, 2018

The lever rule

36

ErSb rt + L

30% Er

70% Sb

30% Er

70% Sb

Use the lever rule to find the

fractions of stable phases

William Meier November 2, 2018

The lever rule

37

ErSb rt + L

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

Overall

at% Sb

2000 Liquid 70 100 70

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

2000°C

Micrograph

2000°C

Micrograph

William Meier November 2, 2018

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

The lever rule

38

ErSb rt + L

T

(°C)Phases

at%

SbPhase%

Overall

at% Sb

2000 Liquid 70 100 70

1600ErSb rt 50 23

70Liquid 76 77

ErSb rtErSb rt

Liquid

Er0.24Sb0.76

Liquid

Er0.24Sb0.76

2000°C

Micrograph

2000°C

Micrograph

William Meier November 2, 2018

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

The lever rule

39

ErSb rt + L

T

(°C)Phases

at%

SbPhase%

Overall

at% Sb

2000 Liquid 70 100 70

1600ErSb rt 50 23

70Liquid 76 77

ErSb rtErSb rt

Liquid

Er0.24Sb0.76

Liquid

Er0.24Sb0.76

2000°C

Micrograph

2000°C

Micrograph

𝑓ErSb rt =𝑏

𝑎 + 𝑏composition

differences a, b

𝑓ErSb rt =𝑏

𝑎 + 𝑏composition

differences a, b

Lever Rule

a b

Liquid

Er0.24Sb0.76

Liquid

Er0.24Sb0.76

ErSb rtErSb rt1600°C

Micrograph

1600°C

Micrograph

William Meier November 2, 2018

The lever rule

40

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

Overall

at% Sb

2000 Liquid 70 100 70

1600ErSb rt 50 23

70Liquid 76 77

1200ErSb rt 50 46

70Liquid 87 54

ErSb rtErSb rt

Liquid

Er0.13Sb0.87

Liquid

Er0.13Sb0.87

𝑓ErSb rt =𝑏

𝑎 + 𝑏𝑓ErSb rt =

𝑏

𝑎 + 𝑏

Lever Rule

a b

ErSb rtErSb rt

Liquid

Er0.13Sb0.87

Liquid

Er0.13Sb0.87

1600°C

Micrograph

1600°C

Micrograph

1200°C

Micrograph

1200°C

Micrograph

William Meier November 2, 2018

The lever rule

41

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

2000 Liquid 70 100

1600ErSb rt 50 23

Liquid 76 77

1200ErSb rt 50 46

Liquid 87 54

ErSb rtErSb rt

Liquid

Er0.13Sb0.87

Liquid

Er0.13Sb0.87

1200°C

Micrograph

1200°C

Micrograph

Liquid

Er0.24Sb0.76

Liquid

Er0.24Sb0.76

1600°C

Micrograph

1600°C

Micrograph

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

2000°C

Micrograph

2000°C

Micrograph

LiquidusLiquidus

William Meier November 2, 2018

The lever rule

42

30% Er

70% Sb

30% Er

70% Sb

𝑓ErSb rt =𝑏

𝑎 + 𝑏

composition differences a, b

𝑓ErSb rt =𝑏

𝑎 + 𝑏

composition differences a, b

Lever Rule

ErSb

Liquid

Er0.24Sb0.76

a b

23 at%

77 at%

William Meier November 2, 2018

Phase transitions

43

• Congruent melting

Compound melts directly to a

liquid of the same composition

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

Er 5

Sb

3+

ErS

b r

t

L + ErSb rt

ErSb ht + LErSb ht + LL + ErSb htL + ErSb ht

William Meier November 2, 2018

Phase transitions

44

• Congruent melting

• Solid-solid

ErSb rt + L

(Er) +

Er5Sb3

L +

Er5Sb3

Er 5

Sb

3+

ErS

brt

L + ErSb rt

ErSb ht + LErSb ht + LL + ErSb htL + ErSb ht

William Meier November 2, 2018

Invariant reactions – Eutectic

45

• Consider 13 at% Sb at

1200°C and 1400°C

(Er) +

Er5Sb3

L +

Er5Sb3

ErSb rt + L

Er 5

Sb

3+

ErS

brt

William Meier November 2, 2018

Invariant reactions – Eutectic

46

• Consider 13 at% Sb at

1200°C and 1400°C

• Eutectic reaction:(Er0.97Sb0.03)sol + Er5Sb3 → (Er0.87Sb0.13)liq

• 3 phases only coexist at

1350°C

(Er) +

Er5Sb3

L +

Er5Sb3

ErSb rt + L

Er 5

Sb

3+

ErS

brt

William Meier November 2, 2018

Invariant reactions – Peritectic

47

• Consider 67 at% Sb at

500°C and 800°C

• Peritectic reaction:

ErSb2 → ErSbrt + (Er0.03Sb0.97)liq

• 3 phases only coexist at

700°C

• Incongruent melting

(Er) +

Er5Sb3

L +

Er5Sb3

ErSb rt + L

Er 5

Sb

3+

ErS

brt

William Meier November 2, 2018

Invariant reactions – “Tics”Reactions involving liquids

48

http://www1.asminternational.org/asmenterprise/apd/help/intro.aspx

Eutecticα + γ → L1

Eutecticα + γ → L1

Peritecticε → L + δ’

Peritecticε → L + δ’

Monotecticγ + L4 → L3

Monotecticγ + L4 → L3

William Meier November 2, 2018

Invariant reactions – “Toids”Reaction involving only solids

49

http://www1.asminternational.org/asmenterprise/apd/help/intro.aspx

Eutectoidη + δ→ γ

Eutectoidη + δ→ γ

Peritectoidη → α + γ

Peritectoidη → α + γ

Department of Physics and Astronomy

William Meier

Physics 590B

Fall 2018

Introduction to phase diagrams

Day 3

AS

M P

has

e D

iagra

m D

atab

ase

Dia

gra

m N

o.

90

12

29

William Meier November 2, 2018

Review

• Stable phases

• Lever rule

• Eutectic

• Peritectic

51

© ASM International 2006. Diagram No. 900834

a b

Tie line

William Meier November 2, 2018

Conservation of matter

52

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

2000 Liquid 70 100

1600ErSb rt 50 23

Liquid 76 77

1200ErSb rt 50 46

Liquid 87 54

ErSb rtErSb rt

Liquid

Er0.13Sb0.87

Liquid

Er0.13Sb0.87

1200°C

Micrograph

1200°C

Micrograph

Liquid

Er0.24Sb0.76

Liquid

Er0.24Sb0.76

1600°C

Micrograph

1600°C

Micrograph

Liquid

Er0.30Sb0.70

Liquid

Er0.30Sb0.70

2000°C

Micrograph

2000°C

Micrograph

William Meier November 2, 2018

Conservation of matter

53

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

2000 Liquid 70 100

30 Er

70 Sb

30 Er

70 Sb

William Meier November 2, 2018

Conservation of matter

54

30% Er

70% Sb

30% Er

70% SbT

(°C)Phases

at%

SbPhase%

1600ErSb rt 50 23

Liquid 76 77

30 Er

70 Sb

30 Er

70 Sb

ErSb rtErSb rt

William Meier November 2, 2018

Conservation of matter

55

30% Er

70% Sb

30% Er

70% Sb

30 Er

70 Sb

30 Er

70 Sb

T

(°C)Phases

at%

SbPhase%

1200ErSb rt 50 46

Liquid 87 54

ErSb rtErSb rt

William Meier November 2, 2018

Equilibrium solidification

56

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

Liquid

Cs0.90Na0.10

20°C

Micrograph

20°C

Micrograph

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

20 Liquid 10 100 10

LiquidusLiquidus

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

57

Liquid

Cs0.90Na0.10

0°C

Micrograph

0°C

Micrograph

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

0Liquid 10 100

10Cs 0 ~0

Cs metalCs metal

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

William Meier November 2, 2018

Equilibrium solidification

58

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-20Liquid 17 59

10Cs 0 41

-20°C

Micrograph

-20°C

MicrographCs metalCs metal

Liquid

Cs0.83Na0.17

Liquid

Cs0.83Na0.17

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

William Meier November 2, 2018

Equilibrium solidification

59

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-30Liquid 20 50

10Cs 0 50

-30°C

Micrograph

-30°C

MicrographCs metalCs metal

Liquid

Cs0.80Na0.20

Liquid

Cs0.80Na0.20

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

William Meier November 2, 2018

CsN

a2

lt

(Cs)

Equilibrium solidification

60

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-32

Liquid 20 -

10Cs 0 -

CsNa2 67 -

-32°C

Micrograph

-32°C

MicrographCs metalCs metal

Liquid

Cs0.80Na0.20

Liquid

Cs0.80Na0.20

Eutectic reaction

(Ca0.80Na0.20)liq → Cs + CsNa2

Eutectic reaction

(Ca0.80Na0.20)liq → Cs + CsNa2

Cs Na

(Na

) rt

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

William Meier November 2, 2018

CsN

a2

lt

(Cs)

Equilibrium solidification

61

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-40Cs 0 85

10CsNa2 67 15

-40°C

Micrograph

-40°C

Micrograph

Cs + CsNa2

Eutectic microstructure

Cs + CsNa2

Eutectic microstructure

Cs metalCs metal

Eutectic reaction

(Ca0.80Na0.20)liq → Cs + CsNa2

Eutectic reaction

(Ca0.80Na0.20)liq → Cs + CsNa2

Cs Na

(Na

) rt

Overall:

Cs0.9Na0.1

Overall:

Cs0.9Na0.1

William Meier November 2, 2018

Eutectic microstructures• Liquid rapidly solidifies

into thin regions of solid

phases on cooling

62

Sn-InSn-In Al-SiAl-Si

Al-CuAl-Cu Mg-SnMg-Sn

https://matdata.asminternational.org/apd/homepagefiles/grantami_apd/#

Sn-PbSn-Pb Al-SiAl-Si

William Meier November 2, 2018

Equilibrium solidification

63

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.50Na0.50

100°C

Micrograph

100°C

Micrograph

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

100 Liquid 50 100 50

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

64

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.50Na0.50

50°C

Micrograph

50°C

Micrograph

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

50Liquid 50 100

50Na 100 ~0

LiquidusLiquidus

Na metalNa metal

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

65

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.62Na0.38

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

20Liquid 38 81

50Na 100 19

20°C

Micrograph

20°C

MicrographNa metalNa metal

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

66

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.69Na0.31

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-5Liquid 31 72

50Na 100 28

-5°C

Micrograph

-5°C

MicrographNa metalNa metal

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

67

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.70Na0.30

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-8

Liquid 30 -

50CsNa2 67 -

Na 100 -

-8°C

Micrograph

-8°C

MicrographNa metalNa metal

CsNa2CsNa2

Peritectic reaction

(Ca0.70Na0.30)liq + Na → CsNa2

Peritectic reaction

(Ca0.70Na0.30)liq + Na → CsNa2

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

Equilibrium solidification

68

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-10Liquid 29 45

50CsNa2 67 55

-10°C

Micrograph

-10°C

Micrograph

Liquid

Cs0.71Na0.29

Liquid

Cs0.71Na0.29

CsNa2CsNa2

Cs Na

CsN

a2

lt

(Cs)

(Na

) rt

William Meier November 2, 2018

CsN

a2

lt

(Cs)

Equilibrium solidification

69

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-30Liquid 22 38

50CsNa2 67 62

-30°C

Micrograph

-30°C

Micrograph

Liquid

Cs0.78Na0.22

Liquid

Cs0.78Na0.22

CsNa2CsNa2

Cs Na

(Na

) rt

William Meier November 2, 2018

CsN

a2

lt

(Cs)

Equilibrium solidification

70

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-40Cs 0 25

50CsNa2 67 75

-40°C

Micrograph

-40°C

Micrograph

CsNa2CsNa2

Cs + CsNa2

Eutectic microstructure

Cs + CsNa2

Eutectic microstructure

Cs Na

(Na

) rt

William Meier November 2, 2018

CsN

a2

lt

(Cs)

(Na

) rt

Non-equilibrium solidification

71

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

Liquid

Cs0.70Na0.30

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-8

Liquid 30 -

50CsNa2 67 -

Na 100 -

-8°C

Micrograph

-8°C

MicrographNa metalNa metal

CsNa2CsNa2

Cs Na

LNaNa

Cs

Rate limited by

solid state diffusion

Rate limited by

solid state diffusion

William Meier November 2, 2018

CsN

a2

lt

(Cs)

(Na

) rt

Non-equilibrium solidification

72

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-30

Liquid 22 -

50CsNa2 67 -

Na 100 -

-30°C

Micrograph

-30°C

MicrographNa metalNa metal

CsNa2CsNa2

Liquid

Cs0.78Na0.22

Liquid

Cs0.78Na0.22

Cs Na

William Meier November 2, 2018

CsN

a2

lt

(Cs)

(Na

) rt

Non-equilibrium solidification

73

Overall:

Cs0.5Na0.5

Overall:

Cs0.5Na0.5

T

(°C)Phases

at%

NaPhase%

Overall

at% Na

-30

Liquid 22 -

50CsNa2 67 -

Na 100 -

-30°C

Micrograph

-30°C

MicrographNa metalNa metal

CsNa2CsNa2

Cs + CsNa2

Eutectic microstructure

Cs + CsNa2

Eutectic microstructure

Cs Na

William Meier November 2, 2018

Peritectic microstructure

• Incomplete peritectic

reaction are common

74

Cam

pb

ell,

F. C

. P

has

e D

iagra

ms:

Und

erst

and

ing t

he

Bas

ics.

AS

M I

nte

rnat

ional

, 2

01

2.

Reaction

layer

Reaction

layerPrimary

phase

Primary

phase

-30°C

Micrograph

-30°C

MicrographNa metalNa metal

CsNa2CsNa2

Cs + CsNa2

Eutectic microstructure

Cs + CsNa2

Eutectic microstructureSolidified

Cu0.8Sn0.2 melt

Solidified

Cu0.8Sn0.2 melt

William Meier November 2, 2018

Scanning calorimetry

75

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%Solid δ

Figures from Kevin Dennis

William Meier November 2, 2018

Scanning calorimetry

76

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%Solid δ

600°C600°C

First heatingFirst heating

Figures from Kevin Dennis

William Meier November 2, 2018

Solid δ

• Peritectic decomposition

δ → Liquid + γ

Scanning calorimetry

77

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

First heatingFirst heating

900°C900°C

Solid γSolid γLiquidLiquid

Figures from Kevin Dennis

William Meier November 2, 2018

• γ dissolves into liquid

Scanning calorimetry

78

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

First heatingFirst heating

950°C950°C

Solid γSolid γLiquidLiquid

Figures from Kevin Dennis

William Meier November 2, 2018

• Homogenous liquid

Scanning calorimetry

79

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

First heatingFirst heating

1000°C1000°C

LiquidLiquid

Figures from Kevin Dennis

William Meier November 2, 2018

• γ precipitates from liquid

Scanning calorimetry

80

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

First coolingFirst cooling

950°C950°C

Solid γSolid γLiquidLiquid

Figures from Kevin Dennis

William Meier November 2, 2018

Solid δ

• Peritectic reaction

Liquid + γ→ δ

Incomplete

Scanning calorimetry

81

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

900°C900°C

Solid γSolid γLiquidLiquid

Solid δSolid δ

First coolingFirst cooling

Figures from Kevin Dennis

William Meier November 2, 2018

• δ crystallizes

• Peritectic reaction

Liquid + δ → β

Incomplete

Scanning calorimetry

82

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

800°C800°C

Solid γSolid γLiquidLiquid

Solid δSolid δ

First coolingFirst cooling

Solid βSolid β

Figures from Kevin Dennis

William Meier November 2, 2018

• β crystallizes

• Eutectic reaction

Liquid → α + β

Scanning calorimetry

83

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

600°C600°C

First coolingFirst cooling

Figures from Kevin Dennis

Solid γSolid γLiquidLiquid

Solid δSolid δ

Solid βSolid β

William Meier November 2, 2018

• β crystallizes

• Eutectic reaction

Liquid → α + β

Scanning calorimetry

84

500

700

900

1100

1300

1500

0 20 40 60 80 100

Tem

pera

ture

Hypothetical Phase Diagrams

35% 45%60% 75% 80%

a db g

a+bb+d d+g

a+liquidb+liquid

d+liquid

g+liquidliquid

550 650 750 850 950 1050

75%

600°C600°C

α + β eutectic

microstructure

α + β eutectic

microstructure

First coolingFirst cooling

Figures from Kevin Dennis

Solid γSolid γ

Solid δSolid δ

Solid βSolid β

William Meier November 2, 2018

Ce

Sb

2

Batch

Melt

Crystallize

Decant

Target

CeSb2 Liquidus

CeSb2-Sb Eutectic

Crystal growth from solution

85

P. C

. C

anfi

eld

et

al.,

Phil

os.

Mag

., 9

6(1

), 8

4–

92

(2

01

6)

P.C

. C

anfi

eld

and

Z.

Fis

k,

Phil

os.

Mag

. B

., 6

5(6

), 1

11

7–

11

23

. (

19

92

)

Ce Sb

William Meier November 2, 2018

Compositions

86

Spinel

MgAl2O4

• Mole % vs Atom %

• Spinel (MgAl2O4 ~ MgO•Al2O3)

• 50 mol% MgO – 50 mol% Al2O3

• 29 at% Mg0.5O0.5 – 71 at% Al0.4O0.6

Fro

m A

Cer

SP

has

e E

quil

ibri

a D

iagra

ms

Onli

ne

–N

o.

11

06

6

MgO Al2O3mol %

William Meier November 2, 2018

Compositions

87

• Atom % vs Weight %

• W and C have significantly

different atomic masses

• 60 at% ~ 9 wt% carbon

https://www.totalmateria.com/page.aspx?ID=CheckArticle&LN=TR&site=ktn&NM=364

William Meier November 2, 2018

More reading

• Introduction to phase

equilibria in ceramics

(Bergeron)

Where to find phase diagrams

• ASM Alloy Phase Diagram

Database (Metals)https://www.asminternational.org/home/-

/journal_content/56/10192/15469013/DATA

BASE

• ACerS-NIST Phase Equilibria

diagrams (Oxides)https://ceramics.org/publications-

resources/phase-equilibrium-diagrams

• Also in book form

88

https://www.amazon.com/Introduction-Equilibria-Ceramics-Clifton-Bergeron/dp/1574981773

William Meier November 2, 2018

Key concepts

• Equilibrium phases as a function of state variables

• Lever rule

• Invariant reactions (e.g. eutectic and peritectic)

• Equilibrium vs non-equilibrium processes

89