Department of electrical and electronic engineering

23
School of Applied Sciences and Technology ~ 1 ~ Department of Electrical and Electronic Engineering First Year Semester I Course no. Course Title Hours/Week Theory + Lab Credits Pre-requisite EEE 101 Electrical Circuits I 3 + 0 3.0 N/A CSE 133 Structured Computer Programming 3 + 0 3.0 N/A CSE 134 Structured Computer Programming Lab. 0 + 6 3.0 N/A ENG 101 English Language I 2 + 0 2.0 N/A ENG 102 English Language I Lab . 0 + 2 1.0 N/A CSE 108 Computer Aided Engineering Drawing 0 + 4 2.0 N/A MAT 101 Co-ordinate Geometry and Linear Algebra 3 + 0 3.0 N/A PHY 103 Mechanics, Wave, Heat & Thermodynamics 3 + 0 3.0 N/A PHY 104 Physics I Lab 0 + 3 1.5 N/A Total 14 + 15 21.5 First Year Semester II Course no. Course Title Hours/Week Theory + Lab Credits Pre-requisite EEE 123 Electrical Circuits II 3 + 0 3.0 EEE 101 EEE 124 Electrical Circuits Lab . 0 + 3 1.5 EEE 101 EEE 126 Electrical Circuit Simulation Lab 0 + 3 1.5 EEE 101 PHY 207 Electromagnetism, Optics & Modern Physics 3 + 0 3.0 PHY 103 PHY 204 Physics II Lab. 0 + 3 1.5 PHY 104 CHE 101 General Chemistry 3 + 0 3.0 N/A CHE 102 General Chemistry Lab (Inorganic and Quantitative Analysis Lab ) 0 + 3 1.5 N/A ENG 103 English Language II 2 + 0 2.0 ENG 101 ENG 104 English Language II Lab 0 + 2 1.0 ENG 102 MAT 103 Differential and Integral Calculus 3 + 0 3.0 MAT 101 Total 14 + 14 21 Second Year Semester I Course no. Course Title Hours/Week Theory + Lab Credits Pre-requisite EEE 221 Electronics I 3 + 0 3.0 EEE 101 & 123 EEE 222 Electronic Circuit Simulation Lab . 0 + 3 1.5 EEE 124 & 126 EEE 223 Electrical Machines I 3 + 0 3.0 EEE 101 & 123 EEE 224 Electrical Machines I Lab. 0 + 3 1.5 EEE 124 & 126 EEE 229 Electromagnetic Fields and Waves 3 + 0 3.0 MAT 102 Shahjalal University of Science and Technology Kumargaon, Sylhet - 3114

Transcript of Department of electrical and electronic engineering

Page 1: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 1 ~

Department of Electrical and Electronic Engineering

First Year Semester I

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 101 Electrical Circuits I 3 + 0 3.0 N/A

CSE 133 Structured Computer Programming 3 + 0 3.0 N/A

CSE 134 Structured Computer Programming Lab. 0 + 6 3.0 N/A

ENG 101 English Language I 2 + 0 2.0 N/AENG 102 English Language I Lab. 0 + 2 1.0 N/ACSE 108 Computer Aided Engineering Drawing 0 + 4 2.0 N/AMAT 101 Co-ordinate Geometry and Linear Algebra 3 + 0 3.0 N/APHY 103 Mechanics, Wave, Heat & Thermodynamics 3 + 0 3.0 N/APHY 104 Physics I Lab 0 + 3 1.5 N/A

Total 14 + 15 21.5

First Year Semester II

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 123 Electrical Circuits II 3 + 03.0

EEE 101

EEE 124 Electrical Circuits Lab. 0 + 3 1.5 EEE 101

EEE 126 Electrical Circuit Simulation Lab 0 + 3 1.5 EEE 101

PHY 207 Electromagnetism, Optics & Modern Physics 3 + 0 3.0 PHY 103PHY 204 Physics II Lab. 0 + 3 1.5 PHY 104

CHE 101 General Chemistry 3 + 0 3.0 N/A

CHE 102General Chemistry Lab (Inorganic and

Quantitative Analysis Lab)0 + 3 1.5 N/A

ENG 103 English Language II 2 + 0 2.0 ENG 101ENG 104 English Language II Lab 0 + 2 1.0 ENG 102MAT 103 Differential and Integral Calculus 3 + 0 3.0 MAT 101

Total 14 + 14 21

Second Year Semester I

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 221 Electronics I 3 + 0 3.0 EEE 101 & 123EEE 222 Electronic Circuit Simulation Lab. 0 + 3 1.5 EEE 124 & 126EEE 223 Electrical Machines I 3 + 0 3.0 EEE 101 & 123EEE 224 Electrical Machines I Lab. 0 + 3 1.5 EEE 124 & 126EEE 229 Electromagnetic Fields and Waves 3 + 0 3.0 MAT 102

Shahjalal University of Science and TechnologyKumargaon, Sylhet - 3114

Page 2: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 2 ~

CSE 209 Numerical Analysis 2 + 0 2.0 CSE 135CSE 210 Numerical Analysis Lab. 0 + 2 1.0 CSE 136BAN 243 Cost and Management Accounting 3 + 0 3.0 N/A

MAT 221 Vector Analysis and Complex Variables 3 + 0 3.0 MAT 103Total 17 + 08 21

Second Year Semester II

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 225 Electrical Machines II 3 + 03.0 EEE 223

EEE 226 Electrical Machines II Lab 0 + 31.5 EEE 224

EEE 227 Electronics II 3 + 03.0 EEE 221

EEE 228 Electronics Lab 0 + 31.5 EEE 222

STA 202 Basic Statistics & Probability 4 + 0 4.0 N/AECO 103 Principles of Economics 4 + 0 4.0 N/AMAT 223 Ordinary and Partial Differential Equations 3 + 0 3.0 MAT 221

Total 17 + 06 20

Third Year Semester I

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 321 Signals and Linear Systems 3 + 0 3.0 EEE 101 & 123

EEE 323 Digital Electronics 3 + 0 3.0 EEE 221

EEE 324 Digital Electronics Lab 0 + 3 1.5 EEE 222

EEE 325 Power System I 3 + 03.0

EEE 101 & 123

EEE 326 Power System I Lab 0 + 31.5

EEE 124 & 126

EEE 327 Electrical Properties of Materials 3 + 03.0

EEE 101 & 123

EEE 328 Electrical Services Design0 + 3

1.5EEE 101 & 123

IPE 301 Industrial & Business Management 3 + 0 3.0 N/ATotal 15 + 09 19.5

Third Year Semester II

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 329 Digital Communication Engineering 3 + 0 3.0 MAT 204

EEE 330 Digital Communication Engineering Lab 0 + 3 1.5 MAT 204

EEE 331 Digital Signal Processing I 3 + 03.0

EEE 321

EEE 332 Digital Signal Processing I Lab 0 + 31.5

EEE 321

Page 3: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 3 ~

EEE 333 Microprocessor & Assembly Language 3 + 03.0 EEE 323

EEE 334 Microprocessor & Assembly Language Lab 0 + 3 1.5 EEE 324

EEE 335 Control System I 3 + 0 3.0 EEE 323

EEE 336 Control System I Lab 0 + 3 1.5 EEE 324

EEE 3** Option I 3 + 0 3.0 Option list

Total 15 + 12 21

Fourth Year Semester I

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 400 Project/Thesis (Initial work)0 + 4 2.0 Completion of

300 level courses

EEE 421 Solid State Devices 3 + 03.0

EEE 221

EEE 423 Computer Interfacing and Industrial Automation3 + 0

3.0EEE 333 & 335

EEE 424Computer Interfacing and Industrial Automation

Lab0 + 3 1.5 EEE 334 & 336

EEE 4** Option II 3 + 03.0

Option list

EEE 4** Option III 3 + 03.0

Option list

EEE 4** Option III Lab 0 + 31.5

Option list

EEE 4** Option IV 3 + 0 3.0 Option list

Total 15 + 10 20

Fourth Year Semester II

Course no. Course Title Hours/WeekTheory + Lab

Credits Pre-requisite

EEE 408 Project/Thesis0 + 8 4.0 Completion of

300 level courses

EEE 4** Option V 3 + 03.0

Option list

EEE 4** Option V Lab 0 + 31.5

Option list

EEE 4** Option VI 3 + 03.0

Option list

EEE 4** Option VII 3 + 03.0

Option list

EEE 4** Option VIII 3 + 03.0

Option list

EEE 4** Option VIII Lab0 + 3

1.5Option list

Total 12 + 14 19

Total Credit: 160

Page 4: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 4 ~

List of OptionsOption I Courses

Course Number Course Title Credit Hour Group

EEE 337 Power System II 3.0 Power

EEE 351 Analog Integrated Circuits 3.0 Electronics

EEE 371 Random Signals and Processes 3.0 Communication

Option II Courses

Course Number Course Title Credit Hour Group

EEE 439 Electrical Machines III/ Energy Conversion III 3.0 Power

EEE 453 Processing and Fabrication Technology 3.0 Electronics

EEE 473 Digital Signal Processing II 3.0 Communication

CSE 411 PLC troubleshooting and programming 3.0 Computer

Option III Courses

Course Number Course Title Credit Hour Group

EEE 441EEE 442

Power ElectronicsPower Electronics Lab

3.01.5

Power

EEE 455EEE 456

VLSI IVLSI I Lab

3.01.5 Electronics

(any one)EEE 457EEE 458

Microcontroller System DesignMicrocontroller System Design Lab

3.01.5

EEE 475EEE 476

RF and Microwave EngineeringRF and Microwave Engineering Lab

3.01.5

Communication

CSE 413CSE 414

Microprocessor System DesignMicroprocessor System Design Lab

3.01.5

Computer

Option IV Courses

Course Number Course Title Credit Hour Group

EEE 443 Power Plant Engineering 3.0 Power

EEE 459 Compound Semiconductor and Hetero-Junction Devices 3.0 Electronics

EEE 477 Geographical Communication 3.0 Communication

CSE 417 Real Time Computer System 3.0 Computer

Page 5: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 5 ~

Option V Courses

Course Number Course Title Credit Hour Group

EEE 445EEE 446

Power System ProtectionPower System Protection Lab

3.01.5

Power

(any one)EEE 447EEE 448

High Voltage EngineeringHigh Voltage Engineering Lab

3.01.5

EEE 461EEE 462

VLSI IIVLSI II Lab

3.01.5

Electronics

(any one)EEE 463EEE 464

Programmable ASIC DesignProgrammable ASIC Design Lab

3.01.5

EEE 481EEE 482

Optical Fiber CommunicationOptical Fiber Communication Lab

3.01.5 Communication

CSE 361CSE 362

Computer NetworkingComputer Networking Lab

3.01.5 Computer

Option VI Courses

Course Number Course Title Credit Hour Group

EEE 449 Power System Reliability 3.0 Power

EEE 465 Optoelectronics 3.0 Electronics

EEE 483 Telecommunication Engineering 3.0 Communication

CSE 329 Computer Architecture 3.0 Computer

Option VII Courses

Course Number Course Title Credit Hour Group

EEE 451 Power System Operation and Control 3.0 Power

EEE 467 Semiconductor Device Theory 3.0 Electronics

EEE 485 Cellular Mobile and Satellite Communication 3.0 Communication

CSE 415 Multimedia Communications 3.0 Computer

Option VIII (Interdisciplinary) Courses

Course Number Course Title Credit Hour Group

EEE 487EEE 488

Control System IIControl System II Lab

3.01.5 Interdisciplinary

EEE 489EEE 490

Renewable Energy SystemsRenewable Energy Systems Lab

3.01.5 Interdisciplinary

EEE 491EEE 492

Biomedical InstrumentationBiomedical Instrumentation Lab

3.01.5 Interdisciplinary

EEE 493EEE 494

Measurement and InstrumentationMeasurement and Instrumentation Lab

3.01.5 Interdisciplinary

Page 6: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 6 ~

Detailed SyllabusCore Courses:

EEE 101 ELECTRICAL CIRCUITS I3 hours/Week, 3 Credits

Circuit variables and elements: Voltage, current, power, energy, independent and dependent sources, and resistance. Basic laws: Ohm’s law, Kirchoff’s current and voltage laws. Simple resistive circuits: Series and parallel circuits, voltage and current division, wye-delta transformation. Techniques of circuit analysis: Nodal and mesh analysis including super node and super mesh. Network theorems: Source transformation, Thevenin’s, Norton’s and superposition theorems with applications in circuits having independent and dependent sources, maximum power transfer condition and reciprocity theorem. Energy storage elements: Inductors and capacitors, series parallel combination of inductors and capacitors. Responses of RL and RC circuits: Natural and step responses.Magnetic quantities and variables: Flux, permeability and reluctance, magnetic field strength, magnetic potential, flux density, magnetization curve. Laws in magnetic circuits: Ohm’s law and Ampere’s circuital law. Magnetic circuits: series, parallel and series-parallel circuits.Pre-requisite: N/ATextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. Ryder

EEE 103 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS 2 Hours/Week, 2 Credits

Voltage and Current, Ohm’s law, Series circuits, Parallel circuits, Series-Parallel circuits, Capacitors, Inductors, R-L and R-L-C Circuits, Sinusoidal alternating wave forms, Square Waves and R-C response; Diode circuits, Transistor circuits, Op Amp. circuits, Popular ICs, Logic gates, Flip-Flops, and Counter.

EEE 104 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS LAB2 Hours/Week, 2 Credits

Laboratory works based on EEE 103 course

EEE 105 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS 3 Hours/Week, 3 Credits

Voltage and Current, Ohm’s law, Series circuits, Parallel circuits, Series-Parallel circuits, Capacitors, Inductors, R-L and R-L-C Circuits, Sinusoidal alternating wave forms, Square Waves and R-C response; Diode circuits, Transistor circuits, Op Amp. circuits, Popular ICs, Logic gates, Flip-Flops, and Counter.Single phase transformer, Introduction to three phase transformer; DC machines: DC generator principle, types, characteristics and performances. AC machines: Single phase induction motor, three phase induction motor, introduction to synchronous machines; Oscilloscope; Transducers: Strain, temperature, pressure, speed and torque measurements.

EEE 106 INTRODUCTION TO ELECTRICAL AND ELECTRONIC CIRCUITS LAB3 Hours/Week, 1.5 Credits

Laboratory works based on EEE 103/EEE 105.

EEE 107 ELECTRICAL AND ELECTRONIC CIRCUIT ANALYSIS4 Hours/Week, 4 Credits

a. Circuit Models: Linear circuit elements, Ohm’s law, Voltage and Current sources, Kirchoff’s voltage and Current law, Voltage and Current Divider rules, Series Parallel Circuits, Circuit Theorem: Thevenin’s, Norton’s, Maximum power transfer, Superposition Reciprocity Theorem DC analysis: Source conversion, Branch Current, Mesh analysis, Nodal Analysis, Bridge Network, Delta-Y conversion Transient and Time Domain Analysis: Transient in RC, RL and RLC circuits, Reactance, Average power AC theory and Frequency Domain Analysis: Phasors, Source conversion, Series Parallel AC circuits, Mesh analysis, Nodal Analysis Resonance: Series, Parallel resonance circuit, Q valuesb. Semiconductors: Semiconductor materials, Energy levels, n, p type Semiconductor Devices: Diode, Transistor, FET, Optoelectronic devices and their uses in circuits Operational Amplifier: Basic operation and use in construction of analog circuits

Page 7: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 7 ~

EEE 108 ELECTRICAL AND ELECTRONIC CIRCUIT ANALYSIS LAB6 Hours/Week, 3 Credits

1. Use of measuring Equipment: Multi-meter, Frequency meter and Oscilloscope

2. Test of Ohm’s Law plot of I-V, P-V curve

3. I-V curve for Si, Ge and Zenor diodes

4. Measurement of time constant in RC circuit

5. Construction of a High pass and Low pass filter using RC circuit

6. Measurement of Resonance frequency and Q value of a RLC circuit

7. Making AND/OR gates using transistors

8. FET as voltage controlled resistor

9. Op amp as Inverting amplifier

10. OP Amp as Differentiator and Integrator

11. Optical data communication using LED and photodiode

12. Electronic Project

EEE 123 ELECTRICAL CIRCUITS II

3 hours/Week, 3 Credits

Sinusoidal functions: Instantaneous current, voltage, power, effective current and voltage, average power, phasors and complex quantities, impedance, real and reactive power, power factor. Analysis of single phase AC circuits: Series and parallel RL, RC and RLC circuits, nodal and mesh analysis, application of network theorems in AC circuits, circuits with non-sinusoidal excitations, transients in AC circuits, passive filters. Resonance in AC circuits: Series and parallel resonance. Magnetically coupled circuits. Analysis of three phase circuits: Three phase supply, balanced and unbalanced circuits, and power calculation.Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. Ryder

EEE 124 ELECTRICAL CIRCUITS LAB3 hours/Week, 1.5 Credits

In this course students will perform experiments to verify practically the theories and concepts learned in EEE-101 and EEE 123.1. To familiar with the operation of different electrical instruments.2. To verify the following theorems:

i. KCL and KVL theorem,

ii. Superposition theorem,

iii. Thevenin’s theorem,

iv. Norton’s theorem and

v. Maximum power transfer theorem

3. To design and construct of low pass and high pass filter and draw their characteristics curves.4. To investigate the voltage regulation of a simulated transmission network.

Study the characteristics of Star-Delta connection5. Study the frequency response of an RLC circuit and find its resonant frequency.6. To perform also other experiments relevant to this course.

Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. Ryder

EEE 126 ELECTRICAL CIRCUIT SIMULATION LAB3 hours/Week, 1.5 Credits

Simulation laboratory based on EEE-1011 and EEE-1113 theory courses. Students will verify the theories and concepts learned in EEE-1011 and EEE-1113 using simulation software like PSpice and Matlab. Students will also perform specific design of DC and AC circuits theoretically and by simulation.Pre-requisite: EEE 101 ELECTRICAL CIRCUITS ITextbook: Introductory circuit analysis by BoylestadReference: Networks, lines and fields by J. D. Ryder

EEE 201 DIGITAL LOGIC DESIGN3 Hours/Week, 3 Credits

Page 8: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 8 ~

Logic Families: TTL, CMOS, ECL, TristateLogic Gates: AND, OR, NAND, NOR, X-OR, X-NOR, Circuit DesignFlipflops: SR, JK, D, Master Slave, Application, SynchronizationLogic Circuits: Coder, Decoder, Mux, DmuxCounters: Synchronous, Asynchronous, Up/Down, Ripple, CascadingRegisters: Shift registersMemory Devices: ROM, RAM, Static, Dynamic, Memory OperationArithmatic Circuits: Adder, Carry, Look Ahead, ALUPAL: Microprogram Control, FPGA, HDLA

EEE 202 DIGITAL LOGIC DESIGN LAB 4 Hours/Week, 2 Credits

1. Logic circuits using combination of gates

2. Bounce-less switch using RS latch

3. 0-9 second timer using 555, counters and 7-segment display

4. Scrambler/De-scrambler circuit using latch for data communication

5. Design of nano-computer

6. Write, Read and Display contents of memory devices.

7. Project with PAL/FPGA/Microcontroller

EEE 221 ELECTRONICS I3 hours/Week, 3 Credits

P-N junction as a circuit element: Intrinsic and extrinsic semiconductors, operational principle of p-n junction diode, contact potential, current-voltage characteristics of a diode, simplified DC and AC diode models, dynamic resistance and capacitance. Diode circuits: Half wave and full wave rectifiers, rectifiers with filter capacitor, characteristics of a Zener diode, Zener shunt regulator, clamping and clipping circuits. Bipolar Junction Transistor (BJT) as a circuit element: current components, BJT characteristics and regions of operation, BJT as an amplifier, biasing the BJT for discrete circuits, small signal equivalent circuit models, BJT as a switch. Single stage mid-band frequency BJT amplifier circuits: Voltage and current gain, input and output impedance of a common base, common emitter and common collector amplifier circuits. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) as circuit element: structure and physical operation of an enhancement MOSFET, threshold voltage, Body effect, current-voltage characteristics of an enhancement MOSFET, biasing discrete and integrated MOS amplifier circuits, single-stage MOS amplifiers, MOSFET as a switch, CMOS inverter. Junction Field-Effect-Transistor (JFET): Structure and physical operation of JFET, transistor characteristics, pinch-off voltage. Differential and multistage amplifiers: Description of differential amplifiers, small-signal operation, differential and common mode gains, RC coupled mid-band frequency amplifier.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By Malvino

EEE 222 ELECTRONIC CIRCUIT SIMULATION LAB3 hours/Week, 1.5 Credits

Simulation laboratory based on EEE-221 theory course. Students will verify the theories and concepts learned in EEE 221

using simulation software like PSpice and Matlab. Students will also perform specific design of electronics circuits theoretically and by simulation.

1. To familiar with electronics devices and Laboratory Equipments.

2. To study of V-l Characteristics curve of P-N junction diode.

3. To study of V-l Characteristics curve of a Zener diode.

4. To study of Half-Wave Rectification circuit.

5. To study of Full-Wave Rectification circuit (Bridge & Cente- tap)

6. To familiar with NPN and PNP Transistors.

7. To study of Full-Wave filter circuit.

8. To study of Common Emitter (CE) Transistor Amplifier circuits.

9. To study of Clipping and clamping circuit.

10. To study of output characteristics of an FET.

11. To study of JFET as an amplifier.

Page 9: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 9 ~

To study of output characteristics of a JFET. Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By Malvino

EEE 223 ELECTRICAL MACHINES I 3 hours/Week, 3 Credits

Transformer: Ideal transformer- transformation ratio, no-load and load vector diagrams; actual transformer- equivalent circuit, regulation, short circuit and open circuit tests. Three phase induction motor: Rotating magnetic field, equivalent circuit, vector diagram, torque-speed characteristics, effect of changing rotor resistance and reactance on torque-speed curves, motor torque and developed rotor power, no-load test, blocked rotor test, starting and braking and speed control. Single phase induction motor: Theory of operation, equivalent circuit and starting.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner DecherEEE 224 ELECTRICAL MACHINES I LAB

3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 223. In the second part, students will design simple systems using the principles learned in EEE 223.Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner Decher

EEE 225 ELECTRICAL MACHINES II 3 hours/Week, 3 Credits

Synchronous Generator: excitation systems, equivalent circuit, vector diagrams at different loads, factors affecting voltage regulation, synchronous impedance, synchronous impedance method of predicting voltage regulation and its limitations. Parallel operation: Necessary conditions, synchronizing, circulating current and vector diagram. Synchronous motor: Operation, effect of loading under different excitation condition, effect of changing excitation, V-curves and starting. DC generator: Types, no-load voltage characteristics, build-up of a self excited shunt generator, critical field resistance, load-voltage characteristic, effect of speed on no-load and load characteristics and voltage regulation. DC motor: Torque, counter emf, speed, torque-speed characteristics, starting and speed regulation. Introduction to wind turbine generators Construction and basic characteristics of solar cells.Pre-requisite: EEE 223 Electrical Machines ITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner Decher

EEE 226 ELECTRICAL MACHINES II LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 225. In the second part, students will design simple systems using the principles learned in EEE 225.Pre-requisite: EEE 224 Electrical Machines I LabTextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner Decher

EEE 227 ELECTRONICS II3 hours/Week, 3 Credits

Frequency response of amplifiers: Poles, zeros and Bode plots, amplifier transfer function, techniques of determining 3 dB

frequencies of amplifier circuits, frequency response of single-stage and cascade amplifiers, frequency response of differential amplifiers. Operational amplifiers (Op-Amp): Properties of ideal Op-Amps, non-inverting and inverting amplifiers, inverting integrators, differentiator, weighted summer and other applications of Op-Amp circuits, effects of finite open loop gain and bandwidth on circuit performance, logic signal operation of Op-Amp, DC imperfections. General purpose Op-Amp: DC analysis, small-signal analysis of different stages, gain and frequency response of 741 Op-Amp. Negative feedback: properties, basic topologies, feedback amplifiers with different topologies, stability, frequency compensation. Active filters: Different types of filters and specifications, transfer functions, realization of first and second order low, high and band pass filters using Op-Amps. Signal generators: Basic principle of sinusoidal oscillation, Op-Amp RC oscillators, LC and crystal oscillators. Power Amplifiers: Classification of output stages, class A, B and AB output stages.Pre-requisite: EEE 221 Electronics ITextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By Malvino

EEE 228 ELECTRONICS LAB3 hours/Week,1.5 Credits

Page 10: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 10 ~

In this course students will perform experiments to verify practically the theories and concepts learned in EEE-221 & 227.

1. Study of R-C coupling.

2. Study of Transformer coupling.

3. Study of Direct coupling.

4. Study of R-C Phase shift Oscillator.

5. Study of Transistor Tuned Oscillator.Study of Negative feedback circuit.Pre-requisite: EEE 222 Electronic Circuit Simulation LabTextbook: Electronics Devices by R. L. BoylestadReference: Electronics Principles. By Malvino

EEE 229 ELECTROMAGNETIC FIELDS AND WAVES3 hours/Week, 3 Credits

Review of Vector Algebra and Co-ordinate System: Curvilinear Co-Ordinates, Rectangular Cylindrical and Spherical Co-Ordinates, Gradient, Divergence, Curl and Formulas involving Vector Operations,.Electrostatics: Coulombs law, Gauss’s theorem, Laplace’s and Poisson’s equations, Energy of an electrostatic system,Magneto static: Ampere’s law, Biot Savart law, Energy of magneto static system. Maxwell’s equations: Their derivations, Continuity of charges, Concept of displacement current, Electro-Magnetic Energy, Boundary conditions, The Wave Equations with Sources. Potentials used with varying charges and currents, Retarded potentials, Maxwell’s equation in different co-ordinate systems.Relation between circuit theory and field theory: Circuit concepts and the derivation from the field equations, high frequency circuit concepts, Circuit radiation resistance, Skin effect and circuit impedance, Concept of good and Perfect conductors and dielectrics, Propagation in good conductors, Reflection of uniform plane waves, standing wave ratio, Dispersion in dielectrics.Propagation of electromagnetic waves: Plane wave propagation, Polarization, Power flow and pointing theorem, Transmission line analogy, Display lines ion in dielectrics, Liquids and solids, Radio wave propagation: Different types of radio wave propagation Ionosphere, Vertical heights and critical frequencies of layers, Propagation of RW through Ionosphere, Reflection of RW, Skip distance and MUF, Fading, Static and noise, Two way communication.Pre-requisite: MAT 102 Matrices, Vector Analysis & GeometryTextbook: Field and Wave Electromagnetic by David K. ChengReference: Physics (Part-II) by Resnick & Haliday

EEE 305A BUILDING SERVICES III (ELECTRICAL)3 Hours/Week, 1.5 Credits

EEE 321 SIGNALS AND LINEAR SYSTEMS3 hours/Week, 3 Credits

Continuous-time signals and systems: Mathematical, frequency and time domain representation. Discrete-time signals and systems: Mathematical, frequency and time domain representation, Application in digital processing and communication systems.Linear Systems: Characteristics of a linear system, methods of transient and steady state solutions of differential and integro-differential equations, Network theorems, Analogous systems. Analysis by Fourier methods. Laplace transformation and its application to linear circuits. Impulse function, convolution integral and its application. Matrix with simple applications in circuits: network functions, poles and zeroes of a network. Introduction to topological concepts in electrical and magnetic circuit networks.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Signals & Linear Systems by B.P. LathiReference: Signals and Systems by Alan V. Oppenheim, Alan S. Willsky, S. Hamid, S. Hamid Nawab

EEE 323 DIGITAL ELECTRONICS3 hours/Week, 3 Credits

Introduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra, combinational logic design, minimization of combinational logic. Implementation of basic static logic gates in CMOS and BiCMOS: DC characteristics, noise margin and power dissipation. Power optimization of basic gates and combinational logic circuits. Modular combinational circuit design: pass transistor, pass gates, multiplexer, demultiplexer and their implementation in CMOS, decoder, encoder, comparators, binary arithmetic elements and ALU design. Programmable logic devices: logic arrays, field programmable logic arrays and programmable read only memory. Sequential circuits: different types of latches, flip-flops and their design using ASM approach, timing analysis and power optimization of sequential circuits. Modular sequential logic circuit design: shift registers, counters and their applications.Pre-requisite: EEE 221 Electronics ITextbook: Digital Logic Design by M. Morris ManoReference: Switching Theory by Dr. V. K. Jain

EEE 324 DIGITAL ELECTRONICS LAB3 hours/Week, 1.5 Credits

Page 11: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 11 ~

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-323. In the second part, students will design simple systems using the principles learned in EEE-323.

1. To construct and study the following logic gates: AND, OR, NOT. NAND, NOR, EXOR

2. Verify the Demorgan’s Law : Law(I) and Law(II)

3. To Verify different kind of applications of Boolean algebra.

4. To construct an AND gate by diode resistors and observe its characteristics.

5. To verify the characteristics of Exclusive OR and Exclusive NOR using basic logic gate.6. Verification of De-Morgan’s Theorem for 2 input Variable.

6. To simplify the given Boolean function by using K-map and implement it with logic Diagram.

7. ABCD to 7 Segment Decoder

8. Study of 4-bit BCD adder.

9. Study of Asynchronous & Synchronous R-S Flip-Flop.

10. Study of J-K Flip-Flop.11. Study of 4-bit binary Ripple Counter.

Pre-requisite: EEE 222 Electronic Circuit Simulation LabTextbook: Digital Logic Design by M. Morris ManoReference: Switching Theory by Dr. V. K. JainEEE 325 POWER SYSTEM I3 hours/Week, 3 Credits

Network representation: Single line and reactance diagram of power system and per unit. Line representation: equivalent circuit of short, medium and long lines. Load flow: Gauss- Siedel and Newton Raphson Methods. Power flow control: Tap changing transformer, phase shifting, booster and regulating transformer and shunt capacitor. Fault analysis: Short circuit current and reactance of a synchronous machine. Symmetrical fault calculation methods: symmetrical components, sequence networks and unsymmetrical fault calculation. Protection: Introduction to relays, differential protection and distance protection. Introduction to circuit breakers. Typical layout of a substation. Load curves: Demand factor, diversity factor, load duration curves, energy load curve, load factor, capacity factor and plant factorPre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Transient Phenomena in Electrical Power Systems by Valentin Andreevich Venikov

EEE 326 POWER SYSTEM I LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-325. In the second part, students will design simple systems using the principles learned in EEE-325.Pre-requisite: EEE 124 Electrical Circuits Lab & EEE 126 Electrical Circuit Simulation LabTextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Transient Phenomena in Electrical Power Systems by Valentin Andreevich Venikov

EEE 327 ELECTRICAL PROPERTIES OF MATERIALS3 hours/Week, 3 Credits

Wiring system design, drafting, and estimation. Design for illumination and lighting. Electrical installations system design: substation, BBT and protection, air-conditioning, heating and lifts. Design for intercom, public address systems, telephone system and LAN. Design of security systems including CCTV, fire alarm, smoke detector, burglar alarm, and sprinkler

system. A design problem on a multi-storied building.Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Properties of Materials by Rolf E. HummerlReference: Properties Of Materials: Anisotropy, Symmetry, Structure by Robert Everest Newnham

EEE 328 ELECTRICAL SERVICES DESIGN3 hours/Week, 1.5 Credits

Crystal structures: Types of crystals, lattice and basis, Bravais lattice and Miller indices. Classical theory of electrical and thermal conduction: Scattering, mobility and resistivity, temperature dependence of metal resistivity, Mathiessen’s rule, Hall effect and thermal conductivity. Introduction to quantum mechanics: Wave nature of electrons, Schrodinger’s equation, one-dimensional quantum problems- infinite quantum well, potential step and potential barrier; Heisenbergs’s uncertainty principle and quantum box. Band theory of solids: Band theory from molecular orbital, Bloch theorem, Kronig-Penny model, effective mass, density-of-states. Carrier statistics: Maxwell-Boltzmann and Fermi-Dirac distributions, Fermi energy. Modern theory of metals: Determination of Fermi energy and average energy of electrons, classical and quantum mechanical calculation of specific heat. Dielectric properties of materials: Dielectric constant, polarization- electronics, ionic and orientational; internal field, Clausius-Mosotti equation, spontaneous polarization, frequency dependence of dielectric constant, dielectric loss and piezoelectricity. Magnetic properties of materials: Magnetic moment, magnetization and relative permitivity, different types of magnetic materials, origin of ferromagnetism and magnetic domains. Introduction to superconductivity: Zero resistance and Meissner effect, Type I and Type II superconductors and critical current density.

Page 12: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 12 ~

Pre-requisite: EEE 101 Electrical Circuits I & EEE 123 Electrical Circuits IITextbook: Electronics Properties of Materials by Rolf E. HummerlReference: Properties Of Materials: Anisotropy, Symmetry, Structure by Robert Everest Newnham

EEE 329 DIGITAL COMMUNICATION ENGINEERING3 hours/Week, 3 Credits

Introduction: Basic constituents of communication system. Need for using high carrier frequency, Classification of RF spectrum. Communication channels, mathematical model and characteristics. Probability and stochastic processes. Source coding: Mathematical models of information, entropy, Huffman code and linear predictive coding. Digital transmission system: Base band digital transmission, inter-symbol interference, bandwidth, power efficiency, modulation and coding trade-off. Receiver for AWGN channels: Correlation demodulator, matched filter demodulator and maximum likelihood receiver. Channel capacity and coding: Channel models and capacities and random selection of codes. Block codes and conventional codes: Linear block codes, convolution codes and coded modulation. Spread spectrum signals and system.Pre-requisite: MAT 221 Ordinary and Partial Differential Equations and

EEE 323 Digital ElectronicsTextbook: Digital Communications by John G. ProakisReference: Communication System by Simon Haykin

EEE 330 DIGITAL COMMUNICATION ENGINEERING LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-329. In the second part, students will design simple systems using the principles learned in EEE-329Pre-requisite: MAT 221 Ordinary and Partial Differential Equations

EEE 324 Digital ElectronicsTextbook: Communication Theory: Epistemological Foundations by James Arthur AndersonReference: Modern Digital and Analog Communication System by B.P. Lathi

EEE 331 DIGITAL SIGNAL PROCESSING I3 hours/Week, 3 Credits

Introduction to digital signal processing (DSP): Discrete-time signals and systems, analog to digital conversion, impulse response, finite impulse response (FIR) and infinite impulse response (IIR) of discrete-time systems, difference equation, convolution, transient and steady state response. Discrete transformations: Discrete Fourier series, discrete-time Fourier series, discrete Fourier transform (DFT) and properties, fast Fourier transform (FFT), inverse fast Fourier transform, z-transformation - properties, transfer function, poles and zeros and inverse z-transform. Correlation: circular convolution, auto-correlation and cross correlation. Digital Filters: FIR filters- linear phase filters, specifications, design using window, optimal and frequency sampling methods; IIR filters- specifications, design using impulse invariant, bi-linear z- transformation, least-square methods and finite precision effects.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Digital Signal Processing by John G. ProakisReference: Introduction to Digital Signal Processing by Johnny R. Johnson

EEE 332 DIGITAL SIGNAL PROCESSING I LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE 331. In the second part, students will design simple systems using the principles learned in EEE 331.

1. Time Domain Characterization of LTI system.

2. DFT and IDFT computation.

3. Rational Z-transform and inverse of it.

4. Schur-Cohn Stability test.

5. IIR digital filter design.

6. FIR digital filter design.

7. Design of linear phase FIR filters based on windowed Fourier Series Approach.

8. Application of FFT and IFFT functions.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Digital Signal Processing by John G. ProakisReference: Introduction to Digital Signal Processing by Johnny R. Johnson

EEE 333 MICROPROCESSOR & ASSEMBLY LANGUAGE3 hours/Week, 3 Credits

Microprocessor: Introduction to different types of microprocessors. Microprocessor architecture, instruction set, interfacing, I/O operation,Interrupt structure, DMA. Microprocessor interface ICs. Advanced microprocessors; parallelism in microprocessors. Concepts of

Page 13: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 13 ~

Microprocessor based systems design.Assembly LanguageIntroduction: Machine & assembly languages, Necessity and applications, Elements of assembly languages, Expression and operators, Statements, Format, Machine instructions and mnemonics, Register, Flags and stack.Instruction sets and implementation: Data definition and transfer, Arithmetic instructions, Character representation instructions, Addressing modes, Instructions and data in memory.Subroutine: Calling, Parameter passing, and Recursion.Macros: Calling macros, Macro operators, Advance macros usage.Files: DOS file functions, Text file, Bit file, and File manipulation.I/O programming: Procedure, Software interrupts, DOS functions call.Machine and assembly language programming (macro and large system)Advanced programming techniques in assembly language, interfacing with high level programmingPre-requisite: EEE 323 Digital ElectronicsTextbook: Microprocessor & Microprocessor Based System Design by Dr. M. RafiquzzamanReference: Microprocessor Architecture, Programming & Applications by R.S. Gaonker

EEE 334 MICROPROCESSOR & ASSEMBLY LANGUAGE LAB3 hours/Week, 1.5 Credits

1. Registers, JMP, LOOP, CMP instructions, and Conditional jump instruction.

2. Implementation of different types of instructions (rotating, shifting etc)

3. Instructions (MUL, IMUL, DIV, IDIV, CBW, CWD, arrays, XLAT).

4. String instructions, macro handling.

5. Bios Interrupt, Dos Interrupt

6. The IN, OUT, INS and OUTS instructions, 7. To perform also other experiments relevant to this course.

Pre-requisite: EEE 324 Digital Electronics LabTextbook: Microprocessor & Microprocessor Based System Design by Dr. M. RafiquzzamanReference: Microprocessor Architecture, Programming & Applications by R.S. Gaonker

EEE 335 CONTROL SYSTEM I3 hours/Week, 3 Credits

Introduction to control systems. Linear system models: transfer function, block diagram and signal flow graph (SFG). State variables: SFG to state variables, transfer function to state variable and state variable to transfer function. Feedback control system: Closed loop systems, parameter sensitivity, transient characteristics of control systems, effect of additional pole and zero on the system response and system types and steady state error. Routh stability criterion. Analysis of feedback control system: Root locus method and frequency response method. Design of feedback control system: Controllability and observability, root locus, frequency response and state variable methods. Digital control systems: introduction, sampled data systems, stability analysis in Z-domain.Pre-requisite: EEE 323 Digital ElectronicsTextbook: Control Systems Engineering by Norman S. NiseReference: Modern Control Engineering (4th Edition) by Katsuhiko Ogata

EEE 336 CONTROL SYSTEM I LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-335. In the second part, students will design simple systems using the principles learned in EEE-335.

Pre-requisite: EEE 324 Digital Electronics LabTextbook: MATLAB 6.1 Supplement to accompany Control Systems Engineering by Norman S. NiseReference: Control Systems Engineering by Norman S. Nise

EEE 400 PROJECT/THESIS (INITIAL WORK)2 hours/Week, 2 Credits

Project work based on all major coursesPre-requisite: Completion of 300 level coursesTextbook: N/AReference: N/A

EEE 421 SOLID STATE DEVICES3 hours/Week, 3 Credits

Semiconductors in equilibrium: Energy bands, intrinsic and extrinsic semiconductors, Fermi levels, electron and hole concentrations, temperature dependence of carrier concentrations and invariance of Fermi level. Carrier transport processes and excess carriers: Drift and diffusion, generation and

Page 14: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 14 ~

recombination of excess carriers, built-in-field, Einstein relations, continuity and diffusion equations for holes and electrons and quasi-Fermi level. PN junction: Basic structure, equilibrium conditions, contact potential, equilibrium Fermi level, space charge, non-equilibrium condition, forward and reverse bias, carrier injection, minority and majority carrier currents, transient and AC conditions, time variation of stored charge, reverse recovery transient and capacitance. Bipolar Junction Transistor: Basic principle of pnp and npn transistors, emitter efficiency, base transport factor and current gain, diffusion equation in the base, terminal currents, coupled-diode model and charge control analysis, Ebers-Moll equations and circuit synthesis. Metal-semiconductor junction: Energy band diagram of metal semiconductor junctions, rectifying and ohmic contacts. MOS structure: MOS capacitor, energy band diagrams and flat band voltage, threshold voltage and control of threshold voltage, static C-V characteristics, qualitative theory of MOSFET operation, body effect and current-voltage relationship of a MOSFET. Junction Field-Effect-Transistor: Introduction, qualitative theory of operation, pinch-off voltage and current-voltage relationship.Pre-requisite: EEE 221 EEE 221 Electronics ITextbook: Solid State Electronics Devices (6th Edition) by Ben Streetman and Sanjay BanerjeeReference: Modular Series on Solid State Devices by Robert F. Pierret, Gerold Neudeck

EEE 423 COMPUTER INTERFACING AND INDUSTRIAL AUTOMATION3 hours/Week, 3 Credits

Introductory Concept: I/O interface, memory interface, interfacing components and their characteristics. Interfacing components: 8284A Programmable timer, Bus architecture, Bus Timing, Bus Controller, analog and digital interface.Interrupt: Interrupt sources, types of interrupt, 8259A priority interrupt controller, Daisy chainSerial Interface: Characteristics of memory and I/O interface, Synchronous and asynchronous communication, Serial I/O interface, 8251A communication interface, RS-232 interfaceParallel Interface: 8155A Programmable peripheral Interface, Parallel adapter, parallel portI/O Controller: 8237A DMA Controller, Floppy and Hard disk ControllerPeripheral Components: Barcode Reader, Sound card, Stepper motor and opto-isolation, MIDI interface, power circuits.Industrial Automation: Part A: General concepts of the industrial production. Concepts of production systems and production processes. Automation production systems and their classification. Production equipment. Process and manufacturing productions automation. Flexibility of the manufacturing systems: general elements. Principal performance indexes. Part B: Modeling and control of Discrete Events Systems (DES). Discrete Events Systems (DES) concepts review; their use in modelingproductive processes. Importance of DES for engineers and relevant features of control of such systems. Preliminary elements on the Petri Nets as DES modeling formalisms. Fundamental properties of the Petri nets. Place and Transition-invariant. Modeling of typical elements of the manufacturing systems. Examples of production systems models. Analysis of cyclic production systems. Supervisory Control of DES using Petri Nets. Elements of SFC language.Pre-requisite: EEE 333 Microprocessor & Assembly Language & EEE 335 Control System ITextbook: Microprocessor and Interface by Douglas V. Hall and

Process Control Instrumentation Technology by C. D. JohnsonReference: Microprocessor and Interfacing by Mohamed Rafiquzzaman

EEE 424 COMPUTER INTERFACING AND INDUSTRIAL AUTOMATION LAB3 hours/Week, 1.5 Credits

This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-423. In the second part, students will design simple systems using the principles learned in EEE-423.Some of the experiments are:

Registers, JMP, LOOP, CMP instructions, and Conditional jump instruction. Implementation of different types of instructions (rotating, shifting etc) Instructions (MUL, IMUL, DIV, IDIV, CBW, CWD, arrays, XLAT).

String instructions, macro handling. Bios Interrupt, Dos Interrupt The IN, OUT, INS and OUTS instructions, Computer Interfacing Details about parallel port ( pin description, port address and commands) LED interface through parallel port. Interfacing 7-segment Display High power load interface Stepping motor interface and to control it both in clockwise and anti-clockwise direction Inputting data through parallel port Serial port programming Interfacing a robot manipulator arm and writing a program to control it Parallel port programming using Visual Basic Voice Interface

List of the Project:

Page 15: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 15 ~

1. Traffic Control system

2. Interfacing a joystick using parallel port

3. 3-DOF robot manipulator arm control

4. Room Automation

5. Electronics voting machine

6. Interfacing a 2x8 character LCD displayTo perform also other experiments relevant to this coursePre-requisite: EEE 334 Microprocessor & Assembly Language Lab & EEE 336 Control System I LabTextbook: Microprocessor and Microcomputer Based System Design by Microprocessor Data handbookReference: Microprocessor and Interface by Douglas V. Hall

EEE 408 PROJECT/THESIS (Finalization and Submission)8 hours/Week, 4 Credits

Project work based on all major coursesPre-requisite: Completion of 300 level coursesTextbook: N/AReference: N/A

EEE OptionsPOWER OPTIONS

EEE 337 POWER SYSTEM II3 hours/Week, 3 Credits

Transmission lines cables: overhead and underground. Stability: swing equation, power angle equation, equal area criterion, multi-machine system, step by step solution of swing equation. Factors affecting stability. Reactive power compensation. Flexible AC transmission system (FACTS). High voltage DC transmission system. Power quality: harmonics, sag and swell.Pre-requisite: EEE 325 Power System ITextbook: Communication and Control in Electric Power Systems: Applications of Parallel and Distributed by Mohammad ShahidehpourReference: Economic Operation of Power Systems by Leon Kenneth Kirchmayer

EEE 439 ELECTRICAL MACHINES III3 hours/Week, 3 Credits

Special machines: series universal motor, permanent magnet DC motor, unipolar and bipolar brush less DC motors, stepper motor and control circuits. Reluctance and hysteresis motors with drive circuits, switched reluctance motor, electro static motor, repulsion motor, synchros and control transformers. Permanent magnet synchronous motors. Acyclic machines: Generators, conduction pump and induction pump. Magneto hydrodynamic generators. Fuel Cells, thermoelectric generators, flywheels. Vector control, linear motors and traction. Photovoltaic systems: stand alone and grid interfaced. Wind turbine generators: induction generator, AC-DC-AC conversion.Pre-requisite: EEE 225 Electrical Machines IITextbook: Energy conversion by Kenneth C. WestonReference: Energy conversion: systems, flow physics and engineering by Professor Reiner decher

EEE 441 POWER ELECTRONICS3 hours/Week, 3 Credits

EEE 442 POWER ELECTRONICS LAB3 hours/Week, 1.5 CreditsPower semiconductor switches and triggering devices: BJT, MOSFET, SCR, IGBT, GTO, TRIAC, UJT and DIAC. Rectifiers: Uncontrolled and controlled single phase and three phase. Regulated power supplies: Linear-series and shunt, switching buck, buckboost, boost and Cuk regulators. AC voltage controllers: single and three phase. Choppers. DC motor control. Single phase cycloconverter. Inverters: Single phase and three phase voltage and current source. AC motor control. Stepper motor control. Resonance inverters. Pulse width modulation control of static converters.Lab work: This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-441.

Page 16: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 16 ~

In the second part, students will design simple systems using the principles learned in EEE-441.Pre-requisite: EEE 227 Electronics II , EEE 325 Power System I and their LabsTextbook: An Introduction to Power Electronics by Bird, B. M., K. G. King, and D. A. G. Ped derReference: Power electronics systems: theory and design by Agrawal, Jai P.

EEE 443 POWER PLANT ENGINEERING3 hours/Week, 3 Credits

Power plants: general layout and principles, steam turbine, gas turbine, combined cycle gas turbine, hydro and nuclear. Power plant instrumentation. Selection of location: Technical, economical and environmental factors. Load forecasting. Generation scheduling: deterministic and probabilistic. Electricity tariff: formulation and types.Pre-requisite: EEE 337 Power System IITextbook: Power Plant Engineering by Larry Drbal, Kayla Westra, Pat BostonReference: Power Generation Handbook : Selection, App by Philip Kiameh

EEE 445 POWER SYSTEM PROTECTION3 hours/Week, 3 Credits

EEE 446 POWER SYSTEM PROTECTION LAB3 hours/Week, 1.5 Credits

Purpose of power system protection. Criteria for detecting faults: over current, differential current, difference of phase angles, over and under voltages, power direction, symmetrical components of current and voltages, impedance, frequency and temperature. Instrument transformers: CT and PT. Electromechanical, electronics and digital Relays: basic modules, over current, differential, distance and directional. Trip circuits. Unit protection schemes: Generator, transformer, motor, bus bar, transmission and distribution lines. Miniature circuit breakers and fuses. Circuit breakers: Principle of arc extinction, selection criteria and ratings of circuit breakers, types - air, oil, SF6 and vacuum.Lab work: This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-445. In the second part, students will design simple systems using the principles learned in EEE-445.Pre-requisite: EEE 337 Power System IITextbook: Power System Protection by Paul M. AndersonReference: Practical Power System Protection by Leslie Hewitson

EEE 447 HIGH VOLTAGE ENGINEERING3 hours/Week, 3 Credits

EEE 448 HIGH VOLTAGE ENGINEERING LAB3 hours/Week, 1.5 Credits

High voltage DC: Rectifier circuits, voltage multipliers, Van-de-Graaf and electrostatic generators. High voltage AC: Cascaded transformers and Tesla coils. Impulse voltage: Shapes, mathematical analysis, codes and standards, single and multi-stage impulse generators, tripping and control of impulse generators. Breakdown in gas, liquid and solid dielectric materials. Corona. High voltage measurements and testing. Over-voltage phenomenon and insulation coordination. Lightning and switching surges, basic insulation level, surge diverters and arresters.Pre-requisite: EEE 337 Power System IITextbook: High Voltage Engineering by M.S. NaiduReference: Dielectric Phenomena In High Voltage Engineering by F. W. Peek

EEE 449 POWER SYSTEM RELIABILITY3 hours/Week, 3 Credits

Review of probability concepts. Probability distribution: Binomial, Poisson, and Normal. Reliability concepts: Failure rate, outage, mean time to failure, series and parallel systems and redundancy. Markov process. Probabilistic generation and load models. Reliability indices: Loss of load probability and loss of energy probability. Frequency and duration. Reliability evaluation techniques of single area system.Pre-requisite: EEE 337 Power System IITextbook: Power System Reliability Evaluation by R. BillintonReference: Reliability Assessment of Electrical Power Systems Using Monte Carlo Methods by Billinton

EEE 451 POWER SYSTEM OPERATION AND CONTROL3 hours/Week, 3 Credits

Principles of power system operation: SCADA, conventional and competitive environment. Unit commitment, static security analysis, state estimation, optimal power flow, automatic generation control and dynamic security analysis.Pre-requisite: EEE 337 Power System II and EEE 335 Control System ITextbook: Power System Operation by Robert H. Miller, James H. MalinowskReference: Electric Utility Systems and Practices by Homer M. Rustebakke

Page 17: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 17 ~

ELECTRONICS OPTIONSEEE 351 ANALOG INTEGRATED CIRCUITS3 hours/Week, 3 Credits

Review of FET amplifiers: Passive and active loads and frequency limitation. Current mirror: Basic, cascode and active current mirror. Differential Amplifier: Introduction, large and small signal analysis, common mode analysis and differential amplifier with active load. Noise: Introduction to noise, types, representation in circuits, noise in single stage and differential amplifiers and bandwidth. Band-gap references: Supply voltage independent biasing, temperature independent biasing, proportional to absolute temperature current generation and constant transconductance biasing. Switch capacitor circuits: Sampling switches, switched capacitor circuits including unity gain buffer, amplifier and integrator. Phase Locked Loop (PLL): Introduction, basic PLL and charge pumped PLL.Pre-requisite: EEE 227 Electronics IITextbook: Analysis and Design of Analog Integrated Circuits

by Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. MeyerReference: CMOS Analog Circuit Design by Phillip E. Allen

EEE 453 PROCESSING AND FABRICATION TECHNOLOGY3 hours/Week, 3 Credits

Substrate materials: Crystal growth and wafer preparation, epitaxial growth technique, molecular beam epitaxy, chemical vapor phase epitaxy and chemical vapor deposition (CVD). Doping techniques: Diffusion and ion implantation. Growth and deposition of dielectric layers: Thermal oxidation, CVD, plasma CVD, sputtering and silicon-nitride growth. Etching: Wet chemical etching, silicon and GaAs etching, anisotropic etching, selective etching, dry physical etching, ion beam etching, sputtering etching and reactive ion etching. Cleaning: Surface cleaning, organic cleaning and RCA cleaning. Lithography: Photo-reactive materials, pattern generation, pattern transfer and metalization. Discrete device fabrication: Diode, transistor, resistor and capacitor. Integrated circuit fabrication: Isolation - pn junction isolation, mesa isolation and oxide isolation. BJT based microcircuits, p-channel and n-channel MOSFETs, complimentary MOSFETs and silicon on insulator devices. Testing, bonding and packaging.Pre-requisite: EEE 227 Electronics IITextbook: Semiconductor Technology: Processing and Novel Fabrication Techniques

by Michael E. Levinshtein, Michael S. ShurReference: Photomask Fabrication Technology by Benjamin G. Eynon, Banqiu Wu

EEE 455 VLSI I3 hours/Week, 3 Credits

EEE 456 VLSI I LAB3 hours/Week, 1.5 Credits

VLSI technology: Top down design approach, technology trends and design styles. Review of MOS transistor theory: Threshold voltage, body effect, I-V equations and characteristics, latch-up problems, NMOS inverter, CMOS inverter, pass-transistor and transmission gates. CMOS circuit characteristics and performance estimation: Resistance, capacitance, rise and fall times, delay, gate transistor sizing and power consumption. CMOS circuit and logic design: Layout design rules and physical design of simple logic gates. CMOS subsystem design: Adders, multiplier and memory system, arithmetic logic unit. Programmable logic arrays. I/O systems. VLSI testing.Lab work: This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-455. In the second part, students will design simple systems using the principles learned in EEE-455Pre-requisite: EEE 323 Digital Electronics and EEE 324 Digital Electronics LabTextbook: CMOS Circuit design, Layout and Simulation, Modern VLSI Design : Systems on Silicon

by R.Jacob Baker, Harry W .Li, David E.BoyceReference: Design of VLSI Systems : A practical Introduction, by Linda E.M. Brackendury

EEE 457 MICROCONTROLLER SYSTEM DESIGN3 hours/Week, 3 Credits

EEE 458 MICROCONTROLLER SYSTEM DESIGN LAB3 hours/Week, 1.5 Credits

The internal structure and operation of microcontrollers will be studied. The design methodology for software and hardware applications will be developed through the labs and design projects The objective of this course is to teach students design and interfacing of microcontroller-based embedded systems. High-level languages are used to interface the microcontrollers to various applications. There are extensive hands-on labs/projects. Embedded system for sensor applications will be introduced. GUI using C#

Lab work: (1) PIC microcontrollers: introduction and features, (2) CCS C Compiler and PIC18F Development System, (3) PIC Architecture & Programming, (4) PIC I/O Port Programming, (5) PIC Programming in C (6) PIC18 Hardware Connection and ROM loaders, (7) PIC18 Timers Programming, (8) PIC18 Serial Port Programming, (9) Interrupt Programming, (10) LCD and Keypad Interface, (11) External

Page 18: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 18 ~

EEPROM and I2C, (12) USB and HID Class, (13) ADC and DAC, (14) Sensor and other Applications, (15) CCP and ECCP Programming, (16) Capture Mode Programming and Pulse Width Measurement, (17) C# RS232 Interface Programming, (18) C# GUI Plot Program, (19) Digital Oscilloscope, spectral Analyzer, and multi-meter, (20) Impact of engineering solutions in a global, economic, environmental, and societal context, (21) Knowledge of contemporary issues, (22) Final ProjectPre-requisite: EEE 323 Digital Electronics and EEE 324 Digital Electronics LabTextbook: The PIC Microcontroller and Embedded systems – Using Assembly and C for PIC18

by Muhammad Ali Mazidi, Rolin D. McKinlay, and Danny CauseyReference: Embedded System Design with the Atmel Avr Microcontroller By Steven Barrett

EEE 459 COMPOUND SEMICONDUCTOR AND HETERO-JUNCTION DEVICES3 hours/Week, 3 Credits

Compound semiconductor: Zinc-blend crystal structures, growth techniques, alloys, band gap, density of carriers in intrinsic and doped compound semiconductors. Hetero-Junctions: Band alignment, band offset, Anderson’s rule, single and double sided hetero-junctions, quantum wells and quantization effects, lattice mismatch and strain and common hetero-structure material systems. Hetero-Junction diode: Band banding, carrier transport and I-V characteristics. Hetero-junction field effect transistor: Structure and principle, band structure, carrier transport and I-V characteristics. Hetero-structure bipolar transistor (HBT): Structure and operating principle, quasi-static analysis, extended Gummel-Poon model, Ebers-Moll model, secondary effects and band diagram of a graded alloy base HBT.Pre-requisite: EEE 421 Solid State DevicesTextbook: Compound semiconductor electronics: the age of maturity, by M shurReference: Sige heterojunction bipolar transistors by Peter ashburn

EEE 461 VLSI II3 hours/Week, 3 Credits

EEE 462 VLSI II LAB3 hours/Week, 1.5 Credits

VLSI MOS system design: Layout extraction and verification, full and semi-full custom design styles and logical and physical positioning. Design entry tools: Schematic capture and HDL. Logic and switch level simulation. Static timing. Concepts and tools of analysis, solution techniques for floor planning, placement, global routing and detailed routing. Application specific integrated circuit design including FPGA.Lab work: This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-461. In the second part, students will design simple systems using the principles learned in EEE-461Pre-requisite: EEE 455 VLSI I and EEE 456 VLSI I LabTextbook: Digital Integrated Circuits by Jan M. Rabaey

Reference: Silicon VLSI Technology: Fundamentals, Practice and Modeling by James D. Plummer, Michael D. Deal and Peter B. Griffin

EEE 463 PROGRAMMABLE ASIC DESIGN3 hours/Week, 3 Credits

EEE 464 PROGRAMMABLE ASIC DESIGN LAB3 hours/Week, 1.5 Credits

The goal of the course is to introduce digital design techniques using field programmable gate arrays (FPGAs). We will discuss FPGA architecture, digital design flow using FPGAs, and other technologies associated with field programmable gate arrays. The course study will involve extensive lab projects to give students hands-on experience on designing digital systems on FPGA platforms.Topics include:1. Introduction to ASICs and FPGAs, 2. Fundamentals in digital IC design, 3. FPGA & CPLD Architectures, 4. FPGA Programming Technologies, 5. FPGA Logic Cell Structures, 6. FPGA Programmable Interconnect and I/O Ports, 7. FPGA Implementation of Combinational Circuits, 8. FPGA Sequential Circuits, 9. Timing Issues in FPGA Synchronous Circuits, 10. Introduction to Verilog HDL and FPGA Design flow with using Verilog HDL, 11. FPGA Arithmetic Circuits, 12. FPGAs in DSP Applications, 13. FPGA Implementation of Direct Digital Frequency Synthesizer, 14. FPGA Microprocessor design, 15. Design Case Study: Design of SDRAM Controller, 16. Design Case Study: Design of Halftone Pixel Converter, 17. FPGA High-level Design Techniques, 18. Programming FPGAs in Electronic Systems, 19. Dynamically Reconfigurable Systems, 20. Latest Trends in Programmable ASIC and System Design.Lab work: 1. Implement an encoding circuit with using user constraint file 2. Implement an 8-bit signed multiplier with using user constraint file. Study how user constraint files can be used to improve circuit performance 3. Design and implement an multiplier and accumulator (MAC) unit using distributed arithmetic circuits 4. Project: Implementing a fixed-point 2nd-order low-pass filter

Pre-requisite: EEE 457 Microcontroller System Design, EEE 458 Microcontroller System Design LabTextbook: FPGA-Based System Design by Wayne WolfReference: Advanced FPGA Design by Steve Kilts

Page 19: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 19 ~

EEE 465 OPTOELECTRONICS3 hours/Week, 3 Credits

Optical properties in semiconductor: Direct and indirect band-gap materials, radiative and non-radiative recombination, optical absorption, photo-generated excess carriers, minority carrier life time, luminescence and quantum efficiency in radiation. Properties of light: Particle and wave nature of light, polarization, interference, diffraction and blackbody radiation. Light emitting diode (LED): Principles, materials for visible and infrared LED, internal and external efficiency, loss mechanism, structure and coupling to optical fibers. Stimulated emission and light amplification: Spontaneous and stimulated emission, Einstein relations, population inversion, absorption of radiation, optical feedback and threshold conditions. Semiconductor Lasers: Population inversion in degenerate semiconductors, laser cavity, operating wavelength, threshold current density, power output, hetero-junction lasers, optical and electrical confinement. Introduction to quantum well lasers. Photo-detectors: Photoconductors, junction photo-detectors, PIN detectors, avalanche photodiodes and phototransistors. Solar cells: Solar energy and spectrum, silicon and Schottkey solar cells. Modulation of light: Phase and amplitude modulation, electro-optic effect, acousto-optic effect and magneto-optic devices. Introduction to integrated optics.Pre-requisite: EEE 227 Electronics IITextbook: Electrochromism and Electrochromic Devices

by Paul Monk, R. J. Mortimer, D. R. RosseinskyReference: Optical System Design by Robert Fischer, Paul R. Yoder, Biljana Tadic-Galeb

EEE 467 SEMICONDUCTOR DEVICE THEORY3 hours/Week, 3 Credits

Lattice vibration: Simple harmonic model, dispersion relation, acoustic and optical phonons. Band structure: Isotropic and anisotropic crystals, band diagrams and effective masses of different semiconductors and alloys. Scattering theory: Review of classical theory, Fermi-Golden rule, scattering rates of different processes, scattering mechanisms in different semiconductors, mobility. Different carrier transport models: Drift-diffusion theory, ambipolar transport, hydrodynamic model, Boltzman transport equations, quantum mechanical model, simple applications.Pre-requisite: EEE 421 Solid State DevicesTextbook: Power Semiconductor Devices: Theory and Applications

by Vítezslav Benda, Duncan A. Grant, John Gowar.Reference: Physics of Semiconductor Devices by Simon M. Sze

COMMUNICATION OPTIONSEEE 371 RANDOM SIGNALS AND PROCESSES3 hours/Week, 3 Credits

Probability and random variables. Distribution and density functions and conditional probability. Expectation: moments and characteristic functions. Transformation of a random variable. Vector random variables. Joint distribution and density. Independence. Sums of random variables. Random Processes. Correlation functions. Process measurements. Gaussian and Poisson random processes. Noise models. Stationarity and Ergodicity. Spectral Estimation. Correlation and power spectrum. Cross spectral densities. Response of linear systems to random inputs. Introduction to discrete time processes, Mean-square error estimation, Detection and linear filtering.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Introduction to Random Signals and Processes by Michael HaagReference: An Introduction to the Theory of Random Signals and Noise by Wilbur B., Jr. Davenport, William L. Root

EEE 473 DIGITAL SIGNAL PROCESSING II3 hours/Week, 3 Credits

Spectral estimation: Nonparametric methods – discrete random processes, autocorrelation sequence, periodogram; parametric method–autoregressive modeling, forward/backward linear prediction, Levinson-Durbin algorithm, minimum variance method and Eigen-structure method I and II. Adaptive signal processing: Application, equalization, interference suppression, noise cancellation, FIR filters, minimum mean-square error criterion, least mean-square algorithm and recursive least square algorithm. Multi-rate DSP: Interpolation and decimation, poly-phase representation and multistage implementation. Perfect reconstruction filter banks: Power symmetric, alias-free multi-channel and tree structured filter banks. Wavelets: Short time Fourier transform, wavelet transform, discrete time orthogonal wavelets and continuous time wavelet basis.Pre-requisite: EEE 331 Digital Signal Processing ITextbook: Digital Signal Processing by John G. ProakisReference: Digital Signal Processing by Alan V. Oppenheim and R. W. Schafer

EEE 475 RF AND MICROWAVE ENGINEERING3 hours/Week, 3 Credits

EEE 476 RF AND MICROWAVE ENGINEERING LAB3 hours/Week, 1.5 Credits

Electromagnetic Engineering Antenna Theory and Practice Analytical and Computational Techniques in Electromagnetics, RF and Microwave Circuits and Antenna . RF and Microwave Integrated Circuits. Tuned small-signal amplifiers, mixers and active filters, oscillators; receivers; amplitude modulation; single side-band modulation; angle modulation; digital communications; transmission lines and cables; radio wave propagation; antennae. Spectral analysis; phase locked loops; noise; antennae; cellular radio; meteor burst communications; spread spectrum techniques.

Page 20: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 20 ~

Transmission lines: Voltage and current in ideal transmission lines, reflection, transmission, standing wave, impedance transformation, Smith chart, impedance matching and lossy transmission lines. Waveguides: general formulation, modes of propagation and losses in parallel plate, rectangular and circular waveguides. Microstrips: Structures and characteristics. Rectangular resonant cavities: Energy storage, losses and Q. Radiation: Small current element, radiation resistance, radiation pattern and properties, Hertzian and half wave dipoles. Antennas: Mono pole, horn, rhombic and parabolic reflector, array, and Yagi-Uda antenna.Lab work:This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-475. In the second part, students will design simple systems using the principles learned in EEE-475.Pre-requisite: EEE 321 Signals and Linear SystemsTextbook: Microwave devices and Circuits by Samuel Y. LiasReference: Microwave Engineering by P.A. Rizzi

EEE 477 GEOGRAPHICAL COMMUNICATION3 hours/Week, 3 Credits

By the end of the course students will…

1. Understand how communication both structures and is structured by geography.

2. Understand the uneven geographical development of the Internet and other communication technologies.

3. Recognize the significance of the location of physical telecommunications infrastructure in the construction of cyberspaces.

4. Understand the ways that communications technologies may be undermining or enhancing the creation of community.

5. Critically analyze the content of online communications.

6. Apply principles of good web design (including principles of accessibility for people with disabilities) to become a content creator as well as a content consumer.

7. Be able to identify the ways that online and offline worlds interconnect.

8. Understand the interrelationships among the disciplines of communication and geography.

9. Understand how their own relationships with others are affected by telecommunications technologies.

10. Understand how technological skills may be used to benefit their own and other's communities.

11. Develop skills in managing complex projects and in working as a part of a team. be able to identify both printed and online sources of information that they can use in the future to understand the changing geography of communication.

12. Develop web design skills that may be useful for gaining employment upon graduation. Pre-requisite: EEE 329 Basic Communication EngineeringTextbook: The Cybercities Reader by Stephen Graham. Reference: Mapping Cyberspace by Martin Dodge and Rob Kitchin

EEE 481 OPTICAL FIBER COMMUNICATION3 hours/Week, 3 Credits

EEE 482 OPTICAL FIBER COMMUNICATION LAB3 hours/Week, 1.5 Credits

Optical fiber as wave-guides: Ray theory, Modes, SMF, MMF, Step Index and graded Index Fiber, Transmission Characteristic: Attenuation, Dispersion, Polarization, Fabrication: Liquid phase, Vapor phase, Fiber Cables, Connectors and Couplers: Alignment and joint loss, Splices, GRIN rod lens, Connectors, Couplers, Optical Source: LASER, semiconductor injection LASER, LASER characteristic, modulation Optical Detectors: Photodiode construction, characteristic, P-N, P-I-N, APD, Direct Detection: Noise, Eye diagram, Receiver design, Fiber Amplifier: Construction, characteristic, use, Digital Transmission System: Point to point link, power budget, Noise, Advanced Systems and Techniques: WDM, Photonic switching, All optical network. Lab work: 1. Study of Optical Fibers, 2. Multimode behavior of a optical fiber, 3. Measurement of Bend Loss, 4. Study of an optical attenuator, 5. L-I curve of a LASER, 6. Construction of a power meter, 7. Fiber optic data communication, 8. BER plot of fiber optic system, 9. Project on fiber optic system.Pre-requisite: EEE 329 Basic Communication Engineering,

EEE 330 Basic Communication Engineering LabTextbook: Optical Fiber Communication by John M. SeniorReference: Fiber Optic Communication Technique by D.K Mynbaev

EEE 483 TELECOMMUNICATION ENGINEERING3 hours/Week, 3 Credits

Introduction: Principle, evolution, networks, exchange and international regulatory bodies. Telephone apparatus: Microphone, speakers, ringer, pulse and tone dialing mechanism, side-tone mechanism, local and central batteries and advanced features. Switching system: Introduction to analog system, digital switching systems – space division switching,

blocking probability and multistage switching, time division switching and two dimensional switching. Traffic analysis: Traffic

Page 21: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 21 ~

characterization, grades of service, network blocking probabilities, delay system and queuing. Modern telephone services and network: Internet telephony, facsimile, integrated services digital network, asynchronous transfer mode and intelligent networks. Introduction to cellular telephony and satellite communication.Pre-requisite: EEE 329 Basic Communication Engineering,

EEE 330 Basic Communication Engineering LabTextbook: Telecommunications by Warren HiokiReference: Reference manual for telecom engineering 2d e by Freemann

EEE 485 CELLULAR MOBILE AND SATELLITE COMMUNICATION3 hours/Week, 3 Credits

Cellular & Mobile Communication: Introduction to code divisions Multiple Access (CDMA), Basic concepts, Spread spectrum, DS (Direct sequence) spread spectrum, Reverse link DSCDMA, forward link DS-CDMA, Cellular systems, GSM, AMPS, Cellular digital packet data. CDMA Air links: Pilot channel, Synchronous channel, Paging channel, Traffic channel, Free space propagation, Propagation model, Multi path propagation, Propagation environment, Marine environment.Historical developments of Mobile Telephony, Trunking efficiency, Propagation criteria, mobile ratio environment, Elements of cellular radio system design, Specifications, Channel capacity, Cell coverage for signal and traffic, Mobile propagation models and fading models, Interference effects, Power control, Mobile switching and traffic, Mobile switching system and its subsystems, Mobile communication protocols. Satellite Communication: Introduction, Types of Satellites, Orbits, Station keeping, Satellite altitude, Transmission path, Path losses, Noise considerations, Satellite systems, Saturation flux density, Effective isotropic radiated power, Multiple access methods.Pre-requisite: EEE 483 Telecommunication EngineeringTextbook: Cellular Mobile Systems Engineering by Saleh Faruque and

Wireless Communication by Theoder S. RappaportReference: Cellular mobile communication by William Schneder

INTERDISCIPLINERY OPTIONSEEE 487 CONTROL SYSTEM II3 hours/Week, 3 Credits

EEE 488 CONTROL SYSTEM II LAB3 hours/Week, 1.5 Credits

Compensation using pole placement technique. State equations of digital systems with sample and hold, state equation of digital systems, digital simulation and approximation. Solution of discrete state equations: by z-transform, state equation and transfer function, state diagrams, state plane analysis. Stability of digital control systems. Digital simulation and digital redesign. Time domain analysis. Frequency domain analysis. Controllability and observability. Optimal linear digital regulator design. Digital state observer. Microprocessor control. Introduction to neural network and fuzzy control, adaptive control. HµControl, nonlinear control.Pre-requisite: EEE 335 Control System I and EEE 336 Control System I LabTextbook: Control Systems Engineering by Norman S. NiseReference: Modern Control Engineering (4th Edition) by Katsuhiko Ogata

EEE 489 RENEWABLE ENERGY SYSTEMS3 hours/Week, 3 Credits

EEE 490 RENEWABLE ENERGY SYSTEMS LAB3 hours/Week, 1.5 Credits

Modern society relies on stable, readily available energy supplies. Renewable energy is an increasingly important component of the new energy mix. The course covers energy conversion, utilization and storage for renewable technologies such as wind, solar, biomass, fuel cells and hybrid systems. Thermodynamics concepts (including the first and second law) will form the basis for modeling the renewable energy systems. The course also touches upon the environmental consequences of energy conversion and how renewable energy can reduce air pollution and global climate change. Course Objectives of the course:I. Understand and analyze energy conversion, utilization and storage for renewable technologies such as wind, solar, biomass, fuel cells and hybrid systems and for more conventional fossil fuel-based technologies.II. Use the First and Second Laws of Thermodynamics and introductory transport phenomena to form the basis of modeling renewable energy systems.III. Understand the environmental consequences of energy conversion and how renewable energy can reduce air pollution and global climate changeTopics include: Introduction to Renewable Energy, Review of Thermodynamics, Second Law Analysis, Availability, Exergy, Free Energy, Solar Radiation, Solar Thermal, Biomass, Wind Energy, Fuel Cells, Hydrogen Production, Hydrogen Storage, Thermionics, Wave, Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 Electrical

Machines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines IIITextbook: Fundamentals of Renewable Energy Processes by Aldo Da RosaReference: Fundamentals of Thermodynamics by

Page 22: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 22 ~

Sonntag, Borgnakke, Van Wylen John Wiley and Sons

EEE 491 BIOMEDICAL INSTRUMENTATION3 hours/Week, 3 Credits

EEE 492 BIOMEDICAL INSTRUMENTATION LAB3 hours/Week, 1.5 Credits

DescriptionIntroduction to engineering aspects of the detection, acquisition, processing, and display of signals from living systems; biomedical sensors for measurements of bio-potentials, ions and gases in aqueous solution, force, displacement, blood pressure, blood flow, heart sounds, respiration, and temperature; therapeutic and prosthetic devices; medical imaging instrumentation.

Course Objectives Understand the limitations of instrumentation in terms of accuracy, resolution, precision, and reliability. Analyze and design operational amplifier and instrumentation amplifier circuits to amplify bio-signals. Analyze and design filter circuits to filter unwanted signals from bio-signals Understand the origin of cardiac and muscle bio-signals and how they are acquired using ECG and electro-myogram electrodes Understand electrode circuit models and how they effect signal acquisition Understand they physical modes of operation of various biosensors (amperometric, enzymatic, optical, resistive, capacitive) . Describe and compare methods and instrumentation needed to measure pressure and flow in the body. Determine and characterize the factors that limit medical imaging methods in biological tissue. Describe the requirements and limitations of bioinstrumentation in the clinical environment. Function and interact cooperatively and efficiently as a team member in completing a project. Present work in both written and oral reports.

Lab work: DescriptionThe goal of the course is to provide students with laboratory experience to test the principles, design, and applications of medical instrumentation. This course also provides exposure to clinical applications of medical instrumentation. Course Objectives

Analyze, design, and construct operational amplifier and instrumentation amplifier circuits to amplify bio-signals. Analyze, design, and construct filter circuits to filter unwanted signals from bio-signals. Acquire electrical and biological signals by implementing virtual instruments with Agilent VEE, LabView, or amplifiers coupled to

a computer with other software. Understand biosensor and electrode design and apply them for signal acquisition. Understand the limitations of instrumentation in terms of accuracy, resolution, precision, and reliability. Understand the origin of cardiac and muscle bio-signals and acquire data using ECG and electromyogram electrodes. Determine and characterize the factors that limit ultrasound and other imaging methods in biological tissue. Describe the requirements and limitations of bioinstrumentation in the clinical environment. Function and interact cooperatively and efficiently as a team member in completing laboratory projects. Present laboratory data in a written format.

Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 Electrical Machines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines III

Textbook: Medical Instrumentation: Application and Design, Fourth Edition by John WebsterReference: Design and Development of Medical Electronics Instrumentation: A Practical Perspective of the Design, Construction, and Test of Medical Devices by David Prutchi

EEE 493 MEASUREMENT AND INSTRUMENTATION3 hours/Week, 3 Credits

EEE 494 MEASUREMENT AND INSTRUMENTATION LAB3 hours/Week, 1.5 Credits

Introduction: Applications, functional elements of a measurement system and classification of instruments. Measurement of electrical quantities: Current and voltage, power and energy measurement. Current and potential transformer. Transducers: mechanical, electrical and optical. Measurement of non-electrical quantities: Temperature, pressure, flow, level, strain, force and torque. Basic elements of DC and AC signal conditioning: Instrumentation amplifier, noise and source of noise, noise elimination compensation, function generation and linearization, A/D and D/A converters, sample and hold circuits. Data Transmission and Telemetry: Methods of data transmission, DC/AC telemetry system and digital data transmission. Recording and display devices. Data acquisition system and microprocessor applications in instrumentation.Lab work: This course consists of two parts. In the first part, students will perform experiments to verify practically the theories and concepts learned in EEE-493. In the second part, students will design simple systems using the principles learned in EEE-493.Pre-requisite: EEE 223 Electrical Machines I, EEE 224 Electrical Machines I Lab, EEE 225 Electrical

Machines II, EEE 225 Electrical Machines II Lab, EEE 439 Electrical Machines III

Page 23: Department of electrical and electronic engineering

School of Applied Sciences and Technology ~ 23 ~

Textbook: Measurement and Instrumentation Principles, Third Edition by Alan S MorrisReference: Instrumentation for Process Measurement and Control, Third Editon by Norman A. Anderson