Department of Civil Engineering Sydney NSW 2006 AUSTRALIA ...

173
Department of Civil Engineering Sydney NSW 2006 AUSTRALIA http://www.civil.usyd.edu.au/ Centre for Advanced Structural Engineering Bolted Connection Tests of Thin G550 and G300 Sheet Steels Research Report No R749 Colin A Rogers BASc MASc Gregory J Hancock BE BSc PhD 1997

Transcript of Department of Civil Engineering Sydney NSW 2006 AUSTRALIA ...

Department of Civil Engineering Sydney NSW 2006 AUSTRALIA http://www.civil.usyd.edu.au/ Centre for Advanced Structural Engineering

Bolted Connection Tests of Thin G550 and G300 Sheet Steels Research Report No R749 Colin A Rogers BASc MASc Gregory J Hancock BE BSc PhD 1997

Copyright Notice Department of Civil Engineering, Research Report R749 Bolted Connection Tests of Thin G550 and G300 Sheet Steels © 1997 Colin A Rogers, Gregory J Hancock [email protected], [email protected] This publication may be redistributed freely in its entirety and in its original form without the consent of the copyright owner. Use of material contained in this publication in any other published works must be appropriately referenced, and, if necessary, permission sought from the author. Published by: Department of Civil Engineering The University of Sydney Sydney NSW 2006 AUSTRALIA 1997 http://www.civil.usyd.edu.au

i

BOLTED CONNECTION TESTS OF THIN G550 AND G300 SHEET STEELS

C.A. Rogers B.A.Sc. M.A.Sc. G.J. Hancock B.E. B.Sc. Ph.D.

SYNOPSIS Cold formed structural members are fabricated from sheet steels which must meet the material requirements prescribed in applicable national design standards. The Australian / New Zealand Standard for cold-formed steel structures (AS/NZS 4600 (SA/SNZ, 1996)) allows for the use of thin (t < 0.9mm), high strength (fy = 550MPa) sheet steels in all structural sections. However, due to the low ductility exhibited by sheet steels which are cold reduced to thickness the engineer must use a yield stress and ultimate strength reduced to 75% of the minimum specified values. The American Iron and Steel Institute (AISI) Design Specification further limits the use of thin, high strength steels to roofing, siding and floor decking panels. Sheet steels are required to have a minimum elongation capability to ensure that members and connections can undergo small displacements without a loss in structural performance, and to reduce the harmful effects of stress concentrations. The ductility criterion specified in the Australian / New Zealand and North American Design Standards is based on an investigation of sheet steels by Dhalla and Winter, which did not include the thin high strength G550 steels available today. A previous research report entitled Ductility of G550 Sheet Steels in Tension - Elongation Measurements and Perforated Tests (No. R735) detailed the basic material behaviour of G550 sheet steels. It was concluded that the ability of G550 sheet steels to undergo deformation is dependent on the direction of load within the material, where transverse specimens exhibit the least amount of overall, local and uniform elongation. Furthermore, the G550 sheet steels tested for this project do not meet the Dhalla and Winter material requirements regardless of direction, except for the uniform elongation of longitudinal coupon specimens. This report details the findings of bolted connection tests using G550 and G300 sheet steels which range in base metal thickness from 0.42 to 0.60mm. Test specimens were milled from the longitudinal, transverse and diagonal directions of the sheet to determine the degree of anisotropy and its effect on connection capacity and failure type. All specimens failed in one of three distinct modes; end pull-out, bearing or net section fracture. The results of tests completed for this report indicate that the current connection provisions set out in the AS/NZS 4600, AISI and Eurocode 3 Design Standards cannot be used to accurately predict the failure mode or resistance of bolted connections fabricated from thin G550 and G300 sheet steels. It is necessary to incorporate a variable bearing resistance equation which is dependent on the thickness of the connected material, similar to that found in the Canadian CSA-S136 Design Standard. Calculation of the ultimate tensile strength of a bolted connection using the net cross-sectional area and the ultimate material strength, without a stress reduction factor, is accurate and reliable. Bolted connections composed of G550 sheet steels were able to displace to at least 90% of the distance measured for the nominally identical G300 test specimens, which indicates that adequate ductility exists in the tested G550 sheet steels.

ii

CONTENTS

1 INTRODUCTION 1

2 BACKGROUND INFORMATION 1

2.1 G550 Sheet Steels....................................................................................1

2.2 Cold Formed Steel Bolted Connection Design Provisions .....................2

3 BOLTED CONNECTION TESTS AND RESULTS 4

3.1 General ....................................................................................................4

3.2 Basic Material Properties ........................................................................9

3.3 Possible Modes of Failure .....................................................................10

3.4 Connection Elongation and Ultimate Load Comparison ......................13

3.5 Comparison of Ultimate Test-to-Design Standard Predicted Loads .....17

3.6 Comparison of Ultimate Test-to-Failure Criterion Predicted Loads.....18

3.7 Ultimate Failure Stress Ratios...............................................................22

3.8 Reliability Study....................................................................................25

3.8.1 AISI Calibrated Resistance (Capacity) Factors, φ .......................25

3.8.2 Calculated Resistance (Capacity) Factors, φ, Using fu ................26

3.8.3 Calculated Resistance (Capacity) Factors, φ, Using 0.75fu .........29

4 CONCLUSIONS 29

5 ACKNOWLEDGEMENTS 31

REFERENCES 32

NOTATION 35

Appendix 'A' Code Requirements 38

A1 Australia / New Zealand AS/NZS 4600.......................................38

A1.1 Tensile Capacity .................................................................38

A1.2 Connections ........................................................................39

A1.3 Bolted Connections ............................................................39

A2 Canada CSA-S136 .......................................................................42

iii

A2.1 Tensile Member Resistance................................................42

A2.2 Connections ........................................................................43

A2.3 Mechanical Fasteners (Bolts, Rivets and Screws)..............44

A3 USA AISI - LRFD .......................................................................45

A3.1 Tensile Member Strength ...................................................46

A3.2 Bolted Connections ............................................................46

A4 Europe Eurocode 3.......................................................................49

A4.1 Tensile Member Resistance................................................49

A4.2 Connection Strength ...........................................................50

A4.3 Bolted Connections ............................................................51

Appendix 'B' Bolted Connection Specimen Fabrication and Test Procedure 52

B1 General .........................................................................................52

B2 Sizing of Test Specimens.............................................................52

B3 Fabrication of Test Specimens.....................................................53

B4 Test Procedure .............................................................................54

Appendix 'C' Bolted Connection Test Specimen Dimensions 57

Appendix 'D' Bolted Connection Test and Predicted Loads, Test-To- Predicted Ratios, and Failure Patterns 66

D1 General .........................................................................................66

D2 Failure Patterns ............................................................................66

Appendix 'E' Failure Stress Ratios 103

E1 General .......................................................................................103

Appendix 'F' Reliability Study 108

F1 General .......................................................................................108

F2 Bolted Connection Test Data .....................................................108

F3 Reliability Study ........................................................................108

F4 Calculated Resistance (Capacity) Factors, φ..............................112

F4.1 Australia AS/NZS 4600 and AS 1170.1...........................112

iv

F4.2 New Zealand AS/NZS 4600 and NZS 4203, as well as USA AISI .........................................................................113

F4.3 Canada CSA-S136............................................................113

F4.4 Europe Eurocode 3 ...........................................................113

Appendix 'G' Test Load vs. Connection Elongation Graphs 141

G1 General .......................................................................................141

Appendix 'H' Photographs of Bolted Connection Specimens 151

Appendix 'I' Bolted Connection Example Calculations 154

I1 General .......................................................................................154

I2 Australia / New Zealand (SA/SNZ, 1996) ..................................155

I3 Canada (CSA, 1994) ...................................................................156

I4 USA (AISI, 1996) .......................................................................157

I5 Europe (Eurocode, 1996) ...........................................................158

v

LIST OF TABLES

Table 2.1 Factor C, for Bearing Resistance (CSA, 1994) ...................................3

Table 3.1 Material Properties of Sheet Steels (Mean Values)............................9

Table 3.2 0.6mm δult G550 / δult G300 Comparison .........................................14

Table 3.3 Flat / Winged Specimen Ultimate Load and Displacement Comparison.......................................................................................15

Table 3.4 Integral / Conventional Washer Ultimate Load and Displacement Comparison.......................................................................................16

Table 3.5 Concentric / Eccentric Ultimate Load and Displacement Comparison.......................................................................................16

Table 3.6 042-G550 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) ....................................................................................19

Table 3.7 060-G550 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) ....................................................................................20

Table 3.8 060-G300 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) ....................................................................................21

Table 3.9 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types (Full fu Used) ..............................27

Table 3.10 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types (0.75fu Used)...............................28 Table A1 Design Bearing Capacity for Bolted Connections with Washers Under Both Bolt Head and Nut (SA/SNZ, 1996) ..............................41

Table A2 Design Bearing Capacity for Bolted Connections without Washers Under Both Bolt Head and Nut, or with only One Washer (SA/SNZ, 1996) ....................................................................41

Table A3 Factor C, for Bearing Resistance (CSA, 1994) .................................45

Table A4 Nominal Bearing Strength for Bolted Connections with Washers Under Both Bolt Head and Nut (AISI, 1996)....................................48

Table A5 Nominal Bearing Strength for Bolted Connections without Washers Under Both Bolt Head and Nut, or with only One Washer (AISI, 1996) .........................................................................48

Table A6 Nominal Tensile Stress, F′nt, for Bolts Subject to Combined Shear and Tension (AISI, 1996) ..................................................................48

Table A7 Nominal Tensile and Shear Strengths for Bolts (AISI, 1996)...........49

Table C1 042-G550 Single Bolt Connection Test Dimensions........................58

Table C2 060-G550 Single Bolt Connection Test Dimensions........................59

vi

Table C3 060-G300 Single Bolt Connection Test Dimensions........................59

Table C4 042-G550 Multiple Bolt Connection Test Dimensions ....................60

Table C5 060-G550 Multiple Bolt Connection Test Dimensions ....................61

Table C6 060-G300 Multiple Bolt Connection Test Dimensions ....................62

Table C7 042-G550 Single Bolt Winged Connection Test Dimensions..........63

Table C8 060-G550 Single Bolt Winged Connection Test Dimensions..........64

Table C9 060-G300 Single Bolt Winged Connection Test Dimensions..........65

Table D1 Bolted Connection Ultimate Load and Displacement Test Data......68

Table D2 042-G550 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.).......................................69

Table D3 042-G550 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................................................70

Table D4 042-G550 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................71

Table D5 042-G550 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................72

Table D6 060-G550 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.).......................................73

Table D7 060-G550 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................................................74

Table D8 060-G550 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................75

Table D9 060-G550 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................76

Table D10 060-G300 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.).......................................77

Table D11 060-G300 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................................................78

Table D12 060-G300 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................79

Table D13 060-G300 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................80

Table D14 042-G550 Concentric Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.).......................................81

Table D15 042-G550 Concentric Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.).......................................82

vii

Table D16 042-G550 Concentric Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................83

Table D17 042-G550 Concentric Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................84

Table D18 060-G550 Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) ..................................................85

Table D19 060-G550 Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................................................86

Table D20 060-G550 Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................87

Table D21 060-G550 Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................88

Table D22 060-G300 Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) ..................................................89

Table D23 060-G300 Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................................................90

Table D24 060-G300 Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ..................................................91

Table D25 060-G300 Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ..................................................92

Table D26 042-G550 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) ...............93

Table D27 042-G550 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ....................94

Table D28 042-G550 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.).......................................95

Table D29 042-G550 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ......................96

Table D30 060-G550 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) ...............97

Table D31 060-G550 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ....................97

Table D32 060-G550 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.).......................................98

Table D33 060-G550 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ......................98

Table D34 060-G300 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) ...............99

viii

Table D35 060-G300 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ....................99

Table D36 060-G300 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.).....................................100

Table D37 060-G300 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ....................100

Table D38 060-G550 Eccentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) .............101

Table D39 060-G550 Eccentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) ..................101

Table D40 060-G550 Eccentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.) ............................102

Table D41 060-G550 Eccentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) ....................102 Table E1 042-G550 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios.................................................................104

Table E2 060-G550 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios.................................................................105

Table E3 060-G300 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios.................................................................106

Table E4 Net Section Failure Stress to Ultimate Strength Ratios..................107

Table F1 042-G550 Longitudinal AS/NZS 4600 (1996) Reliability Study Data ......................................................................................114

Table F2 042-G550 Transverse AS/NZS 4600 (1996) Reliability Study Data ......................................................................................115

Table F3 042-G550 Diagonal AS/NZS 4600 (1996) Reliability Study Data.................................................................................................116

Table F4 042-G550 Longitudinal CSA-S136 (1994) Reliability Study Data.................................................................................................117

Table F5 042-G550 Transverse CSA-S136 (1994) Reliability Study Data...118

Table F6 042-G550 Diagonal CSA-S136 (1994) ) Reliability Study Data ...119

Table F7 042-G550 Longitudinal AISI (1996) Reliability Study Data .........120

Table F8 042-G550 Transverse AISI (1996) Reliability Study Data ............121

Table F9 042-G550 Diagonal AISI (1996) Reliability Study Data ...............122

Table F10 042-G550 Longitudinal Eurocode (1996) Reliability Study Data..123

Table F11 042-G550 Transverse Eurocode (1996) Reliability Study Data.....124

Table F12 042-G550 Diagonal Eurocode (1996) Reliability Study Data........125

ix

Table F13 042-G550 AISI Derived Resistance (Capacity) Factor, φ, Statistical Data for Bolted Connection Failure Types ....................126

Table F14 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - Australia (SA/SNZ, 1996) .......126

Table F15 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - New Zealand (SA/SNZ, 1996) ..............................................................................127

Table F16 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - Canada (CSA, 1994) ..............127

Table F17 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - USA (AISI, 1996) ..................128

Table F18 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - Europe (Eurocode, 1996) .......128

Table F19 060-G550 Longitudinal AS/NZS 4600 (1996) Reliability Study Data ......................................................................................129

Table F20 060-G550 Transverse AS/NZS 4600 (1996) Reliability Study Data ......................................................................................129

Table F21 060-G550 Diagonal AS/NZS 4600 (1996) Reliability Study Data.................................................................................................130

Table F22 060-G550 Longitudinal CSA-S136 (1994) Reliability Study Data.................................................................................................130

Table F23 060-G550 Transverse CSA-S136 (1994) Reliability Study Data...131

Table F24 060-G550 Diagonal CSA-S136 (1994) Reliability Study Data......131

Table F25 060-G550 Longitudinal AISI (1996) Reliability Study Data .........132

Table F26 060-G550 Transverse AISI (1996) Reliability Study Data ............132

Table F27 060-G550 Diagonal AISI (1996) Reliability Study Data ...............133

Table F28 060-G550 Longitudinal Eurocode (1996) Reliability Study Data..133

Table F29 060-G550 Transverse Eurocode (1996) Reliability Study Data.....134

Table F30 060-G550 Diagonal Eurocode (1996) Reliability Study Data........134

Table F31 060-G300 Longitudinal AS/NZS 4600 (1996) Reliability Study Data ......................................................................................135

Table F32 060-G300 Transverse AS/NZS 4600 (1996) Reliability Study Data ......................................................................................135

Table F33 060-G300 Diagonal AS/NZS 4600 (1996) Reliability Study Data.................................................................................................136

x

Table F34 060-G300 Longitudinal CSA-S136 (1994) Reliability Study Data.................................................................................................136

Table F35 060-G300 Transverse CSA-S136 (1994) Reliability Study Data...137

Table F36 060-G300 Diagonal CSA-S136 (1994) ) Reliability Study Data ...137

Table F37 060-G300 Longitudinal AISI (1996) Reliability Study Data .........138

Table F38 060-G300 Transverse AISI (1996) Reliability Study Data ............138

Table F39 060-G300 Diagonal AISI (1996) Reliability Study Data ...............139

Table F40 060-G300 Longitudinal Eurocode (1996) Reliability Study Data..139

Table F41 060-G300 Transverse Eurocode (1996) Reliability Study Data.....140

Table F42 060-G300 Diagonal Eurocode (1996) Reliability Study Data........140

xi

LIST OF FIGURES

Figure 2.1 Individual Bolt End Pull-Out Path - AS/NZS 4600 (1996) ................4

Figure 3.1 Bolted Connection Specimens............................................................5

Figure 3.2 M12 Grade 8.8 Bolts with Conventional and Integral Washers.........6

Figure 3.3 Schematic Drawing of Bolted Connection Test Set-Up.....................7

Figure 3.4 Pin End Gripping Apparatus...............................................................8

Figure 3.5 060-G550 End Pull-Out Failure........................................................11

Figure 3.6 042-G550 Bearing Failure ................................................................11

Figure 3.7 060-G550 Double Bolt Connection Bearing Failure ........................12

Figure 3.8 Double Bolt Bearing and Net Section Failures ................................12

Figure 3.9 042-G550 Bolted Connection Tests End Pull-Out and Bearing Failure Stress vs. Ultimate Strength Ratios ......................................23

Figure 3.10 060-G550 Bolted Connection Tests End Pull-Out and Bearing Failure Stress vs. Ultimate Strength Ratios ......................................23

Figure 3.11 060-G300 Bolted Connection Tests End Pull-Out and Bearing Failure Stress vs. Ultimate Strength Ratios ......................................23

Figure 3.12 042-G550 Bolted Connection Tests Net Section Failure Stress vs. Ultimate Strength Ratios .............................................................24

Figure 3.13 060-G550 Bolted Connection Tests Net Section Failure Stress vs. Ultimate Strength Ratios .............................................................24

Figure 3.14 060-G300 Bolted Connection Tests Net Section Failure Stress vs. Ultimate Strength Ratios .............................................................24 Figure A1 Individual Bolt Tear-Out Path - AS/NZS 4600 (1996) ....................40

Figure A2 Individual Bolt Tear-Out Path - AISI (1996) ...................................47

Figure A3 Eurocode 3 (1996) Bolt Spacing Dimensions ..................................50

Figure B1 Bolted Connection Test Set-Up........................................................55

Figure B2 Instron Test Machine and Data Acquisition System ........................55

Figure B3 Typical Clipped Multiple Bolt Connection ......................................56

Figure C1 Bolted Connection Test Specimens ..................................................57

Figure D1 Bolted Connection Failure Patterns ..................................................67

Figure G1 042-G550-B1-12×75-M12-IL.........................................................142

xii

Figure G2 042-G550-B1-24×75-M12-IL.........................................................142

Figure G3 042-G550-B1-36×75-M12-CL .......................................................142

Figure G4 042-G550-B1-48×75-M12-ID ........................................................142

Figure G5 042-G550-B1-60×75-M12-CD.......................................................143

Figure G6 042-G550-B1W-24×75-M12-IT.....................................................143

Figure G7 042-G550-B1W-36×75-M12-ID ....................................................143

Figure G8 042-G550-B1W-48×75-M12-ID ....................................................143

Figure G9 042-G550-B2-48×55-M12-CL .......................................................144

Figure G10 042-G550-B2-48×75-M12-CD.......................................................144

Figure G11 042-G550-B2-48×95-M12-ID ........................................................144

Figure G12 042-G550-B3-48×55-M12-CD.......................................................144

Figure G13 060-G550-B1-12×75-M12-IT.........................................................145

Figure G14 060-G550-B1-24×75-M12-ID ........................................................145

Figure G15 060-G550-B1-36×75-M12-IL.........................................................145

Figure G16 060-G550-B1-48×75-M12-ID ........................................................145

Figure G17 060-G550-B1-60×75-M12-ID ........................................................146

Figure G18 060-G550-B1W-24×75-M12-IL.....................................................146

Figure G19 060-G550-B1W-36×75-M12-IL.....................................................146

Figure G20 060-G550-B1W-48×75-M12-ID ....................................................146

Figure G21 060-G550-B2-48×55-M12-IT.........................................................147

Figure G22 060-G550-B2-48×75-M12-ID ........................................................147

Figure G23 060-G550-B2-48×95-M12-ID ........................................................147

Figure G24 060-G550-B3-48×55-M12-ID ........................................................147

Figure G25 060-G300-B1-12×75-M12-ID ........................................................148

Figure G26 060-G300-B1-24×75-M12-IT.........................................................148

Figure G27 060-G300-B1-36×75-M12-IL.........................................................148

Figure G28 060-G300-B1-48×75-M12-ID ........................................................148

Figure G29 060-G300-B1-60×75-M12-ID ........................................................149

Figure G30 060-G300-B1W-24×75-M12-IL.....................................................149

Figure G31 060-G300-B1W-36×75-M12-IL.....................................................149

Figure G32 060-G300-B1W-48×75-M12-IT.....................................................149

xiii

Figure G33 060-G300-B2-48×55-M12-ID ........................................................150

Figure G34 060-G300-B2-48×75-M12-IL.........................................................150

Figure G35 060-G300-B2-48×95-M12-IL.........................................................150

Figure G36 060-G300-B3-48×55-M12-IT.........................................................150

Figure H1 060-G550 and G300 12mm Edge Distance End Pull-Out Failure .............................................................................................151

Figure H2 060-G550 and G300 24mm Edge Distance End Pull-Out Failure .............................................................................................151

Figure H3 060-G550 95mm and 75mm Wide Double Bolt Bearing Failure .............................................................................................152

Figure H4 060-G550 and G300 55mm Wide Double Bolt Net Section Fracture ...........................................................................................152

Figure H5 042-G550 48mm Edge Distance Bearing Failure...........................153

Figure H6 042-G550 Single Bolt Winged End Pull-Out and Bearing Failure .............................................................................................153

1

1 INTRODUCTION Cold formed structural members are fabricated from sheet steels consisting of various material properties which must meet the requirements prescribed in applicable national design standards. The Australian / New Zealand Standard for cold-formed steel structures (AS/NZS 4600 (SA/SNZ, 1996)) allows for the use of thin (t < 0.9mm), high strength ( fy = 550MPa) sheet steels in all structural sections. However, due to the low ductility exhibited by sheet steels which are cold reduced to thickness the engineer must use a yield stress and ultimate strength reduced to 75% of the minimum specified values. The American Iron and Steel Institute (AISI) Design Specification (AISI, 1996) further limits the use of thin, high strength steels to roofing, siding and floor decking panels. Sheet steels are required to have a minimum elongation capability to ensure that members and connections can undergo small displacements without a loss in structural performance, and to reduce the harmful effects of stress concentrations. The ductility criterion specified in the Australian / New Zealand and North American Design Standards (CSA, 1994; AISI, 1996) is based on an investigation of sheet steels by Dhalla and Winter (1971, 1974) which did not include the thin, high strength G550 sheet steels (see AS 1397 (1993)) available today. Test results from the first phase of this study (Rogers and Hancock, 1996) reveal that the ability of G550 sheet steels to undergo deformation is dependent on the direction of load within the plane of the sheet, where transverse specimens exhibit the least amount of overall, local and uniform elongation. The G550 sheet steels tested do not meet the Dhalla and Winter elongation and ultimate strength to yield stress ratio requirements regardless of direction, except for the uniform elongation of longitudinal coupon specimens. This document reports on the tensile testing of concentrically and eccentrically loaded bolted connections fabricated from G550 and G300 sheet steels (see AS 1397 (1993)), as well as the calibration of applicable limit states capacity equations for use in cold formed steel design standards. Sheet steels which range in base metal thickness from 0.42 to 0.60mm were tested where specimen size and shape, as well as type and number of bolts, were varied to cause three distinct modes of failure; end pull-out, bearing or net section fracture. Test specimens were milled from the longitudinal, transverse and diagonal directions of the sheet to determine the degree of anisotropy and its effect on connection capacity and failure type. Information obtained from Rogers and Hancock (1996) on the tensile testing and elongation measurements of G550 sheet steels was used to aid in the analysis and calibration of connection capacity equations for use in limit states tensile design.

2 BACKGROUND INFORMATION

2.1 G550 Sheet Steels The steels investigated as a part of this research report were produced using a process called cold reduction, which can be used to increase the strength and hardness, as well as produce an accurate thickness for sheet steels and other steel products. Initially the sheet steels are rolled to size in a hot strip mill with finishing and coiling temperatures of approximately 940ºC and 670ºC, respectively. The hot worked coil of steel, 2.5mm in thickness with a minimum specified 300MPa yield stress, is uncoiled and cleaned in an acid solution to remove surface oxides and scale. The uncoiled strip is then

2

trimmed to size and fed into a cold reduction mill, which may contain up to six sets of stands. The cleaning and reduction processes can be combined, as occurred for the mill used to roll the specimens tested for this report. High compressive force in the stands and strip tension systematically reduce the thickness of the steel sheet until the desired dimension is reached. The thickness is reduced by approximately 75 to 85% for the 0.60 and 0.42mm sheet steels. The milling process causes the grain structure of cold reduced steels to elongate in the rolling direction, which produces an increase in material strength and a decrease in material ductility. The effects of cold working are cumulative, i.e. grain distortion increases with further cold working, however, it is possible to change the distorted grain structure and control the steel properties through subsequent heat treatment. Various types of heat treatment exist and are used for different steel products. G300 sheet steels are fully recrystallised, i.e. the grain structure is returned to its original state, although some preferred grain orientation remains, whereas G550 sheet steels are stress relief annealed, i.e. recrystallisation does not occur. Stress relief annealing involves heating the steel to below the recrystallisation temperature, holding the steel until the temperature is constant throughout its thickness, then cooling slowly. Annealing is carried out in a hot dip coating line prior to application of either a zinc or aluminum/zinc coating. Upon final cooling the sheet steel is further processed through a tension levelling mill, e.g. 0.35% extension, to improve the finish quality and flatness of the coil (BHP, 1992). The G550 sheet steels used for this research must be differentiated from other sheet steels whose high yield stress and ultimate strength values are obtained by means of an alloying process, i.e. high strength low alloy (HSLA) steels. The material property requirements for G300 or similar mild sheet steels and G550 or Grade E sheet steels are specified in Australia by AS 1397 (1993) and in North America by the following ASTM Standards; A611 (1994), A653 (1994) and A792 (1994). Material property specifications for HSLA sheet steels can be found in ASTM Standard A653.

2.2 Cold Formed Steel Bolted Connection Design Provisions Each design standard used to analyse the connection data obtained for this report has design provisions which may vary depending on the country of origin. An overview of the design equations used for the prediction of connection capacity is provided in this section. Full details of the requirements contained in the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996) and European (Eurocode, 1996) Design Standards can be found in Appendix 'A'. Design calculation examples using these design standards can be found in Appendix 'I'. The nominal cross-sectional tension capacity of a member which is not subject to shear lag and fails by material yielding of the gross cross-section is formulated for all of the design standards as follows, Nt = Ag fy (2.1) where Ag is the gross cross-sectional area and fy is the yield or 0.2% proof stress. The nominal cross-sectional tension capacity of a member which is not subject to shear lag and fails by rupture of the net cross-section away from connections is represented for all of the design standards by the following equation,

3

Nt = An fu (2.2) where An is the net cross-sectional area and fu is the ultimate strength. The Australia / New Zealand (SA/SNZ, 1996), USA (AISI, 1996) and European (Eurocode, 1996) Design Standards all have separate requirements for the net cross-section tension capacity at connections. The design equation for the AS/NZS 4600 and AISI Design Standards is as follows,

N r rds

A f A ff n u n u= − +⎛⎝⎜

⎞⎠⎟ ≤1 0 0 9 3. . (2.3)

where r is the ratio of the force transmitted by the bolt(s) divided by the tensile force in the member at that section, d is the diameter of the bolt(s), and s is the spacing of the bolts perpendicular to the line of the force, or for a single bolt the width of the sheet. The design formulation for Eurocode 3 is similar to that presented in Eq. 2.3, however, d is defined as the nominal diameter of the bolt hole. The CSA-S136 Design Standard does not contain a stress reduction factor based on the number and position of bolts in the cross-section, as seen in Eq. 2.3. Net cross-section tension capacity at a connection is determined as found in Eq. 2.2, i.e. no stress reduction factor is used. The design bearing capacity per bolt for connections regardless of the design standard used is as follows, Vb = C fu d t (2.4) where d is the nominal diameter of the bolt, t is the thickness of the sheet steel and C is a variable bearing coefficient. The Australian/New Zealand (SA/SNZ, 1996) and USA (AISI, 1996) Design Standards require that C = 3 for single lap shear connections where washers are used under both the bolt head and nut, whereas the European Design Standard (Eurocode, 1996) requires that C = 2.5. In the Canadian Design Standard (CSA, 1994) C represents the stability of the hole edge based on the ratio of bolt diameter to sheet thickness, as listed in Table 2.1 (C is not affected by the use or non use of washers).

Table 2.1 Factor C, for Bearing Resistance (CSA, 1994)

d/t C

d/t ≤ 10 3 10 < d/t < 15 30 t/d d/t ≥ 15 2

End pull-out capacity of a bolted connection is dependent on the length of two parallel lines which extend from the bolt hole in the direction of the applied force. This type of failure differs from block shear rupture because each bolt tears out along its own path as shown in Figure 2.1. The nominal end pull-out capacity per bolt is given in Eq. 2.5 for the Australian/New Zealand (SA/SNZ, 1996) and USA (AISI, 1996) Design Standards. Vf = te fu (2.5)

4

where e is the distance measured parallel to the direction of applied force from the centre of a standard hole to the nearest edge of an adjacent hole or to the end of the connected part (see Figure 2.1). The end pull-out capacity determined using Eurocode 3 (1996) is formulated in a similar fashion, however, the nominal capacity is reduced by a factor as shown in Eq. 2.6. Vf = te fu / 1.2 (2.6)

Figure 2.1 Individual Bolt End Pull-Out Path - AS/NZS 4600 (1996) The nominal end pull-out capacity per bolt of a connection designed using the CSA-S136 (1994) Design Standard is determined as previously described for the net cross-section tension capacity. Vf = An fu (2.7) where the net cross-sectional area used for each bolt shown in Figure 2.1 is defined as An = 0.60 ⋅ 2t(e - dh / 2), where dh is the diameter of the bolt hole.

3 BOLTED CONNECTION TESTS AND RESULTS

3.1 General One hundred and fifty-eight bolted connection tensile specimens were tested in the J.W. Roderick Laboratory for Materials and Structures at the University of Sydney. The main objectives of this experimental testing phase were to determine the governing modes of failure for the range of materials tested and to evaluate the existing design provisions for bolted connections fabricated from thin G550 sheet steels. Three different sheet steels were tested, including 0.60mm G300, and used as a basis for comparison with the current design equations specified in the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996) and European (Eurocode, 1996) Cold Formed Steel Design Standards. All steels were cold reduced to thickness, with an aluminum/zinc alloy (zincalume-AZ) coating and obtained from standard coils during normal rolling operations. The sheet steel type is denoted by a thickness, grade and coating class, e.g. 042-G550-AZ150, which refers to a base metal thickness of 0.42mm, a minimum specified yield stress of 550MPa and a total aluminum/zinc coating mass of 150g/m2. A list of the sheet steels included in this report, which were supplied by BHP Coated Steel Division, Port Kembla, is given below.

5

• 042-G550-AZ150 • 060-G550-AZ150 • 060-G300-AZ150 All specimens within a material and thickness type were cut from the same sheet, although similar specimens were cut from various locations to avoid localised material properties. The use of a single sheet for all tests allowed for accurate yield stress and ultimate strength values to be calculated and applied in the analysis of bolted connection test data. The material properties of cold reduced steels have been shown to be anisotropic (Rogers and Hancock, 1996; Wu et al., 1995; Dhalla and Winter, 1971,1974), hence, specimens were cut from three directions within the sheet; longitudinal, transverse and diagonal with respect to the rolling direction. This array of specimen directions was used to determine the degree of anisotropy and its effect on connection behaviour.

Figure 3.1 Bolted Connection Specimens Tensile connections were tested with various size and shape specimens, as well as different types and number of bolts (see Figure 3.1) to achieve three common modes of failure; end pull-out, bearing and net section fracture. Both flat and winged

6

specimens, similar to those recommended by Zadanfarrokh and Bryan (1992), were used for the single bolt test specimens. The possibility of bolt shear failure was eliminated by using M12 Grade 8.8 galvanised bolts conforming to Australian Standards 1111 (1980), 1252 (1983) and 1275 (1985). Two types of bolts, both with a nominal diameter of 12mm, were used for the connection tests; 1) a conventional bolt, nut and washer assembly (26.2mmØ washer with 8 threads/cm), and 2) a bolt and nut assembly with integral washers (29.5mmØ washer with 6 threads/cm) (see Figure 3.2). These two types of bolts were used to compare the effect of bearing on the shank and threads and to compare the influence of integral washers versus loose washers on connection performance. The shank threads extend up to the head of the conventional bolt, whereas a non threaded section of the shank occurs directly blow the head of the integral bolt. The majority of tests consisted of concentrically loaded specimens with one, two or three bolts in line with the applied tensile force. A limited number of eccentrically loaded tests were completed to observe the effect of load application point on connection behaviour.

Figure 3.2 M12 Grade 8.8 Bolts with Conventional and Integral Washers All bolted connection tests were completed using a 25000kg capacity Instron testing machine. A gripping apparatus was fabricated so that each end of the test specimen was joined by a pin assembly to the Instron grip. The gripping apparatus was designed to eliminate slippage of the gripped section of the test specimens and to transfer load evenly to the entire cross-section (see Figures 3.3 and 3.4). The gripped end of each test specimen was kept constant at 65mm, and shims were not required because the thickness of the sheet steels was less than 2mm (ECCS, 1983). Due to the use of oversize bolt holes, a variation in the location of bolts occurred. Test specimens were assembled so that initial bearing of the bolt(s) did not occur, rather a random amount of clearance on the sides of the drilled holes existed, as found in typical construction. All bolts were tightened by hand to a torque of less than 10Nm, which allowed for slip of the connection after minimal loading.

Integral Conventional

7

Figure 3.3 Schematic Drawing of Bolted Connection Test Set-Up Ultimate loads were obtained without the use of a deformation limit due to the initial slip of the connection and the extreme deformations of the sheet steel, in some instances between 10 and 30mm. It could have been possible for the deformation limit of 3mm specified in ECCS-TC7 (1983) to only represent the slip load of the specimens, and the deformation limit of 6.35mm specified by the Research Council on Structural Connections (AISC, 1988) and the American Institute of Steel Construction

8

(1989, 1993) to represent a load which is not indicative of the full load carrying capacity of the bolted connection. The maximum tensile load which occurred prior to a connection displacement of 6.35mm was also recorded for all of the test specimens. The 6.35mm displacement for each test specimen was measured from the point of initial bearing of the bolt and the hole edge, hence, did not include the slip of the connection prior to bearing.

Figure 3.4 Pin End Gripping Apparatus

Each test specimen was identified by an alpha-numeric title, e.g. 042-G550-B1-12×75-M12-CD, which gives basic information regarding the properties of the sheet steel used, the direction of the specimen in the plane of the sheet, the position of the bolt holes, the size and type of bolt used and type of test completed. The initial two segments of the test specimen title give the specified base metal thickness, e.g. 0.42mm, and the minimum specified yield stress, e.g. 550MPa, of the sheet steel. The third segment indicates the type of test completed: • B1 Single bolt test • B2 Double bolt test • B3 Triple bolt test • B1W Single bolt winged test The fourth segment indicates the nominal edge distance, e.g. 12mm (from the centre of the first bolt hole to the end of the specimen) and specimen width, e.g. 75mm. The fifth segment indicates the size of the bolt, e.g. metric 12mm diameter Grade 8.8 galvanised, and the final segment of the test specimen title indicates the type of bolt used, i.e. conventional washer system (C) or integral washer system (I) (see Figure 3.2), and the direction with respect to the rolling axis from which the specimen was obtained, i.e. the longitudinal (L), transverse (T) or diagonal (D) directions. All bolted

9

connection tests were concentrically loaded unless an extra segment, e.g. E2, was added to the specimen title. This segment indicates that the specimen was loaded eccentrically by 2mm (see Figure 3.3). A final superscript c is shown for specimens where the ends of the connection were forced to remain in the same plane using small metal clips (see Figure B3 of Appendix 'B').

3.2 Basic Material Properties The basic material properties, i.e. yield stress, ultimate strength, and Young's modulus, for all of the sheet steels were obtained through the tensile testing of coated coupons according to ASTM A370 (1994) recommendations (see Rogers and Hancock (1996)). The 060-G550 and 060-G300 bolted connection specimens were milled from the same steel sheets used for the tensile coupon test specimens detailed in Rogers and Hancock, hence, the material properties quoted for these steels are identical to those used in the analysis of perforated coupon tests. However, the 042-G550 bolted connection specimens were obtained from a coil of steel different from that used in the

Table 3.1 - Material Properties of Sheet Steels (Mean Values) Specimen T.C.T. Type tc (mm) fy (MPa) fu (MPa) fu / fy Dyn./Sta.3 Dyn./Sta. Dyn./Sta.

042-G5501 Longitudinal 0.46 641/626 641/626 1.00/1.00 Transverse 0.46 728/708 728/708 1.00/1.00 Diagonal 0.46 651/631 651/631 1.00/1.00

060-G5502 Longitudinal 0.64 648/632 648/632 1.00/1.00 Transverse 0.64 723/707 723/707 1.00/1.00 Diagonal 0.64 652/636 652/636 1.00/1.00

060-G3002 Longitudinal 0.63 339/320 397/378 1.17/1.18 Transverse 0.63 351/332 394/375 1.12/1.13 Diagonal 0.63 347/328 403/384 1.16/1.17

Specimen B.M.T. Type tb (mm) fy (MPa) fu (MPa) fu / fy Dyn./Sta. Dyn./Sta. Dyn./Sta.

042-G5501 Longitudinal 0.41 719/703 719/703 1.00/1.00 Transverse 0.41 817/794 817/794 1.00/1.00 Diagonal 0.41 731/708 731/708 1.00/1.00

060-G5502 Longitudinal 0.59 703/686 703/686 1.00/1.00 Transverse 0.59 785/767 785/767 1.00/1.00 Diagonal 0.59 707/690 707/690 1.00/1.00

060-G3002 Longitudinal 0.58 368/348 431/411 1.17/1.18 Transverse 0.58 381/360 428/408 1.12/1.13 Diagonal 0.58 376/356 437/417 1.16/1.17

Note: 1. Average of 3 coupon tests. 2. Average of 6 coupon tests. 3. Dynamic/Static values given. tensile coupon testing phase, thus requiring the additional testing of nine solid coupons to determine the relevant material properties. Static and dynamic material properties for

10

each type of sheet steel, calculated using the total coated thickness (T.C.T.) and base metal thickness (B.M.T.) are given in Table 3.1. All G550 sheet steels tested for this project yielded gradually with minimal strain hardening, whereas the G300 sheet steels displayed a sharp yield point, followed by a yield plateau then a strain hardening region. Yield stress values for the G550 sheet steels were calculated using the 0.2% proof stress method. The lack of a strain hardening range for the G550 materials is indicated by the consistent ultimate strength to yield stress ratios, fu / fy, of unity. The G550 sheet steels do not meet the Dhalla and Winter (1971, 1974) or current design standard (SA/SNZ, 1996; CSA, 1994; AISI, 1996) material requirements which allow for the full yield stress and ultimate strength to be used in design, i.e. the ultimate strength to yield stress ratio, fu / fy ≥ 1.08. The material properties for the 042 and 060-G550 sheet steels are dependent on the direction from which the coupons were obtained. Yield stress and ultimate strength values are significantly higher for specimens milled from the transverse direction in comparison to specimens cut from the longitudinal and diagonal directions. The material properties of the G300 sheet steels are not dependent on direction within the plane of the sheet (see Table 3.1). Typically, material properties are calculated using base metal thickness measurements with data that has been obtained from specimens tested with the metallic coating intact. The base metal thickness calculated yield stress and ultimate strength values for G550 sheet steels are significantly above the minimum specified 550MPa. This is most evident for specimens obtained from the transverse direction where dynamic yield stresses are as high as 817MPa. Dynamic yield stress results for specimens cut from the longitudinal and diagonal directions range from 703 to 731MPa (see Table 3.1). The high measured material properties are mainly due to the cold reduction procedure used in the manufacture of G550 sheet steels.

3.3 Possible Modes of Failure Winter (1956) categorised the failure of bolted connections into four separate modes, described in this report as; end pull-out, bearing, net section fracture and bolt shear. All connections tested were designed such that bolt shear did not occur, hence, only failure of the sheet steel was considered. It was possible to observe the three remaining failure modes by varying the size and shape of the test specimens, as well as the spacing and number of bolts. Photographs of specimens which failed in these modes are provided in Figures 3.5 to 3.8, with a schematic drawing given in Appendix 'D', and further photographs in Appendix 'H'. Tables D2 to D41 of Appendix 'D' list the actual failure pattern for each of the bolted connections tested. End pull-out failure typically occurred for single bolt connections where the distance from the centre of the bolt hole to the end of the specimen was less than three times the diameter of the bolt. A photograph of an end pull-out failure of a transverse 060-G550 test specimen is shown in Figure 3.5. Some piling of the sheet steel occurred in front of the bolt with two near longitudinal tears extending from the piled material to the end of the specimen. Connections which failed by bearing exhibited an initial pull out tear in the direction of load, with piling of the sheet steel in front of the bolt, similar to that observed for end pull-out failure, and in some instances additional diagonal tears at the

11

Figure 3.5 060-G550 End Pull-Out Failure

Figure 3.6 042-G550 Bearing Failure

12

Figure 3.7 060-G550 Double Bolt Connection Bearing Failure

Figure 3.8 Double Bolt Bearing and Net Section Failures

13

edge of the piled material nearest the end of the test specimen. The single bolt 042-G550 and a double bolt 060-G550 test specimens (see Figures 3.6 and 3.7) exhibited typical bearing failure behaviour with piling of the sheet material in front of the bolt. Tearing of the sheet, as shown by the longitudinal specimen in Figure 3.8, did not occur for all bearing failures. Typically, when the sheet material curled out of plane, back towards the bolt, the ultimate load was followed by a diagonal tearing of the specimen. This out of plane curling was limited in winged and clipped connections reducing the degree of diagonal tearing, i.e. for specimens where edge stiffeners or small metal clips were used to keep the end of the connections in the same plane. A number of bolted specimens exhibited large amounts of bearing distortion prior to failure through the net section. Net section failure was identified in these cases due to slight necking of the specimen followed by fracture of the material at the centre of the originally drilled bolt hole furthest from the end of the specimen (see transverse and diagonal specimens Figure 3.8). This behaviour differs from bearing failures where diagonal tears extend from the piled material nearest the end of the specimen, as shown for the longitudinal specimen in Figure 3.8.

3.4 Connection Elongation and Ultimate Load Comparison The ultimate load, Pt, and corresponding elongation at ultimate, δult, for each of the bolted test specimens can be found in Table D1 of Appendix 'D'. Displacement based capacity determined by the applied load at either 3mm (ECCS, 1983) or 6.35mm (AISC, 1988, 1989, 1993) extension was not used due to a possible 4.6mm of slip before bearing and the 10-30mm of material deformation prior to failure. However, the maximum displacement based load that occurred within 6.35mm extension after bearing, P6.35, for each of the bolted test specimens can be found in Tables D2 to D41 of Appendix 'D'. The connections were assembled such that the edges of bolt holes did not bear on the bolt shank or threads. The bolts were placed in the centre of the oversized holes, resulting in random distances between the bolt and hole edge. Only upon loading and subsequent slippage of the connection did the hole edge and bolt bear on one another. Hence, it was possible for a range of slip to exist, e.g. from 0 to 4.6mm, however, slip of the connection was normally in the range of 2 to 4mm. The variation in placement of the bolts and the resulting slip prior to bearing of the connection renders the displacement data less accurate than the ultimate load data. A comparison of the relative displacement of connections, nominally identical except for the type of sheet steel used, is presented in Table 3.2. The displacement at ultimate was compared using the 060-G550 and 060-G300 materials for each type of test specimen. Previous research by Rogers and Hancock (1996) concluded that G300 sheet steels possess a greater ability to elongate compared with G550 sheet steels. The distribution of elongation varies not only between the two types of material, but between directions in the plane of the sheet for G550 sheet steels. Bolted connections composed of G550 sheet steels displayed an ability to elongate which was at worse 90% (mean value) of that measured for the nominally identical G300 test specimens. Single bolt tensile specimens were capable of displacing from 94 to 98% of the distances measured for G300 sheet steels. G550 double bolt specimens were able to elongate to a larger degree than their G300 opposites. These results give evidence that the limited elongation ability exhibited by the G550 sheet steels in coupon tests does not relate to a small displacement capability for failures by end pull-out and bearing. The lower displacement ratios observed for the triple bolt specimens were due to

14

failure by net section fracture, a similar mode to that found for the tensile coupons tested by Rogers and Hancock. No significant variation in elongation between the longitudinal, transverse and diagonal test specimens was observed for any failure type (see Table D1 of Appendix 'D').

Table 3.2 0.6mm δult G550 / δult G300 Comparison Longitudinal Transverse Diagonal

Specimen δult /δult Specimen δult /δult Specimen δult /δult Type G550/G300 Type G550/G300 Type G550/G300

One Bolt B1-12L 0.77 B1-12T 0.87 B1-12D 0.76 B1-24L 1.01 B1-24T 0.75 B1-24D 0.81 B1W-24L 0.76 B1W-24T 0.68 B1W-24D 0.80 B1-36L 1.02 B1-36T 1.24 B1-36D 1.13 B1W-36L 1.12 B1W-36T 0.87 B1W-36D 0.91 B1-48L 0.93 B1-48T 1.26 B1-48D 1.27 B1W-48L 0.90 B1W-48T 0.71 B1W-48D 0.90 B1-60L 1.31 B1-60T 1.11 B1-60D 0.94

Mean 0.98 Mean 0.94 Mean 0.94

Two Bolts B2-55L 0.96 B2-55T 1.20 B2-55D 0.99 B2-75L 1.02 B2-75T 1.08 B2-75D 1.22 B2-75L-E 1.11 B2-75T-E 0.71 B2-75D-E 1.27 B2-95L 0.99 B2-95T 1.01 B2-95D 0.85

Mean 1.02 Mean 1.00 Mean 1.08

Three Bolts B3-55L 0.81 B3-55T 0.87 B3-55D 1.01

Mean 0.90

Zadanfarrokh and Bryan (1992) observed that the testing of standard flat tensile specimens did not accurately represent the true behaviour of profiled structural members such as C-sections. The stabilising effect of elements adjacent to the connected element, such as flanges or lips, must be accounted for in the testing of connections. Zadanfarrokh and Bryan proposed that connection specimens with lips (wings), which are 1/5 of the width of the specimen, be used in testing. Winged and standard test specimens were identically dimensioned except for the additional stiffening elements. A comparison of the ultimate load and corresponding displacement of the connection at ultimate for concentric winged and flat specimens can be found in Table 3.3. Test results for the 060-G300 test specimens indicate that the winged specimens can carry larger loads with increased displacements in contrast to the corresponding flat test specimens. Ultimate loads obtained for the flat specimens were on average 81 to 84% of the values measured for the winged specimens. Similarly, connection displacement for the flat test specimens varied on average from 71 to 89% of that determined for the winged test specimens. A significant change in behaviour was not displayed between the G550 flat and winged specimens, as found with the G300 sheet steels. The ultimate load reached by the flat specimens ranged from 94 to 113% of the load measured for the

15

corresponding winged test specimens. Displacement measurements for the G550 test specimens were not as consistent as those observed for the ultimate load, i.e. displacement values for the flat specimens were as low as 53% and as high as 129% of those measured for the winged test specimens. The variation in load carrying ability between the flat and winged specimens can be attributed to the material properties of the sheet steels. The higher yield stress and ultimate strength of the G550 material provided enough stability such that the full load carrying capacity of the connection could be achieved for flat specimens. In contrast the less stiff G300 material needed the additional lips to achieve a level of stability in the connected element such that full load carrying capacity could be realised. The large variation in displacement measurements, which do not favour either of the specimen types, is most probably due to the random placement of the bolts in the oversize holes. Table 3.3 Flat / Winged Specimen Ultimate Load and Displacement Comparison

Compared 060-G300-I 060-G550-I 042-G550-I 042-G550-CSpecimens Pt /Pt δult /δult Pt /Pt δult /δult Pt /Pt δult /δult Pt /Pt δult /δult

Longitudinal B1-24L/B1W-24L 0.89 0.73 1.08 0.96 0.86 0.82 0.94 0.92B1-36L/B1W-36L 0.84 0.77 0.87 0.71 0.99 0.88 0.92 0.82B1-48L/B1W-48L 0.70 0.62 0.90 0.64 1.01 0.86 0.97 1.37

Mean 0.81 0.71 0.95 0.77 0.95 0.85 0.94 1.04

Transverse B1-24T/B1W-24T 1.04 1.07 1.04 1.18 1.05 0.58 1.27 0.49B1-36T/B1W-36T 0.77 0.67 0.90 0.96 1.02 0.82 0.96 0.39B1-48T/B1W-48T 0.68 0.59 1.03 1.04 1.11 0.98 1.15 0.70

Mean 0.83 0.78 0.99 1.06 1.06 0.79 1.13 0.53

Diagonal B1-24D/B1W-24D 1.06 1.09 1.07 1.10 1.05 1.73 0.91 0.93B1-36D/B1W-36D 0.77 0.92 1.08 1.15 0.95 0.93 1.19 0.88B1-48D/B1W-48D 0.69 0.67 0.80 0.95 1.02 1.20 1.03 0.39

Mean 0.84 0.89 0.98 1.06 1.01 1.29 1.04 0.73

Two types of galvanised M12 Grade 8.8 bolts were used in the testing of 042-G550 connections, i.e. bolts with integral and conventional washers. The bolts with integral washers allowed the sheet steel to bear on the shank while the bolts with conventional washers caused the sheet steel to bear on the threads. The ultimate load and corresponding displacement at ultimate of test specimens, which were nominally identical except for the type of bolt used, were compared (see Table 3.4). The load carrying capacity of the bolted connections with integral washers did not significantly vary from that of the bolted connections with conventional washers. In most instances the mean value of the integral to conventional washer ultimate connection capacity is near unity. However, individual values for specimens which failed by end pull-out alone are significantly less than unity, which indicates that the connections with conventional washers performed at a higher level in this case. Displacements measured at ultimate load show that the bolted connections with integral washers are able to elongate to a greater degree, i.e. mean δult/δult ratios range from 1.16 to 1.63. This is most probably due to bearing on the shank of the bolt which did not precipitate tearing, as may have occurred when the sheet steel was in contact with the threads of the conventional bolt.

16

Table 3.4 Integral / Conventional Washer Ultimate Load and Displacement Comparison

Longitudinal Transverse Diagonal Specimen Pt /Pt δult /δult Specimen Pt /Pt δult /δult Specimen Pt /Pt δult /δultType Int/Con Int/Con Type Int/Con Int/Con Type Int/Con Int/Con

One Bolt B1-12L 0.87 1.91 B1-12T 0.53 1.49 B1-12D 0.78 0.87B1-24L 0.88 1.20 B1-24T 1.02 1.17 B1-24D 1.05 1.04B1W-24L 0.96 1.34 B1W-24T 1.23 0.99 B1W-24D 0.92 0.55B1-36L 1.23 0.98 B1-36T 1.25 2.14 B1-36D 0.85 2.08B1W-36L 1.15 0.91 B1W-36T 1.18 1.01 B1W-36D 1.07 1.96B1-48L 1.07 0.73 B1-48T 1.02 1.15 B1-48D 0.99 2.33B1W-48L 1.02 1.16 B1W-48T 1.06 0.83 B1W-48D 1.00 0.75B1-60L 1.13 1.06 B1-60T 1.06 1.51 B1-60D 1.30 3.44

Mean 1.04 1.16 Mean 1.04 1.29 Mean 1.00 1.63

Two Bolts B2-55L 1.15 1.43 B2-55T 1.03 0.87 B2-55D 0.98 1.07B2-75L 1.04 1.37 B2-75T 1.21 1.29 B2-75D 1.07 1.39B2-95L 1.01 - B2-95T 1.06 1.33 B2-95D 1.17 1.29

Mean 1.07 1.40 Mean 1.10 1.16 Mean 1.08 1.25

Three Bolts B3-55L 0.96 1.30 B3-55T 0.94 1.47 B3-55D 1.01 1.40

Mean 0.97 1.39

Table 3.5 Concentric / Eccentric Ultimate Load and Displacement Comparison 060-G550-I Compared Pt /Pt δult /δult Compared Pt /Pt δult /δult

Specimens Con/Ecc Con/Ecc Specimens Con/Ecc Con/Ecc

One Bolt One Bolt B1W-24T/B1W-24T-E2 0.94 1.11 B1W-24D/B1W-24D-E2 0.86 1.36B1W-36T/B1W-36T-E4 1.11 1.13 B1W-36D/B1W-36D-E4 0.99 0.92B1W-48T/B1W-48T-E6 1.01 0.87 B1W-48D/B1W-48D-E6 1.04 0.95

Mean 1.02 1.04 Mean 0.96 1.08

Two Bolts Three Bolts B2-75L/B2-75L-E10 0.92 0.97 B3-55L/B3-55L-E10 1.04 1.48B2-75T/B2-75T-E15 0.96 1.20 B3-55D/B3-55D-E20 1.04 1.66B2-75D/B2-75D-E20 0.96 0.86 Mean 1.04 1.57

Mean 0.95 1.01

060-G300-I Compared Pt /Pt δult /δult Specimens Con/Ecc Con/Ecc

Two Bolts B2-75L/B2-75L-E10 1.01 1.06 B2-75T/B2-75T-E20 1.00 0.79 B2-75D/B2-75D-E15 1.00 0.90

Mean 1.00 0.92

A limited number of eccentrically loaded tests were included in this study to determine the influence of load position on the behaviour of bolted connections.

17

Eccentricities for winged, double and triple bolt 060-G550 and 060-G300 specimens were varied from 2 to 20mm, representing 2.7 to 36.4% of the width of the test pieces. A comparison of concentric-to-eccentric test results for nominally identical specimens is presented in Table 3.5. No distinct change in failure mode, load carrying capacity or connection displacement occurred with eccentric loading.

3.5 Comparison of Ultimate Test-to-Design Standard Predicted Loads The average dynamic ultimate material strengths used in the prediction of connection loads were calculated using individual ultimate strengths, i.e., base metal thickness values, obtained from the solid coated and strain gauge specimens tested for this project (see Rogers and Hancock (1996)). Dynamic ultimate test loads, Pt, were used in comparison with predicted ultimate connection strengths, Pp, determined using the relevant design standards (SA/SNZ, 1996; CSA, 1994; AISI, 1996; Eurocode, 1996). Conclusions regarding the adequacy of design formulations based on a comparison of test-to-predicted ratios where the actual and predicted failure modes do not match are invalid. Hence, statistical information of the test-to-predicted ratios for the various design standards is not provided in this report. Only the CSA-S136 Design Standard (1994) adequately predicts the failure modes of the different G550 test specimens. However, bolted connection test and predicted loads, as well as test-to-predicted loads according to the relevant design standards, for each individual specimen, can be found in Tables D2 to D41 of Appendix 'D'. The lowest calculated load from the various connection equations within any one design standard is defined as the predicted mode of failure. The ratio of correct-to-incorrect failure mode prediction for the AS/NZS (1996) and AISI (1996) Design Standards is 92:66, where the majority of incorrect predictions were defined as net section failure when bearing failure occurred in the test specimen. The error in predicted failure mode can be attributed to design equations which overestimate and underestimate the bearing and net section fracture resistance, respectively. Bearing resistance equations are based on a large array of data which does not include a significant number of specimens with thicknesses less than 0.6mm. The lack of specimens in this range has allowed the AS/NZS 4600 and AISI Design Standards to overlook the influence of thickness on bearing capacity. Test results from this report also show that it is not necessary to reduce the net section fracture capacity at connections as a function of the number of bolts and width of the specimen. Use of the CSA-S136 Design Standard (1994) provides a ratio of correct-to-incorrect failure mode prediction of 152:6. The six incorrectly predicted specimens were double bolted G300 tests for which net section failure occurred instead of the predicted bearing failure. The coefficient of C = 2 used in the CSA-S136 bearing equation for connections where d/t ≥ 15 (see Table A3 of Appendix 'A') may be overly conservative for mild sheet steels. Use of the Eurocode Standard (1996) gives a ratio of correct-to-incorrect failure mode prediction of 131:27. The large number of incorrect failure mode predictions is due to an overestimated bearing capacity and an underestimated net section fracture capacity, similar to that observed for the AS/NZS 4600 (1996) and AISI (1996) Design Standards.

18

3.6 Comparison of Ultimate Test-to-Failure Criterion Predicted Loads The three observed ultimate limit states; end pull-out, bearing and net section fracture were divided into separate categories according to the failure mode recorded during testing. Thus, the predicted connection capacity used in comparison with the ultimate tensile load of a bolted connection was calculated using the design equation developed for that failure mode, e.g. all specimens which failed by bearing were compared with the predicted bearing capacity. This type of failure based criterion comparison reveals the accuracy of each individual design equation by eliminating the influence of the remaining bolted connection design provisions. Statistical results for each material type, design standard and failure mode are provided for 042-G550, 060-G550 and 060-G300 sheet steels in Tables 3.6, 3.7 and 3.8, respectively. Individual test-to-predicted ratios can be found in Tables F1 to F12 (042-G550), Tables F19 to F30 (060-G550) and Tables F31 to F42 (060-G300) of Appendix 'F'. Use of the actual failure mode as a criterion for the predicted connection resistance of each test specimen provided information for the following observations. The AS/NZS 4600 (1996) and AISI (1996) Design Standards can both be used to conservatively predict the net section failure loads of bolted connections. Calculated end pull-out loads are unconservative, especially for transverse specimens where mean test-to-predicted ratios of 0.729 and 0.795 occur for 042-G550 and 060-G550 sheet steel specimens, respectively. The capacity of 060-G300 test specimens which failed by end pull-out are more accurately predicted using these design standards. The connection resistance of bolted specimens which failed in bearing is inaccurately modelled by the existing AS/NZS 4600 and AISI design provisions. The resulting mean test-to-predicted ratios are significantly unconservative, ranging from 0.591 in the transverse direction to 0.661 in the longitudinal direction for 042-G550 sheet steel specimens and from 0.798 in the longitudinal direction to 0.842 in the diagonal direction for 060-G300 sheet steel specimens. The ultimate connection resistance of bolted specimens determined using Eurocode 3 (1996) can be more accurately calculated in comparison with the AS/NZS 4600 (1996) and AISI (1996) Design Standards. End pull-out failure can be conservatively predicted for all steels tested, except for transverse G550 test specimens. Net section fracture prediction behaviour remains conservative, although not to the extent exhibited by the AS/NZS 4600 and AISI Design Standards. However, the bearing resistance formulation remains significantly unconservative with mean test-to-predicted ratios for G550 test specimens which range from 0.710 to 0.862. The bearing resistance of 060-G300 test specimens can be more accurately determined, shown by the range of mean test-to-predicted ratios (0.957 to 1.011). The CSA-S136 Design Standard (1994) provides overly conservative predictions of the end pull-out capacity for both the G550 and G300 sheet steels tested. Mean test-to-predicted values range from 1.060 for transverse 060-G550 test specimens to 1.467 for diagonal 060-G300 test specimens. Net section fracture connection resistance can be accurately modelled using the net cross-sectional area and the ultimate material strength without a stress reduction factor. Mean test-to-predicted ratios range from 0.977 to 1.088 for G550 sheet steels and from 0.963 to 0.986 for 060-G300 test specimens. A dramatic improvement in the ability to predict the ultimate bearing resistance of the sheet steels tested for this report occurs with the use of the CSA-S136 Design Standard. Mean test-to-predicted ratios for the 042-G550 test specimens range from 0.887 to 0.991, for the 060-G550 test specimens from 0.954 to 1.077 and for the

19

Table 3.6 042-G550 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) Failure Mode Longitudinal Transverse Diagonal Failure Mode Longitudinal Transverse Diagonal Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp

AS/NZS 4600 (1996) AISI (1996) End pull-out Mean 0.960 0.795 0.911 End pull-out Mean 0.960 0.795 0.911 No. 6 6 6 No. 6 6 6 S.D. 0.0697 0.166 0.147 S.D. 0.0697 0.166 0.147 C.o.V. 0.0937 0.269 0.208 C.o.V. 0.0937 0.269 0.208

Bearing Mean 0.661 0.591 0.622 Bearing Mean 0.661 0.591 0.622 No. 14 14 14 No. 14 14 14 S.D. 0.0492 0.0484 0.0557 S.D. 0.0492 0.0484 0.0557 C.o.V. 0.0809 0.0889 0.0974 C.o.V. 0.0809 0.0889 0.0974

Net section fracture Mean 1.202 1.089 1.154 Net section fracture Mean 1.202 1.089 1.154 No. 3 4 4 No. 3 4 4 S.D. 0.0508 0.0461 0.0097 S.D. 0.0508 0.0461 0.0097 C.o.V. 0.0732 0.0733 0.0146 C.o.V. 0.0732 0.0733 0.0146

CSA-S136 (1994) Eurocode 3 (1996) End pull-out Mean 1.391 1.180 1.391 End pull-out Mean 1.152 0.954 1.093 No. 6 6 6 No. 6 6 6 S.D. 0.384 0.463 0.646 S.D. 0.0836 0.199 0.176 C.o.V. 0.357 0.507 0.599 C.o.V. 0.0937 0.269 0.208

Bearing Mean 0.991 0.887 0.933 Bearing Mean 0.793 0.710 0.746 No. 14 14 14 No. 14 14 14 S.D. 0.0737 0.0725 0.0836 S.D. 0.0590 0.0580 0.0669 C.o.V. 0.0809 0.0889 0.0974 C.o.V. 0.0809 0.0889 0.0974

Net section fracture Mean 1.088 0.977 1.036 Net section fracture Mean 1.141 1.029 1.091 No. 3 4 4 No. 3 4 4 S.D. 0.0717 0.0268 0.0256 S.D. 0.0629 0.0336 0.0156 C.o.V. 0.114 0.0475 0.0429 C.o.V. 0.0955 0.0566 0.0248

20

Table 3.7 060-G550 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) Failure Mode Longitudinal Transverse Diagonal Failure Mode Longitudinal Transverse Diagonal Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp

AS/NZS 4600 (1996) AISI (1996) End pull-out Mean 0.841 0.729 0.845 End pull-out Mean 0.841 0.729 0.845 No. 3 3 3 No. 3 3 3 S.D. 0.061 0.020 0.045 S.D. 0.061 0.020 0.045 C.o.V. - - - C.o.V. - - -

Bearing Mean 0.718 0.636 0.693 Bearing Mean 0.718 0.636 0.693 No. 7 7 7 No. 7 7 7 S.D. 0.048 0.037 0.066 S.D. 0.048 0.037 0.066 C.o.V. 0.082 0.071 0.116 C.o.V. 0.082 0.071 0.116

Net section fracture Mean 1.140 1.127 1.138 Net section fracture Mean 1.140 1.127 1.138 No. 2 2 2 No. 2 2 2 S.D. 0.032 0.058 0.048 S.D. 0.032 0.058 0.048 C.o.V. - - - C.o.V. - - -

CSA-S136 (1994) Eurocode 3 (1996) End pull-out Mean 1.215 1.060 1.232 End pull-out Mean 1.009 0.875 1.014 No. 3 3 3 No. 3 3 3 S.D. 0.330 0.320 0.390 S.D. 0.074 0.024 0.054 C.o.V. - - - C.o.V. - - -

Bearing Mean 1.077 0.954 1.040 Bearing Mean 0.862 0.763 0.832 No. 7 7 7 No. 7 7 7 S.D. 0.072 0.055 0.098 S.D. 0.058 0.044 0.079 C.o.V. 0.082 0.071 0.116 C.o.V. 0.082 0.071 0.116

Net section fracture Mean 1.023 1.011 1.021 Net section fracture Mean 1.077 1.065 1.074 No. 2 2 2 No. 2 2 2 S.D. 0.004 0.019 0.011 S.D. 0.012 0.036 0.027 C.o.V. - - - C.o.V. - - -

21

Table 3.8 060-G300 Failure Based Criterion Test-To-Predicted Statistical Data (B.M.T.) Failure Mode Longitudinal Transverse Diagonal Failure Mode Longitudinal Transverse Diagonal Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp Pt / Pp

AS/NZS 4600 (1996) AISI (1996) End pull-out Mean 0.990 0.994 0.997 End pull-out Mean 0.990 0.994 0.997 No. 3 3 3 No. 3 3 3 S.D. 0.096 0.078 0.082 S.D. 0.096 0.078 0.082 C.o.V. - - - C.o.V. - - -

Bearing Mean 0.798 0.804 0.842 Bearing Mean 0.798 0.804 0.842 No. 6 6 6 No. 6 6 6 S.D. 0.123 0.135 0.141 S.D. 0.123 0.135 0.141 C.o.V. 0.199 0.217 0.215 C.o.V. 0.199 0.217 0.215

Net section fracture Mean 1.124 1.147 1.120 Net section fracture Mean 1.124 1.147 1.120 No. 3 3 3 No. 3 3 3 S.D. 0.079 0.067 0.066 S.D. 0.079 0.067 0.066 C.o.V. - - - C.o.V. - - -

CSA-S136 (1994) Eurocode 3 (1996) End pull-out Mean 1.424 1.440 1.467 End pull-out Mean 1.188 1.192 1.196 No. 3 3 3 No. 3 3 3 S.D. 0.349 0.364 0.402 S.D. 0.115 0.093 0.099 C.o.V. - - - C.o.V. - - -

Bearing Mean 1.197 1.205 1.264 Bearing Mean 0.957 0.964 1.011 No. 6 6 6 No. 6 6 6 S.D. 0.185 0.202 0.211 S.D. 0.148 0.162 0.169 C.o.V. 0.199 0.217 0.215 C.o.V. 0.199 0.217 0.215

Net section fracture Mean 0.966 0.986 0.963 Net section fracture Mean 1.062 1.083 1.058 No. 3 3 3 No. 3 3 3 S.D. 0.028 0.022 0.018 S.D. 0.068 0.059 0.061 C.o.V. - - - C.o.V. - - -

22

060-G300 test specimens from 1.197 to 1.264. The variation in mean test-to-predicted ratios for the G550 and G300 test specimens which failed in bearing exhibits the need for a bearing formulation which is dependent on material properties, as well as thickness. However, the consistently unconservative mean test-to-predicted ratios for the bearing failure of 042-G550 sheet steels indicate that a bearing coefficient of less than the current C = 2 for d/t ≥ 15 may be necessary.

3.7 Ultimate Failure Stress Ratios The cross-sectional stress at ultimate load for each specimen which failed by either end pull-out or bearing or a combination of end pull-out and bearing was calculated (see Tables E1 to E3 of Appendix 'E') and plotted in Figures 3.9 to 3.11. The nominal ratio of ultimate cross-sectional stress, fbu, to dynamic base metal ultimate material strength, fu, was compared with the ratio of edge distance, e, to bolt diameter, d. The fbu values plotted in Figures 3.9 to 3.11 do not contain the 0.75 reduction factor specified in the AS/NZS 4600 (1996), CSA-S136 (1994) and AISI (1996) Design Standards. The resulting plots for the 042-G550 and 060-G550 sheet steel bolted specimens show that the ultimate bearing stress reaches a maximum of approximately twice the ultimate material strength. The design formulation for the bearing capacity of sheet steels with single shear bolted connections is three times the ultimate material strength for the AS/NZS 4600 and AISI Standards, two and a half times the ultimate material strength for the Eurocode Standard (1996) and two times the ultimate material strength for the CSA-S136 Design Standard, when the ratio of d/t ≥ 15, as found for the thin steels tested for this report. The ultimate cross-sectional stress of the specimens which failed by end pull-out is less than that observed for specimens which failed by bearing, and lies near the expected end pull-out stress if the CSA-S136 design formulation is followed. The 060-G300 test specimens which failed either by end pull-out or bearing or a combination of end pull-out and bearing have a calculated cross-sectional stress with a lower bound of approximately twice the ultimate material strength. The ratio of ultimate bearing stress to ultimate material strength does extend up to and slightly past three for some test specimens, however, the majority lie closer to the values predicted using the CSA-S136 Design Standard (1994). The use of a gradated ultimate material strength multiplicative factor, which is dependent on the stability of the material at the edge of the fastener hole (see Table A3 of Appendix 'A') is necessary for the accurate design of G550 and mild G300 sheet steels when the thickness is 0.6mm or less. The cross-sectional stress at ultimate load for each specimen where net section failure occurred was calculated (see Table E4 of Appendix 'E') and plotted in Figures 3.12 to 3.14. The ratio of net section fracture stress at ultimate, fnet, to dynamic base metal ultimate material strength, fu, without the 0.75 reduction factor, versus the ratio of bolt diameter, d, to specimen width, s, is given, along with the predicted ratio of fnet/fu determined using the AS/NZS 4600 (1996) and AISI (1996) Design Standards. The design formulation for net section failure at a connection is dependent on the ratio of the number of bolts in the cross-section to the number of bolts in the connection, r, and the ratio of d/s. Test specimens joined with a single bolt did not fail by net section fracture due to the thinness of the material used, therefore, only a limited amount of data is available for the double and triple bolt connections. In most instances the ratio of net section fracture stress at ultimate to ultimate material strength is approximately

23

Figure 3.9 042-G550 Bolted Connection Tests End Pull-Out and Bearing Failure

Stress vs. Ultimate Strength Ratios

Figure 3.10 060-G550 Bolted Connection Tests End Pull-Out and Bearing Failure

Stress vs. Ultimate Strength Ratios

Figure 3.11 060-G300 Bolted Connection Tests End Pull-Out and Bearing Failure

Stress vs. Ultimate Strength Ratios

24

Figure 3.12 042-G550 Bolted Connection Tests Net Section Failure Stress vs.

Ultimate Strength Ratios

Figure 3.13 060-G550 Bolted Connection Tests Net Section Failure Stress vs.

Ultimate Strength Ratios

Figure 3.14 060-G300 Bolted Connection Tests Net Section Failure Stress vs.

Ultimate Strength Ratios

25

unity, which indicates that the use of a stress reduction factor, which is dependent on r and the ratio of d/s, is overly conservative for the design of thin G550 and G300 sheet steels. The reduction formulation used in the AS/NZS 4600, AISI and Eurocode Design Standards is not present in the CSA-S136 Design Standard (1994), where the net section fracture stress at a hole or at a connection are equal (see Appendix 'A'). The CSA-S136 Design Standard can be used to predict the tensile capacity of a bolted connection which has failed in the net section fracture mode.

3.8 Reliability Study A reliability study was completed to establish the applicability of current bolted connection ultimate tensile design equations to G550 sheet steels. The methods used to calibrate the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996), and European (Eurocode, 1996) Design Standards can be found in Rogers and Hancock (1996). Procedures used to calculate resistance (capacity) factors, φ, based on target reliability (safety) indices, βo, are provided following the AISI Commentary (1996) formulation. Data from the bolted connection test specimen study presented in this report is supplemented with material information on G550 sheet steels from BHP Research. It is important that a full range of possible material properties, which represent the types of G550 sheet steels available from different rolling mills, be included as data to accurately assess the reliability of a design formulation. Material information of this type was not contained in the scope of this project, hence, data was obtained from a G550 Commonisation Study (1996) completed by BHP Research. An estimate of the variance in material properties caused by the test procedures used at BHP was made possible through a research study, where sheet steels from the University of Sydney were tested by BHP personnel. The calibration procedure was completed for data based on the full ultimate strength, fu, as well as the reduced ultimate strength, 0.75fu.

3.8.1 AISI Calibrated Resistance (Capacity) Factors, φ The reliability of a structure at various limit states can be estimated by means of a first and second order moment (FOSM), i.e. mean and coefficient of variation, reliability analysis method. Standards which incorporate a limit states philosophy as a basis for design, e.g. Australia / New Zealand AS/NZS 4600 (1996), are dependent on load, γ i, and resistance (capacity), φ, factors to account for uncertainties and variabilities associated with loads, analysis, the limit state model, material properties, geometry and fabrication. Limit states design provides a higher degree of reliability in comparison to allowable stress design because of the ability to account for the variance in different types of loads, e.g. dead and wind, and structural resistance (AISI Commentary, 1991). Full development of the calibration procedure outlined in Appendix 'F' is provided in Rogers and Hancock (1996). The safety index, β, is related to the resistance (capacity) factor, φ, as follows,

( ) ( )( )

βφ

=⋅ ⋅

+ + +

ln M F P

V V Vm m m

M2

F2

P2

0 691

0 212

.

. Australia and Canada (3.1)

26

where Mm, Fm, Pm, VM, VF, and VP are mean values and coefficients of variation for material properties, fabrication variables and design equations, respectively. Resistance (capacity) factors, φ, may be calculated for the connection expressions of each design standard by rearranging Eq. 3.1 (see Eqs. F9 and F10 of Appendix 'F' for the corresponding New Zealand, USA and European reliability formulations), substituting an appropriate value for the target reliability index, βo, and solving for φ. The Commentary for the AISI Specification (1996) recommends that βo be taken as 3.5 for connections. The Canadian Commentary (CSA, 1995) recommends that βo range between 3.0 and 4.0 (βo = 4.0 is applicable to normal buildings where sudden failure may occur (CSA, 1981)). A βo of 3.5 was assumed for calibration of the European Standard (Eurocode, 1996) following the AISI Commentary specified procedure. Peköz (1990) states that a target reliability index of 4.0 is commonly used because failure of a connection may cause overall failure of the structure. Ellingwood et al. (1982) previously recommended that a target reliability index of 4.5 be used in the calibration of design equations for connections. Based on this rationale and due to the nature of failures observed with thin G550 sheet steels, target reliability indices of 3.5, 4.0 and 4.5 are used in this report. Results of the reliability study following the AISI Commentary (1996) recommended calibration procedure reveal that not all of the calculated resistance factors meet the requirements currently specified in the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996), and European (Eurocode, 1996) Design Standards. Table 3.9 lists the current and calculated resistance (capacity) factors in the longitudinal, transverse and diagonal directions for the various target reliability indices and the three failure types, when the full ultimate strengths, fu, of the sheet steels are used. Table 3.10 provides the same information when the values of the material properties are limited to 75% of their nominal and measured values, i.e. the ultimate strengths used to determine required test-to-predicted ratios and the nominal value of 550MPa used in the reliability analysis are modified. Tables F13 to F18 of Appendix 'F' list all pertinent statistical parameters necessary for the calculation of resistance (capacity) factors.

3.8.2 Calculated Resistance (Capacity) Factors, φ, Using fu Capacity factors determined for net section failure using the AS/NZS 4600 Design Standard (1996) with Australian dead and live load combinations (SA, 1989) exceed the current values in all directions for the target reliability indices presented, i.e. βo = 3.5, 4.0 and 4.5. The minimum calculated capacity factor, φ = 0.76, occurs for the diagonal direction with βo = 4.5. The current equation for bearing specified in the AS/NZS 4600 Design Standard is not reliable for use in the design of G550 sheet steel bolted connections when the full value of fu is used. Capacity factors determined for end pull-out failure are adequate for test data in the longitudinal direction, but not the transverse or diagonal directions. This is due in part to the limited amount of data available and the large scatter of results. Capacity factors calculated for the New Zealand AS/NZS 4600 (1996) and AISI (1996) Design Standards are identical due to the use of the same design equations, as well as dead and live load combinations (SNZ, 1992). Similar to the results of the Australian reliability study, net section failure can be reliably predicted using the current design provisions. However, capacity factors determined for the bearing failure expression do not meet the specified values, hence

27

Table 3.9 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types (Full fu Used) Failure Type Longitudinal Transverse Diagonal Failure Type Longitudinal Transverse Diagonal

Australia (SA/SNZ, 1996; SA, 1989) New Zealand (SA/SNZ, 1996; SNZ, 1992) & USA (AISI, 1996) End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.76/0.68/0.60 0.49/0.41/0.34 0.56/0.48/0.42 φ (calc.) 0.80/0.71/0.63 0.51/0.43/0.36 0.59/0.51/0.44 φ (curr.) 0.60 0.60 0.60 φ (curr.) 0.60 0.60 0.60

Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.53/0.47/0.42 0.53/0.47/0.42 0.48/0.42/0.38 φ (calc.) 0.56/0.50/0.44 0.56/0.50/0.44 0.50/0.45/0.40 φ (curr.) 0.60 0.60 0.60 φ (curr.) 0.60 0.60 0.60

Net section fracture βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Net section βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.98/0.87/0.78 1.00/0.89/0.80 0.95/0.85/0.76 φ (calc.) 1.03/0.92/0.82 1.05/0.94/0.84 1.00/0.90/0.80 φ (curr.) 0.55 0.55 0.55 φ (curr.) 0.55 0.55 0.55 Canada (CSA, 1994) Europe (Eurocode, 1996) End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.59/0.48/0.39 0.35/0.27/0.20 0.27/0.19/0.14 φ (calc.) 0.92/0.82/0.73 0.59/0.50/0.42 0.68/0.59/0.51 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.80/0.71/0.63 0.80/0.71/0.63 0.72/0.64/0.56 φ (calc.) 0.65/0.58/0.51 0.65/0.58/0.51 0.58/0.51/0.46 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

Net section fracture βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Net section βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.84/0.74/0.65 0.92/0.82/0.74 0.84/0.76/0.68 φ (calc.) 0.91/0.81/0.72 0.97/0.87/0.78 0.91/0.81/0.73 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

28

Table 3.10 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types (0.75fu Used) Failure Type Longitudinal Transverse Diagonal Failure Type Longitudinal Transverse Diagonal

Australia (SA/SNZ, 1996; SA, 1989) New Zealand (SA/SNZ, 1996; SNZ, 1992) & USA (AISI, 1996) End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 1.35/1.21/1.07 0.87/0.73/0.60 0.99/0.85/0.75 φ (calc.) 1.42/1.26/1.12 0.91/0.76/0.64 1.05/0.91/0.78 φ (curr.) 0.60 0.60 0.60 φ (curr.) 0.60 0.60 0.60

Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 0.94/0.84/0.75 0.94/0.84/0.75 0.85/0.75/0.68 φ (calc.) 0.99/0.89/0.78 0.99/0.89/0.78 0.89/0.80/0.71 φ (curr.) 0.60 0.60 0.60 φ (curr.) 0.60 0.60 0.60

Net section fracture βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Net section βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 1.74/1.55/1.39 1.78/1.58/1.42 1.69/1.51/1.35 φ (calc.) 1.83/1.64/1.46 1.87/1.67/1.49 1.78/1.60/1.42 φ (curr.) 0.55 0.55 0.55 φ (curr.) 0.55 0.55 0.55 Canada (CSA, 1994) Europe (Eurocode, 1996) End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 End pull-out βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 1.05/0.85/0.69 0.62/0.48/0.36 0.48/0.34/0.25 φ (calc.) 1.64/1.46/1.30 1.05/0.89/0.75 1.21/1.05/0.91 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Bearing βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 1.42/1.26/1.12 1.42/1.26/1.12 1.28/1.34/0.99 φ (calc.) 1.15/1.03/0.91 1.15/1.03/0.91 1.03/0.91/0.82 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

Net section fracture βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 Net section βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calc.) 1.49/1.32/1.16 1.64/1.46/1.32 1.49/1.35/1.21 φ (calc.) 1.62/1.44/1.28 1.72/1.55/1.39 1.62/1.44/1.30 φu (curr.) 0.75 0.75 0.75 1/γM2 (curr.) 0.80 0.80 0.80

29

bearing design of bolted connections is not reliable for G550 sheet steels. End pull-out failure can be reliably predicted in the longitudinal direction but not in the transverse or diagonal directions due to the wide scatter of results. Capacity factors determined for net section failure using the CSA-S136 Design Standard (1994) exceed the current values for βo = 3.5 and 4.0, except for longitudinal specimens where φ = 0.74 for βo = 4.0. Net section fracture capacities calculated using a reliability index of 4.5 are not reliable for any direction. Bearing resistance can be reliably predicted for βo = 3.5 in the longitudinal and transverse directions, however, all capacity factors determined for the higher target reliability indices and for the diagonal direction are inadequate. The extreme scatter of results observed for the end pull-out test-to-predicted data caused capacity factors to be significantly below the required φ = 0.75. AISI calculated capacity factors based on the European Design Standard (Eurocode, 1996) require that 1/γM = 0.80 for all bolted connection failure modes considered. Net section failure can be adequately predicted for βo = 3.5 and 4.0, however, for βo = 4.5 the design expression becomes unreliable. All capacity factors are lower than the required values for the bearing design equations, similar to the end pull-out capacity prediction for the transverse and diagonal directions. The design standard can be used to reliably predict the end pull-out strength of test specimens in the longitudinal direction for βo = 3.5 and 4.0, however not for βo = 4.5.

3.8.3 Calculated Resistance (Capacity) Factors, φ, Using 0.75fu In the current Australian / New Zealand (SA/SNZ, 1996), and North American (CSA, 1994; AISI, 1996) Design Standards 042-G550 sheet steels can be used for certain applications if the material properties are reduced to 75% of their nominally specified values. For this reason a reliability analysis was carried out using test results based on 0.75fu. Calculated capacity factors for the Australian / New Zealand and USA Design Standards exceed the factors specified for use in the design of end pull-out, bearing and net section fracture resistance. Similarly the Canadian Design Standard provides reliable tensile strength predictions for failure by bearing and net section fracture. Only for end pull-out failures does the CSA-S136 (1994) Design Standard result in calculated capacity factors which are less than the currently specified values. Use of the Eurocode Design Standard provides capacity factors which are reliable for all modes of failure considered, except for end pull-out failure in the transverse direction with βo = 4.5.

4 CONCLUSIONS The results of bolted connection tests completed for this report indicate that the current connection provisions set out in the AS/NZS 4600 (1996), AISI (1996) and Eurocode (1996) Design Standards cannot be used to accurately predict the failure mode of bolted connections fabricated from thin G550 and G300 sheet steels. Furthermore, these design standards cannot be used to accurately determine the bearing resistance of bolted specimens based on a failure criterion for predicted loads. It is necessary to incorporate a variable bearing resistance equation which is dependent on the thickness of the connected material, similar to that found in the CSA-S136 Design Standard (1994). In addition, the ultimate bearing failure stress-to-

30

ultimate material strength ratios show that a bearing equation coefficient of less than two may be appropriate for G550 sheet steels where d/t ≥ 15. The net section failure of 0.42 and 0.60mm, G550 and G300 sheet steels at connections can be accurately and reliably predicted without the use of a stress reduction factor based on the configuration of bolts and specimen width. The net section fracture resistance of a bolted connection calculated following the CSA-S136 Design Standard (1994) procedure, where the net cross-sectional area and the ultimate material strength are used, is adequate. Calibration of the various bolted connection design provisions using the full ultimate strength, fu, indicates that for a βo of 3.5 the net section fracture capacity can be reliably predicted. End pull-out failure cannot be reliably predicted except for longitudinal specimens using the AISI (1996) and Eurocode (1996) Design Standards. Bearing failures can only be reliably predicted with the CSA-S136 Design Standard, although transverse diagonal specimens have a calculated resistance factor, φ = 0.72 for βo = 3.5, which is marginally lower than the specified 0.75. Calibration of the same design provisions using a reduced ultimate strength, 0.75fu, shows that all of the design expressions are reliable except for the end pull-out equation specified by the CSA-S136 Design Standard and for the end pull-out equation for transverse specimens using the Eurocode Design Standard (1996) and a βo of 4.5. Bolted connections composed of G550 sheet steels were able to elongate to at least 90% of the distance measured for the nominally identical G300 test specimens. The limited elongation ability exhibited by the G550 sheet steels in coupon tests (Rogers and Hancock, 1996) did not translate into a small displacement capacity for bolted connection failures by end pull-out and bearing. The displacement of bolted connections, regardless of failure mode, is not dependent on the direction of the material in the plane of the sheet. The stabilising effect of elements adjacent to the connected element, such as flanges or lips, must be accounted for in the testing of mild sheet steel connections. Test results for the 060-G300 test specimens reveal that the winged specimens can carry larger loads with larger displacements in contrast to the standard flat test specimens. A significant change in behaviour was not displayed between the G550 standard and winged specimens. The variation in load carrying ability between the standard and winged specimens can be attributed to the material properties of the sheet steels. The load carrying capacity of the bolted connections with integral washers did not significantly vary from that of the bolted connections with conventional washers. However, connections with conventional washers were able to carry higher loads in specimens where end pull-out failure occurred. Displacements measured at the ultimate load indicate that the connections with integral washers were able to elongate to a greater degree due to bearing on the shank of the bolt instead of the threads. A limited number of eccentrically loaded tests were included in this study to determine the influence of load position on the behaviour of bolted connections. No distinct change in failure mode, load carrying capacity or connection displacement occurred with eccentric loading.

31

5 ACKNOWLEDGEMENTS This report forms part of a programme of research into the ductility of G550 sheet steels in tension being carried out in the Department of Civil Engineering at the University of Sydney. Test specimens were milled in the William and Agnes Bennett Supersonics Laboratory in the Department of Aeronautical Engineering. Tests were performed in the J.W. Roderick Laboratory for Materials and Structures. Test materials were provided by BHP Coated Steel Division, Port Kembla and BHP New Zealand Steel Limited, Auckland. Laboratory staff wages and research funding were provided by an Australian Research Council Collaborative Research Grant with BHP Steel. The first author is supported by a joint Commonwealth of Australia and Centre for Advanced Structural Engineering Scholarship.

32

REFERENCES American Institute of Steel Construction, "Specification for Structural Steel Buildings

- Allowable Stress Design and Plastic Design", First Edition, Chicago, IL, USA, 1989.

American Institute of Steel Construction, "Load & Resistance Factor Design -

Specification for Structural Steel Buildings", Chicago, IL, USA, 1993. American Institute of Steel Construction, Research Council on Structural Connections

"Load & Resistance Factor Design - Specification for Structural Joints Using ASTM A325 or A490 Bolts", Chicago, IL, USA, 1988.

American Iron and Steel Institute, "Specification for the Design of Cold-Formed Steel

Structural Members", August 19, 1986 Edition with December 11, 1989 Addendum, Washington, DC, USA, 1989.

American Iron and Steel Institute, "Commentary on the Specification for the Design

of Cold-Formed Steel Structural Members", August 19, 1986 Edition with December 11, 1989 Addendum, Washington, DC, USA, 1989.

American Iron and Steel Institute, "Load and Resistance Factor Design Specification

for Cold-Formed Steel Structural Members", March 16, 1991, Washington, DC, USA, 1991.

American Iron and Steel Institute, "Commentary on the Load and Resistance Factor

Design Specification for Cold-Formed Steel Structural Members", March 16, 1991, Washington, DC, USA, 1991.

American Iron and Steel Institute, "Specification for the Design of Cold-Formed Steel

Structural Members", Draft Edition, Washington, DC, USA, October, 1996. American Iron and Steel Institute, "Commentary on the 1996 Edition of the

Specification for the Design of Cold-Formed Steel Structural Members", Draft Edition, Washington, DC, USA, October, 1996.

American Iron and Steel Institute, "Changes to Specification and Commentary

Sections C2, E2, E3.2, E3.3 and E5, Combined LRFD and ASD", Ballot C/S96-66B, Washington, DC, USA, November, 1996.

American Society for Testing and Materials A 370-94, "Standard Test Methods and

Definitions for Mechanical Testing of Steel Products", Philadelphia, PA, USA. American Society for Testing and Materials A 611-94, "Standard Specification for

Steel, Sheet, Carbon, Cold-Rolled, Structural Quality", Philadelphia, PA, USA. American Society for Testing and Materials A 653-94, "Standard Specification for

Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process", Philadelphia, PA, USA.

American Society for Testing and Materials A 792-94, "Standard Specification for

Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process", Philadelphia, PA, USA.

33

BHP, "The Making of Iron and Steel", Seventh Edition, BHP Steel Group, Melbourne Vic, Australia, April 1992.

BHP, "0.42 G550 Commonisation Study", BHP Research, Flat Products Division,

BHP Steel, Port Kembla, NSW, Australia, 1996. Canadian Standards Association, S408-1981, "Guidelines for the Development of

Limit States Design", Etobicoke, Ont, Canada, 1981. Canadian Standards Association, S136-94, "Cold Formed Steel Structural Members",

Etobicoke, Ont, Canada, 1994. Canadian Standards Association, S136.1-95, "Commentary on CSA Standard S136-

94, Cold Formed Steel Structural Members", Etobicoke, Ont, Canada, 1995. Dhalla, A.K., "Influence of Ductility on the Structural Behaviour of Cold-Formed

Steel Members", A thesis presented to the Faculty of the Graduate School of Cornell University in partial fulfilment for the Degree of Doctor of Philosophy, Department of Structural Engineering, School or Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA, June 1971.

Dhalla, A.K., Errera, S.J., Winter, G., "Connections in Thin-Low Ductility Steels",

Journal of the Structural Division, ASCE, Vol. 97, No. ST10, October 1971, pp. 2549-2566.

Dhalla, A.K., Winter, G., "Ductility Criteria and Performance of Low Ductility Steels

for Cold-Formed Members", Proceedings of the First International Speciality Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, USA, 1971, pp. 22-30.

Dhalla, A.K., Winter, G., "Steel Ductility Measurements", Journal of the Structural

Division, ASCE, Vol. 100, No. ST2, February 1974, pp. 427-444. Dhalla, A.K., Winter, G., "Suggested Steel Ductility Requirements", Journal of the

Structural Division, ASCE, Vol. 100, No. ST2, February 1974, pp. 445-462. Ellingwood, B., Galambos, T.V., MacGregor, J.G., Cornell, C.A., "Development of a

Probability Based Load Criterion for American National Standard A58: Building Code Requirements for Minimum Design Loads in Buildings and Other Structures", NBS Special Publication No. 577, National Bureau of Standards, Washington, DC, USA, 1980.

Ellingwood, B., MacGregor, J.G., Galambos, T.V., Cornell, C.A., "Probability Based

Load Criteria: Load Factors and Load Combinations", Journal of the Structural Division, ASCE, Vol. 108, No. ST5, May 1982, pp. 978-997.

European Committee for Standardisation, Eurocode 3, "Design of steel structures, Part

1.3 General rules, Supplementary rules for cold formed thin gauge members and sheeting", 1996.

European Convention for Constructional Steelwork, ECCS-TC7,"The Design and

Testing of Connections in Steel Sheeting and Sections", Publication No. 21, May 1983.

34

Galambos, T.V., Ravindra, M.K., "Properties of Steel for Use in LRFD", Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September 1978, pp. 1459-1468.

Peköz, T., "Design of Cold-Formed Steel Screw Connections", Proceedings of the

Tenth International Speciality Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, USA, 1990, pp. 575-587.

Ravindra, M.K., Galambos, T.V., "Load and Resistance Factor Design for Steel",

Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September 1978, pp. 1337-1353.

Rogers, C.A., Hancock, G.J., "Ductility of G550 Sheet Steels in Tension - Elongation

Measurements and Perforated Tests", Research Report No. R735, Centre for Advanced Structural Engineering, University of Sydney, Sydney, NSW, Australia, December 1996.

Seleim, S., LaBoube, R.A., "Behavior of Low Ductility Steels in Cold-Formed Steel

Connections", Thin-Walled Structures, Vol 25, No. 2, pp. 135-150, 1996. Standards Association of Australia, "ISO Metric Hexagon Commercial Bolts and

Screws - AS 1111", Sydney, NSW, Australia, 1980. Standards Association of Australia, "SAA Loading Code, Part 1: Dead and Live

Loads and Load Combinations - AS 1170.1", Sydney, NSW, Australia, 1989. Standards Association of Australia, "High-Strength Steel Bolts with Associated Nuts

and Washers for Structural Engineering - AS 1252", Sydney, NSW, Australia, 1983. Standards Association of Australia, "Metric Screw Threads for Fasteners - AS 1275",

Sydney, NSW, Australia, 1985. Standards Australia, "Steel sheet and strip - Hot-dipped zinc-coated or aluminium/zinc

coated - AS 1397", Sydney, NSW, Australia, 1993. Standards Australia / Standards New Zealand, "Cold-formed steel structures -

AS/NZS 4600", Sydney, NSW, Australia, 1996. Standards New Zealand, "Code of Practice for General Structural Design and Design

Loadings for Buildings - NZS 4203", Wellington, New Zealand, 1992. Winter, G., "Tests on Bolted Connections in Light Gage Steel", Journal of the

Structural Division, ASCE, Vol. 82, No. ST2, March 1956, pp. 920-1 - 920-25. Wu, S., Yu, W.W., LaBoube, R.A., "Strength of Flexural Members Using Structural

Grade 80 of A653 and Grade E of A611 Steels", First Progress Report, Civil Engineering Study 95-5, University of Missouri-Rolla, Rolla, MO, USA, 1995.

Zadanfarrokh, F., Bryan, E.R., "Testing and Design of Bolted Connections in Cold

Formed Steel Sections", Proceedings of the Eleventh International Speciality Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Rolla, MO, USA, 1992, pp. 625-662.

NOTATION

35

A cross-sectional area Ab fastener cross-sectional area Ac bolt minor diameter area Ag gross cross-sectional area Agt gross area subject to tension Agv gross area subject to shear An net cross-sectional area Anet net cross-sectional area Ant net area subject to tension Anv net area subject to shear Ao bolt plain shank area b width of the outstanding leg or flange of a single angle or unstiffened channel Br factored bearing resistance C bearing coefficient Cp coefficient of variation correction factor d fastener hole diameter or bolt diameter df fastener diameter do nominal hole diameter D dead load e eccentricity of the applied load or edge distance e1 e2 e3 edge distances E Young's modulus of elasticity fbu cross-sectional stress at ultimate for bearing and end pull-out failure fnet cross-sectional stress at ultimate for net section failure fsu minimum specified ultimate strength fsy minimum specified yield stress ftn average ultimate net cross-sectional tensile stress fu ultimate strength fub bolt ultimate strength fuf minimum bolt ultimate strength fy 0.2% proof stress or yield stress fya yield stress fyb basic yield stress Fb,Rd bolted connection bearing resistance or end pull out resistance Fm fabrication variables mean values Fn,Rd net section tensile resistance Fsy yield point of the connected point Ft,Rd design tensile resistance of the fastener Ft,Sd design tensile force of the fastener Fv,Rd design shear resistance of the fastener Fv,Sd design shear force of the fastener Fu

* ultimate strength of the fastener F'nt nominal tensile stress for bolts subject to combined shear and tension g hole spacing perpendicular to the force kt force distribution correction factor l1 l2 wing height L live load Li failure length inclined to the axial force

36

Ln failure length normal to the axial force Ls failure length parallel to the axial force Lt failure length normal and inclined to the axial force m number of holes across the connected leg or web Mm material properties mean values n number of bolts in the connection nn number of shear planes with threads in shear plane nx number of shear planes without threads in shear plane Nf nominal tensile capacity Nft nominal pull over capacity Nt nominal tensile resistance Nt,Rd design tensile resistance N* design tensile force Nf

* design tensile force Nft

* design pull over force p perforation dimension perpendicular to gauge length p1 p2 bolt spacing Pm design equation mean value Pn nominal shear strength or nominal tensile strength Pp predicted ultimate tensile strength Pt ultimate tensile load P6.35 maximum tensile load prior to 6.35mm extension from the point of bearing Q total load Qi load effects Qm mean load effect r rf ratio of number of bolts in the cross-section to number of bolts in the

connection Rm mean member resistance Rn nominal member resistance or nominal capacity for block shear s hole spacing parallel to the force or specimen width s sf spacing of bolts perpendicular to the line of force St tensile section modulus of the gross cross-sectional area Stn tensile section modulus of the net cross-sectional area S* design block shear force t thickness tb base metal thickness tc total coated thickness Tn nominal tensile strength Tr factored tensile resistance or factored tear out resistance Tr' reduced factored tensile resistance Vb nominal bearing capacity Vb

* design bearing force Vf nominal shear capacity Vf

* design shear force Vfv nominal shear capacity (bolt) Vfv

* design shear force (bolt) VF fabrication variables coefficient of variation VM material properties coefficient of variation VP design equation coefficient of variation VQ mean load effect coefficient of variation

37

Vr resistance coefficient of variation or factored shear resistance VR mean member resistance coefficient of variation w test specimen width β reliability (safety) index βo target reliability (safety) index δult connection displacement at ultimate load φ resistance (capacity) factor φc ultimate shear strength resistance (capacity) factor φt ultimate tensile strength resistance (capacity) factor φu ultimate tensile strength resistance (capacity) factor γ i load factor γM0 yielding strength partial safety factor γM2 ultimate tensile strength partial safety factor

38

APPENDIX 'A' CODE REQUIREMENTS

A1 Australia / New Zealand AS/NZS 4600 The most recent Australia / New Zealand Cold Formed Steel Structures Standard, AS/NZS 4600 (1996), is a revision of the 1988 Australian Standard written by a joint committee consisting of Standards Australia and Standards New Zealand. The standard follows a limit states design format and is applicable to structural members which have been shaped by cold forming. Material strength and ductility requirements can be found in Rogers and Hancock (1996).

A1.1 Tensile Capacity The design tensile force of an axially loaded member must be less than or equal to the factored section capacity in tension as shown by the following equation; N* ≤ φt Nt (A1) where Nt is the lesser of: Nt = Ag fy (A2) Nt = 0.85 kt An fu (A3) and φt = 0.90, Ag and An are the gross and net areas of the cross-section, respectively, and kt is a correction factor for the distribution of forces, which in the case of a doubly symmetric section is unity, but is less than unity for eccentrically connected angles and channels (see Table 3.2, (SA/SNZ, 1996)). Specific information regarding calculation of the net area of the cross-section is not given in the AS/NZS 4600 Design Standard (1996). The designer must rely on basic engineering principles which involve both failures normal to and at angles to the axial force. Block shear rupture at beam ends or tension connections must be designed for using the following equation; S* ≤ φ Rn (A4) where φ = 0.65 for bolted connections, and Rn is the nominal capacity for block shear rupture given by the following equations: Rn = 0.6 fy Agv + fu Ant for fu Ant ≥ 0.6 fu Anv (A5) Rn = 0.6 fu Anv + fy Agt for 0.6 fu Anv ≥ fu Ant (A6) where Ant is the net area subject to tension, Anv is the net area subject to shear, Agv is the gross area subject to shear, Agt is the gross area subject to tension.

39

A1.2 Connections Component parts may be joined by any appropriate fastening system, such as welding, bolting, screwing, riveting, nailing, adhesives or other means. The connections are to be designed in accordance with the assumptions made in the analysis of the structure and to carry the design action effects (SA/SNZ, 1996). For connections not covered by the AS/NZS 4600 Design Standard the design capacity may be determined by means of testing in accordance with Section 6 (Testing). For all connections the tensile capacity, including pull-over shear and tension forces, as well as the pull-out forces of the steel sheet must be determined. The nominal tensile strength of the fastener must be determined in accordance with the relevant Australian and New Zealand Standards. The shear capacity of the fastening components, as well as the connected members must also be calculated. A1.3 Bolted Connections Connections made by bolting components together must be designed and installed to meet the required performance of the structure under service conditions. The AS/NZS 4600 Design Standard (1996) applies to bolted connections where the thickness of the thinnest connected part is less than 3mm. Bolt holes are typically designed as standard circular holes where the diameter is equal to the nominal bolt diameter plus 1.0mm for bolts less than 12mm in size and equal to the nominal bolt diameter plus 2.0mm for bolts greater than or equal to 12mm in size. Other bolt holes, such as oversized and slotted holes may be used according to maximum dimensions given in the AS/NZS 4600 Standard. Minimum distance between centres of bolt holes is specified as 3 times the nominal bolt diameter, and the distance from the centre of a standard bolt hole to the end or boundary of a connection must be greater than or equal to 1.5 times the nominal bolt diameter (see Figure A1). Hole and edge spacings are modified accordingly when oversized or slotted holes are used. A bolted connection designed for failure by tear-out must have a design shear force which is less than or equal to the factored shear capacity of the connected part along two parallel lines in the direction of the applied force. This type of failure differs from block shear rupture because each bolt tears out along its own path as shown in Figure A1. Vf

* ≤ φVf (A7) where Vf = te fu (A8) and t is the thickness of the thinnest connected part, e is the distance measured parallel to the direction of applied force from the centre of a standard hole to the nearest edge of an adjacent hole or to the end of the connected part (see Figure A1), and the capacity factor, φ, is determined as below: for fu / fy ≥ 1.08: φ = 0.70 (A9) for fu / fy < 1.08: φ = 0.60 (A10)

40

Figure A1 Individual Bolt Tear-Out Path - AS/NZS 4600 (1996) The design tensile force must be less than or equal to the design tensile capacity of the net section. Nf

* ≤ φNf (A11) where the design tensile capacity for connections with washers under both the bolt head and the nut is determined with the following equations: φ = 0.65 (for double shear connections) (A12) φ = 0.55 (for single shear connections) (A13)

N r r ds

f A f Af ff f

fu n u n= − +

⎝⎜

⎠⎟ ≤1 0 0 9 3. . (A14)

In the case where washers are not used, or only one washer is used under either the bolt head or nut: φ = 0.65 (A15)

N r r ds

f A f Af ff f

fu n u n= − +

⎝⎜

⎠⎟ ≤1 0 2 5. . (A16)

where rf is the ratio of the force transmitted by the bolt(s) divided by the tensile force in the member at that section (if rf < 0.2 then rf may be taken as zero), df is the diameter of the bolt(s), and sf is the spacing of the bolts perpendicular to the line of the force, or for a single bolt the width of the sheet. The design bearing force must be less than or equal to the design bearing capacity of the connection. Vb

* ≤ φVb (A17) where Vb and φ are dependent on the type of connection, as well as the thickness and fu/fy ratio of the connected parts. Tables A1 and A2 list the specified capacity factors and equations for the nominal bearing capacity of connections with various washer combinations. For connections which are not given in Tables A1 or A2 the design bearing capacity must be determined by tests. The bearing resistance of members with

41

thicknesses greater than 3.0mm is not covered by the AS/NZS 4600 Design Standard (1996). Table A1 Design Bearing Capacity for Bolted Connections with Washers Under

Both Bolt Head and Nut (SA/SNZ, 1996) Thickness of

connected part (mm)

Type of joint Ratio of connected part

(fu / fy)

Capacity factor (φ)

Nominal bearing

capacity (Vb) Inside sheet of double ≥ 1.08 0.55 3.33 fudft shear connection < 1.08 0.65 3.00 fudft

0.6 ≤ t < 3.0 Single shear and outside sheets of double shear connection

No limit

0.60

3.00 fudft

Table A2 Design Bearing Capacity for Bolted Connections without Washers

Under Both Bolt Head and Nut, or with only One Washer (SA/SNZ, 1996) Thickness of

connected part (mm)

Type of joint Ratio of connected part

(fu / fy)

Capacity factor (φ)

Nominal bearing

capacity (Vb) Inside sheet of double ≥ 1.08 0.65 3.00 fudft shear connection

0.9 ≤ t < 3.0 Single shear and outside sheets of double shear connection

≥ 1.08

0.70

2.22 fudft

The design shear force must be less than or equal to the design shear capacity of the connection. The nominal shear capacity, Vfv, is dependent on the minimum tensile strength of the bolt as well as the position of the shear plane in the bolt. Vfv

* ≤ φVfv (A18) where Vfv = 0.62 fuf (nnAc + nxAo) (A19) and φ = 0.80, fuf is the minimum tensile strength of the bolt (400 MPa for AS 1111 (1980) Grade 4.6 bolts or 830 MPa for AS 1252 (1983) Grade 8.8 bolts), nn is the number of shear planes with threads in the shear plane, Ac is the minor diameter area of the bolt (see AS 1275 (1985)), nx is the number of shear planes without threads in the shear plane, and Ao is the plain shank area of the bolt. For a bolt in tension the design tensile force must be less than or equal to the design tensile capacity. The pull-over capacity of the connected sheet at the bolt head, nut and washer must also be determined for connections with bolts in tension. Nft

* ≤ φNft (A20) where Nft = As fuf (A21)

42

and φ = 0.80, and As is the tensile stress area of the bolt as specified in AS 1275 (1985). In the case where a bolt is subject to combined shear and tension the design shear force and design tensile force shall satisfy the following equation;

VV

NN

tfv*

fv

f

ftφ φ⎛

⎝⎜

⎠⎟ +

⎝⎜

⎠⎟ ≤

2 2

1 0*

. (A22)

where Vfv

* and Vfv are determined in accordance with equations A18 and A19 and Nft*

and Nft are determined in accordance with equations A20 and A21.

A2 Canada CSA-S136 The Canadian Standards Association (CSA) has two documents which govern the design of cold formed steel structures. The most recent design standard is entitled S136-94 Cold Formed Steel Structural Members (1994) and the associated commentary is entitled S136.1-95 Commentary on CSA Standard S136-94 Cold Formed Steel Structural Members (1995). The design standard is in its fifth edition and is based entirely on limit states principles. One of the major changes in the current standard from the previous edition involves the design of members in tension, which was included to more clearly express direct tension and block tear-out at the end of a member. The bearing resistance of mechanical fasteners is also affected by this modification in the tensile design requirements. Material strength and ductility requirements for cold formed sheet steels can be found in Rogers and Hancock (1996). A2.1 Tensile Member Resistance The tensile resistance of cold formed steel members is presented in Clause 6.3 of the CSA-S136 Design Standard (1994). The basic requirement is for the factored tensile resistance, Tr, to be greater than the sum of the factored applied loads. The CSA-S136 Design Standard specifies tensile resistance equations for both concentrically and eccentrically loaded members. Failure of a tensile member can either be by material yielding or rupture of the net section (CSA, 1995). The factored tensile resistance of a concentrically loaded member which fails by material yielding is represented by the following equation; T A Fr g y= φ (A23) where φ = 0.9 and Ag is the gross cross-sectional area. The factored tensile resistance of a concentrically loaded member which fails by rupture of the net section is represented by the following equation; T A Fr u n u= φ (A24) where φu = 0.75 and An is the net cross-sectional area. Members which are loaded eccentrically and fail by the onset of yielding at an extreme fibre or rupture of the net section have a factored tensile resistance given by the following equations:

43

TF

A e Sry

g t

=+

φ( )1

(A25)

T FA e Sr

u u

n tn

=+

φ( )1

(A26)

where e is the eccentricity of the applied load, and St and Stn are the tensile section moduli of the gross cross-sectional area and the net cross-sectional area, respectively. The critical net area, An, is calculated from the following equation; A L tn t= (A27) where Lt for failure normal to the axial force is defined as follows; L L Lt n i= + (A28) where Ln is the failure path normal to the force and Li is the failure path inclined to the force, including the s2/4g measurement for staggered holes (s and g are the spacing of holes parallel to and perpendicular to the force, respectively). Concentric tensile failure can also occur by block tear-out at the end of the member. Lt for block tear-out failure is calculated as follows; L L L Lt n i s= + + 0 6. (A29) where Ls is the failure path parallel to the force (Ln and Li are as defined previously). The CSA-S136 Design Standard (1994) also provides equations for the tensile resistance of single angles with unstiffened legs connected by fasteners in one leg, and single channels with unstiffened flanges connected by fasteners in the web. The tensile resistance of a single angle is given by the lesser of: T A Fr g y= φ (A30) T A b md t Fr u g u= − +φ [ ( . ) ]0 7 (A31) and for unstiffened channels by the lesser of: T A Fr g y= φ (A32) T A b md t Fr u g u= − +φ [ ( ) ] (A33) where φ = 0.9, φu = 0.75, b is the width of the outstanding leg or flange, d is the diameter of the fastener hole, and m is the number of holes across the connected leg or web.

A2.2 Connections Connections are designed to transmit the effects of factored loads in connected members with due regard for eccentricity, unless shown to be insignificant (CSA, 1995). Any method of fastening can be used to join component parts together provided the fastening method is compatible with service conditions. Fastening

44

methods other than those detailed in the following section must be proven as suitable for use (i.e. metal stitching, clinching, hollow rivets, and adhesives). A2.3 Mechanical Fasteners (Bolts, Rivets and Screws) The CSA-S136 Design Standard (1994) can be used for connection design when the thickness of the thinnest connected part is less than 4.5mm, connected parts are not separated by gaps, and fasteners are adequately tightened. Circular holes for bolts are limited in size to the nominal bolt diameter, d, plus 1mm for bolt sizes up to 13mm and plus 2mm for bolt sizes over 13mm. The design of oversized and slotted holes requires the use of additional criteria. The centre-to-centre spacing between fasteners shall not be less than 2.5d, and the distance from the centre of a fastener to the end of a member shall not be less than 1.5d. The procedures defined in the CSA-S136 Design Standard are not valid for edge distances and spacings less than these values. The factored shear resistance of the fastener (bolt and solid rivet) is related to the ultimate shear strength of the fastener as follows; Vr = φc 0.6 Ab Fu

* (A34) where the 0.6 term represents the ratio of ultimate shear strength to tensile strength, φc = 0.67, Ab is the cross-sectional area of the fastener based on nominal diameter and Fu

* is the ultimate strength of the fastener. If the threads of the fastener are in the shear plane then Vr is multiplied by 0.7. The factored tensile resistance of a bolt is defined as the tensile strength of the fastener multiplied by the stress area of the bolt, assumed to be 0.75 Ab. Tr = φc 0.75 Ab Fu

* (A35) The pullover strength of the connected sheet at the bolt head, nut or washer must also be considered when the bolt is subject to tension. Bolts which are subject to combined shear and tension, not including tension due to bolt tightening, have a reduced factored tensile resistance calculated as a function of the applied shear force. Tr′ = 1.25 Tr - kVf ≤ Tr (A36) where Tr is the factored tensile resistance, Vf is the factored shear force on the bolt and k = 1.40, or k = 1.80 when the bolt threads are in the shear plane. The factored bearing resistance is not dependent on the bearing surface of the fastener (thread or shank) and is not affected by the tensile forces in the fastener. The factored bearing resistance of a connected member for a single fastener is given as follows; Br = φu C d t Fu (A37) where φu = 0.75, d is the nominal diameter of the fastener, and C represents the stability of the hole edges based on the ratio of bolt diameter to sheet thickness, as listed in Table A3 (C is not affected by the use or non use of washers).

45

Table A3 Factor C, for Bearing Resistance (CSA, 1994) d/t C

d/t ≤ 10 3 10 < d/t < 15 30 t/d d/t ≥ 15 2

For a group of fasteners where the applied force is perpendicular to the end of the member or the group of fasteners is remote from the end of the member, the bearing resistance of the connected member is equal to the sum of the individual bearing resistances, if the spacing between the fasteners is a least Cd. This minimum required distance ensures that the material around each individual fastener is able to transfer the full force calculated using Eq. A37 (CSA, 1995). If the spacing between fasteners is less than Cd, but not less than 2.5d, then the material surrounding each fastener cannot transfer the full force and the bearing resistance of the connected member is reduced accordingly (CSA, 1994). The ultimate force required for a member to fail by bearing is related to the ultimate strength of the material. The force varies linearly with the edge distance up to a limiting value, beyond which it remains constant (CSA, 1995). The factored tear-out resistance of a connected member is the lesser of the following equations: T A Fr g y= φ (A38) T A Fr u n u= φ (A39) where φ = 0.9, φu = 0.75, and An is calculated as given in Section A2.1 (Tensile Member Resistance).

A3 USA AISI - LRFD The American Iron and Steel Institute (AISI) is responsible for the publication of two cold formed steel design specifications, as well as the adjoining commentaries. The Specification for the Design of Cold formed Steel Structural Members applies to the allowable stress design (ASD) of cold formed members consisting of carbon or low-alloy steel sheet, strip, plate or bar (AISI, 1989). The specification entitled Load and Resistance Factor Design Specification of Cold formed Steel Structural Members is a more recent publication in the limit states format (LRFD) (AISI, 1991). The AISI Commentary Specification for the Design of Cold formed Steel Structural Members (AISI, 1989) and the Commentary on the Load and Resistance Factor Design Specification of Cold formed Steel Structural Members (AISI, 1991) provide information on the research completed in the development of the AISI Specifications. The AISI has also recently published draft documents of the latest specification and commentary (AISI, 1996). Material strength and ductility requirements can be found in Rogers and Hancock (1996).

46

A3.1 Tensile Member Strength The 1996 edition of the AISI Specification (1996) presents an allowable stress and limit states tensile design method based on the cross-sectional area of an axially loaded member. However, this procedure is currently under review in AISI ballot C/S96-66B (1996), where the ultimate limit states condition requires that the design tensile strength, φtTn, be the lesser of the following: Tn = Ag Fy (yielding of the gross section) (A40) φt = 0.90 or Tn = An Fu (fracture of the net section away from connections) (A41) φt = 0.75 where Ag is the gross area of the cross-section, and An is the net area of the cross-section determined in accordance with conventional methods of structural design. Block shear rupture strength at beam ends or tension connections, φRn, must be designed for using the following equations: Rn = 0.6 Fy Agv + Fu Ant for Fu Ant ≥ 0.6 Fu Anv (A42) Rn = 0.6 Fu Anv + Fy Agt for 0.6 Fu Anv ≥ Fu Ant (A43) where φ = 0.65 for bolted connections, Ant is the net area subject to tension, Anv is the net area subject to shear, Agv is the gross area subject to shear, Agt is the gross area subject to tension.

A3.2 Bolted Connections Bolted connection design provisions contained in the AISI Specification (1996) are applicable to sheet members less than 3/16inch (4.76mm) thick. Information is not provided for slip-critical or friction type connections because of the lack of test data for numerous types of surfaces. Connections are not to have gaps between members, as design equations may be unconservative and tests should be completed. For bearing strength design bolt pretensioning is not required because the ultimate strength of cold formed steel connections is independent of the bolt preload. Bolts must be installed to a snug tight level so as not to loosen under normal building conditions (AISI, 1996). The standard hole diameter for bolts less than 1/2inch (12.7mm) in size is equal to the bolt diameter plus 1/32inch (0.8mm), and for bolts greater than or equal to 1/2inch (12.7mm) in size is equal to the bolt diameter plus 1/16inch (1.6mm). Oversized, as well as short and long-slotted holes can also be used if specified by the designer. The minimum bolt hole centreline spacing is specified as 3 times the nominal bolt diameter, and the distance from the centre of a bolt hole to the end or boundary of a member must be at least 1.5 times the nominal bolt diameter. The design shear strength, φPn, of a bolt depends on the distance to the end of the member (see Figure A2). This type of failure differs from block shear rupture because each bolt tears out along its own path, as shown in Figure A2. The design shear strength is based on the following definitions:

47

φ = 0.70 (resistance factor when Fu / Fsy ≥ 1.08) φ = 0.60 (resistance factor when Fu / Fsy < 1.08) Pn = teFu (nominal resistance per bolt) (A44) where e is the distance measured from the centre of a standard hole to the nearest edge in the line of force, t is the thickness of the thinnest part, and Fsy is the yield point of the connected part.

Figure A2 Individual Bolt Tear-Out Path - AISI (1996) The design tensile strength of the net section, φPn, is defined as follows: Pn = An Ft (A45) with washers under both the bolt head and the nut, φ = 0.65 (for double shear connections) φ = 0.55 (for single shear connections) Ft = (1.0 - 0.9r + 3rd/s) Fu ≤ Fu (A46) and in the case where washers are not used, or only one washer is used under either the bolt head or nut: φ = 0.65 Ft = (1.0 - r + 2.5rd/s) Fu ≤ Fu (A47) where r is the ratio of the force transmitted by the bolt(s) divided by the tensile force in the member at that section (if rf < 0.2 then rf may be taken as zero), d is the diameter of the bolt(s), and s is the spacing of the bolts perpendicular to the line of stress, or for a single bolt the width of the sheet. The design bearing strength of a connection, φPn, is determined from Tables A4 and A5 where Pn and φ are dependent on the type of connection, as well as the thickness and Fu / Fsy ratio of the connected parts. For connections which are not given in Tables A4 or A5 the design bearing strength must be determined by tests. The bearing resistance of members with thicknesses greater than or equal to 3/16inch (4.76mm) is not covered by the AISI Specification (1996).

48

Table A4 Nominal Bearing Strength for Bolted Connections with Washers Under Both Bolt Head and Nut (AISI, 1996)

Thickness of connected part

(mm)

Type of joint Ratio of connected part

(Fu / Fsy)

Resistance factor

(φ)

Nominal resistance

(Pn) Inside sheet of double ≥ 1.08 0.55 3.33 Fudt shear connection < 1.08 0.65 3.00 Fudt

0.61 ≤ t < 4.76 Single shear and outside sheets of double shear

No limit

0.60

3.00 Fudt

connection

Table A5 Nominal Bearing Strength for Bolted Connections without Washers Under Both Bolt Head and Nut, or with only One Washer (AISI, 1996)

Thickness of connected part

(mm)

Type of joint Ratio of connected part

(Fu / Fsy)

Resistance factor

(φ)

Nominal resistance

(Pn) Inside sheet of double ≥ 1.08 0.65 3.00 Fudt shear connection

0.91 ≤ t < 4.76 Single shear and outside sheets of double shear

≥ 1.08

0.70

2.22 Fudt

connection The bolt design strength either in shear or tension, φPn, is defined as follows: φ = resistance factor given in Table A7 Pn = F Ab (A48) where Ab is the gross cross-sectional area of the bolt, and F is either Fnv or Fnt given in Table A7. The pull-over capacity of the connected sheet at the bolt head, nut and washer must also be determined for connections with bolts in tension. In the case of combined shear and tension the design tensile strength, φPn, is given by the following: φ = 0.75 Pn = F′ntAb (A49) where Ab is the gross cross-sectional area of the bolt, and F′nt is given in Table A6.

Table A6 Nominal Tensile Stress, F′nt, for Bolts Subject to Combined Shear and

Tension (AISI, 1996) Description of Bolts Threads In Shear Plane Threads Not In Shear Plane

A325 bolts 779 - 2.4fv ≤ 621 779 - 1.9fv ≤ 621 A354 BD bolts 876 - 2.4fv ≤ 696 876 - 1.9fv ≤ 696 A449 bolts 696 - 2.4fv ≤ 558 696 - 1.9fv ≤ 558 A490 bolts 972 - 2.4fv ≤ 776 972 - 1.9fv ≤ 776

A307 bolts, Grade A 6.4mm ≤ d < 12.7mm 324 - 2.4fv ≤ 279 d ≥ 12.7mm 358 - 2.4fv ≤ 310

Note: fv is the shear stress produced by the factored loads.

49

Table A7 Nominal Tensile and Shear Strengths for Bolts (AISI, 1996) Tensile Strength Shear Strength

Description of bolts Resistance Factor φ

Nominal Stress Fnt

Resistance Factor φ

Nominal Stress Fnv

A307 bolts, Grade A (6.4mm ≤ d < 12.7mm)

0.75 279 0.65 165

A307 bolts, Grade A (d ≥ 12.7mm)

0.75 310 0.65 186

A325 bolts, threads in shear plane

0.75 621 0.65 372

A325 bolts, threads not in shear plane

0.75 621 0.65 496

A354 Grade BD bolts (6.4mm ≤ d < 12.7mm) threads in shear plane

0.75

696

0.65

407

A354 Grade BD bolts (6.4mm ≤ d < 12.7mm) threads not in shear plane

0.75

696

0.65

621

A449 bolts (6.4mm ≤ d < 12.7mm) threads in shear plane

0.75

558

0.65

324

A449 bolts (6.4mm ≤ d < 12.7mm) threads not in shear plane

0.75

558

0.65

496

A490 bolts, threads in shear plane

0.75 776 0.65 465

A490 bolts, threads not in shear plane

0.75 776 0.65 621

A4 Europe Eurocode 3 The Commission of the European Communities initiated the development of a group of standards for the structural and geotechnical design of buildings. Responsibility for further development of the "Structural Eurocodes" was transferred to the European Committee for Standardisation which developed Eurocode 3 Design of steel structures, Part 1.3 Supplementary rules for cold formed thin gauge members and sheeting (1996). Part 1.3 of Eurocode 3 is a prestandard which provides provisional limit states design rules for cold formed steel construction in Europe. Material strength and ductility requirements can be found in Rogers and Hancock (1996).

A4.1 Tensile Member Resistance The design tensile resistance, Nt,Rd, of a cross-section must satisfy the following equation; Nt,Rd ≤ Fn,Rd (A50) where the design tensile resistance is given by; Nt,Rd = fya Ag / γMO (A51)

50

where fya is the average yield stress of the cross-section, Ag is the gross area of the cross-section and the partial safety factor, γMO = 1.1. The net section fracture resistance is given by Eq. A52 or the appropriate mechanical fastener resistance. Fn,Rd = fu Anet / γM2 (A52) where Anet is the net area of the cross-section and the partial safety factor, γM2 = 1.25.

A4.2 Connection Strength Connections which are designed using Eurocode 3 (1996) must be based on a realistic assumption of the distribution of internal forces, with proper regard for relative stiffnesses between members. Connections must be easily fabricated and erected with adequate clearances for proper erection, inspection, surface treatment and maintenance. Joined members should be situated so that their centroidal axes meet at a point and eccentricities are minimised. Where eccentricities are unavoidable members and connections should be designed to account for the resulting end moments. Joints used in structures of simple construction must transmit design forces and carry the associated rotations without developing moments which reduce the capacity of the members. The strength of connections not covered in Eurocode 3 can be determined in accordance with the guidelines set out for testing. Connections must be compact and fasteners must be positioned so that assembly and maintenance can be easily completed. Individual fasteners must have known and documented strengths (Eurocode, 1996). The formulae for bolts are valid for the following fastener spacing and edge distances (see Figure A3): e1 ≥ 1.5d e2 ≥ 1.5d p1 ≥ 3d p2 ≥ 3d where the minimum fastener size is defined as M6, classes 4.6 - 10.9, and the thickness of the thinnest sheet t ≥ 1.25mm.

Figure A3 Eurocode 3 (1996) Bolt Spacing Dimensions

51

Partial safety factors for bearing of bolted, riveted, pinned and spot-welded connections, shear in fasteners, resistance of the net section at bolt holes, as well as resistance against pull-out and pull-through is γM2 = 1.25. In the case of a combined shear and tension load, for any type of mechanical fastener, the following interaction equation must be satisfied;

FF

FF

t,Sd

t,Rd

v,Sd

v,Rd

+ ≤ 1 (A53)

where Ft,Rd is the design tensile resistance of the fastener, Fv,Rd is the design shear resistance per shear plane, Ft,Sd is the design tensile force of the fastener, and Fv,Sd is the design shear force of the fastener.

A4.3 Bolted Connections The bearing resistance of a bolted connection is given by the following; Fb,Rd = 2.5 fu d t / γM2 (A54) where d is the nominal diameter of the fastener. The end pull-out resistance is given as; Fb,Rd = fu e1 t / 1.2 / γM2 (A55) where e1 is the edge distance in the load direction (see Figure A3). The net section fracture resistance of a bolted connection is given by the following; Fn,Rd = (1 + 3r (do / u - 0.3)) Anet fu / γM2 ≤ Anet fu / γM2 (A56) where r is the number of bolts at the cross-section divided by the total number of bolts in the connection, do is the nominal diameter of the hole and u is the smaller of 2e2 or p2 (see Figure A3). The shear resistance of a bolt is given by the following: Fv,Rd = 0.6 fub As / γM2 for fub ≤ 800 MPa (A57) Fv,Rd = 0.5 fub As / γM2 for fub> 800 MPa (A58) where fub is the tensile strength of the bolt and As is the tensile stress area of the bolt. The shear resistance of a bolt must also satisfy the following requirement; Fv,Rd ≥ 1.2 (Fb,Rd; Fn,Rd) (A59) Pull-through resistance, Fp,Rd, must be determined by testing. The tensile resistance of a bolt is determined from the following; Ft,Rd = 0.9 fub As / γM2 (A60)

52

APPENDIX 'B' BOLTED CONNECTION SPECIMEN FABRICATION AND TEST PROCEDURE

B1 General One hundred and fifty eight bolted connection specimens were fabricated in the Department of Civil Engineering Fabrication Work Shop. Nine tensile coupons were fabricated in the William and Agnes Bennett Supersonics Laboratory in the Department of Aeronautical Engineering at the University of Sydney. Two different G550 sheet steels and one G300 sheet steel were used to fabricate the test specimens included in this study. The test specimens were used to evaluate the current bolted connection design requirements specified in the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996), and European (Eurocode, 1996) Cold Formed Steel Design Standards. All sheet steels had an aluminum/zinc alloy coating, were cold reduced to thickness and were obtained from end cut-offs of standard coils during normal rolling operations. Specimens within a material type, e.g. 042-G550, were cut from same sheet. The 060-G550 and 060-G300 specimens were cut from the same sheets used for the elongation and perforated coupon tests completed previously (see Rogers and Hancock (1996)). The 042-G550 bolted connection specimens were obtained from a sheet which was different from that previously tested, thus requiring nine additional coupon tests to determine the material properties. The use of a single sheet for all tests within a material type allowed for accurate yield stress and ultimate strength values to be calculated and applied in the analysis of bolted connection test data. The material properties of cold reduced steels have been shown to be anisotropic (Rogers and Hancock, 1996; Wu et al., 1995; Dhalla and Winter, 1971,1974), hence, bolted specimens and coupons were cut from three directions within the sheet; longitudinal, transverse, and diagonal with respect to the rolling direction. This array of test specimens, obtained from different directions in the plane of the sheet, was used to determine the degree of anisotropy and its effect on connection behaviour. All test materials were strain aged for 20 minutes at 180ºC to simulate the normal ageing process and its effect on material behaviour.

B2 Sizing of Test Specimens Each bolted connection test specimen consisted of a top and bottom section which were dimensioned identically. Different size specimens were required to observe the main types of failures which can occur in tensile bolted connections; end pull-out, bearing, net section fracture and bolt shear. Note; bolt shear failure was avoided through the use of M12 Grade 8.8 bolts. Previous researchers have used various size specimens in their investigations of bolted connections (Winter, 1956; Dhalla and Winter, 1971; Zadanfarrokh and Bryan, 1992; Seleim and LaBoube, 1995). In most instances only the width and position of bolt holes with respect to the end of the test specimen need be changed. The overall length of the specimen from gripped end to connected end need only be long enough for tensile stresses to become constant over the entire cross-section. Typically the gripped end, and most definitely the connected end of the specimen will experience stress concentrations, however, the middle portion of the specimen should be long enough so that stresses are redistributed and a constant stress state exists. The single

53

bolt and winged specimens tested for this report were all 400mm in length, as opposed to the multiple bolt test specimens which were 440mm in length. Stress concentrations were able to redistribute over these lengths as shown by test 042-G550-B1-48×75-M12-IL, which incorporated strain gauges to measure the stress levels across the section (see Section B3). The position of the bolt hole from the end of the single bolt and winged specimens (75mm in width) was varied from 12mm to 60mm in 12mm increments, so that both end pull-out and bearing failures could be obtained. Winged specimens were included because previous research by Zadanfarrokh and Bryan (1992) found that flat specimens curled out of plane affecting the mode of failure and final test elongation. Zadanfarrokh and Bryan recommended that lips, 1/5 of the specimen width, should be formed to limit sheet curling, increase deformation capacity and to create a more accurate representation of sections used in construction. Multiple bolt specimens were included to cause failure to occur either by bearing or net section fracture, depending on the width of the specimen. Double bolt specimens were dimensioned with various widths, i.e. 55, 75 and 95mm, and triple bolt specimens with 55mm widths only. However, the position of the bolt holes was kept constant, i.e. the first bolt hole was drilled 48mm from the end of the specimen with further holes drilled 36mm (c/c) apart. Use of more than one bolt increased the bearing capacity of the connection and allowed for net section failures to occur. See Figure 3.1 for nominal bolted connection specimen sizes. Two types of M12 Grade 8.8 zinc coated bolts were used for the connection tests; 1) a conventional bolt, nut and washer assembly, and 2) a bolt and nut assembly with integral washers (see Figure 3.2). These two types of bolts were used to compare the effect of bearing on the shank and threads and to compare the influence of integral washers versus loose washers on the connection performance. The conventional bolts have threads which extended up to the head of the bolt, while the integral bolts do not have threads directly below the head of the bolt. The solid tensile coupons tested to obtain material properties for the 042-G550 sheet steel were dimensioned to the same size as that used for all tests included in the elongation and perforated test section of this research project (see Rogers and Hancock (1996)).

B3 Fabrication of Test Specimens Accurate and consistent fabrication procedures were used for all specimens included in this study to ensure that the test specimens were of a near identical size and shape. Blanks were guillotined from the various steel sheets in the longitudinal, transverse and diagonal directions. These blanks were then milled to size with all bolt holes positioned using a pilot hole and then drilled with a full size bit. No difficulties were experienced bending the lips into position on a sheet steel forming table for either the 042-G550 or 060-G550 winged test specimens. Tensile coupons for the 042-G550 sheet steel were fabricated as described in Rogers and Hancock (1996). Surface inclusions and burring along the milled or drilled edges were removed with a fine grade emery cloth. Care was taken to ensure that an excessive amount of material was not removed from the test specimens. Base metal thickness was measure after testing where the aluminum/zinc coating was removed with an hydrochloric acid bath. A single bolt specimen 042-G550-B1-48×75-M12-IL was tested with 6-10mm strain gauges placed across the constant tensile stress area of the cross-section, 175mm from the centre of the bolt hole. Three strain gauges were positioned on either face of the

54

specimen, using Loctite 480 instant adhesive, one adjacent to each edge and one at the midpoint. The surface of the specimen was roughened with fine grade emery paper and then cleaned with an acetone solution. SHOWA foil strain gauges type F11-FA-10-120-11 with a resistance of 119.9Ω and a gauge factor of 2.12 were used.

B4 Test Procedure All bolted connection tests were completed in the J.W. Roderick Laboratory for Materials and Structures at the University of Sydney using a 25000kg capacity Instron testing machine, model no. A212-159 series H0018. A gripping apparatus was fabricated so that each end of the test specimen was joined by a pin assembly to the Instron grip. The gripping apparatus was designed to eliminate slippage of the gripped section of the test specimen and to evenly transfer load to the entire cross-section (see Figures 3.3 and 3.4). The gripped end distance of each test specimen was kept constant at 65mm and shims were not required because the thickness of the sheet steels was less than 2mm (ECCS, 1983). Angle sections, 25×25×1mm were glued to each face of the test specimen 200mm apart to measure the displacement of the connection during loading (see Figures 3.3 and 3.4). Due to the use of oversize bolt holes a variation in the location of bolts occurred. Test specimens were assembled so that initial bearing of the bolt(s) did not occur, rather a random amount of clearance on the sides of the drilled holes existed as found in typical construction. All bolts were tightened by hand to a torque of less than 10Nm, which allowed for slip of the connection after minimal loading. It was also necessary to centre concentric test specimens at right angles to the face of the grips and to plum the specimen with respect to vertical with a small levelling instrument. This eliminated the possibility of load eccentricity and flexure of the test specimen. All of these procedures were used to ensure that only concentric axial loading occurred during testing. Eccentric tests were completed with identical specimens to those used for concentric tests, although the centre of the specimen was positioned away from the centre of the grip by the required eccentricity. After the test specimen had been aligned and securely gripped a minimal tensile load of 200N was placed on the connection. Small metal clips were secured on either side of the connection for most of the multiple bolt test specimens (identified by a superscript c at the end of the test specimen identification title) (see Figure B3). Displacement transducers were connected to the attached angle sections to record the deformation of the connection during loading (see Figure B1). Four transducers were used so that average values of the displacement readings for the top and bottom of the connection could be determined. Tests for all bolted connection specimens were run with a cross-head speed of 1.0mm/min. All load, displacement and strain gauge readings were recorded through a data acquisition system attached to a personal computer (see Figure B2). Ultimate loads were recorded without the use of a deformation limit due to the initial slip of the connection and the extreme deformations of the sheet steel, in some instances between 10 and 30mm. It could have been possible for the deformation limit of 3mm specified in the ECCS-TC7 (1983) to only represent the slip load of the specimens, and the deformation limit of 6.35mm specified by the Research Council on Structural Connections (AISC, 1988) and the American Institute of Steel Construction (1989, 1993) to represent a load which is not indicative of the full load carrying capacity of the bolted connection.

55

Figure B1 Bolted Connection Test Set-Up

Figure B2 Instron Test Machine and Data Acquisition System

56

Figure B3 Typical Clipped Multiple Bolt Connection

57

APPENDIX 'C' BOLTED CONNECTION TEST SPECIMEN DIMENSIONS

Figure C1 Bolted Connection Test Specimens

58

Table C1 042-G550 Single Bolt Connection Test Dimensions Top BottomSpecimen tc tb d w e1 w e1 (mm) (mm) (mm) (mm) (mm) (mm) (mm)

042-G550-B1-12×75-M12-CL 0.45 0.41 14.3 74.9 12.7 74.9 12.4 042-G550-B1-12×75-M12-IL 0.45 0.41 14.3 75.0 12.2 74.9 12.2 042-G550-B1-24×75-M12-CL 0.45 0.41 14.3 75.0 24.6 75.0 24.5 042-G550-B1-24×75-M12-IL 0.45 0.41 14.3 75.0 24.0 75.0 24.3 042-G550-B1-36×75-M12-CL 0.45 0.41 14.3 75.0 36.2 75.0 35.8 042-G550-B1-36×75-M12-IL 0.45 0.41 14.3 74.8 35.6 75.0 36.3 042-G550-B1-48×75-M12-CL 0.45 0.41 14.3 74.9 47.8 74.9 47.7 042-G550-B1-48×75-M12-IL 0.45 0.41 14.3 74.9 48.2 74.9 48.4 042-G550-B1-60×75-M12-CL 0.45 0.41 14.3 74.8 60.3 74.8 60.2 042-G550-B1-60×75-M12-IL 0.45 0.41 14.3 74.9 59.8 75.0 59.9 042-G550-B1-12×75-M12-CT 0.45 0.41 14.3 74.9 12.2 74.9 11.9 042-G550-B1-12×75-M12-IT 0.45 0.41 14.3 74.9 11.7 74.9 12.0 042-G550-B1-24×75-M12-CT 0.45 0.41 14.3 74.9 24.3 74.9 24.0 042-G550-B1-24×75-M12-IT 0.45 0.41 14.3 74.9 24.1 74.9 24.1 042-G550-B1-36×75-M12-CT 0.45 0.41 14.3 74.9 36.2 74.9 35.9 042-G550-B1-36×75-M12-IT 0.45 0.41 14.3 74.9 36.4 74.9 36.2 042-G550-B1-48×75-M12-CT 0.45 0.41 14.3 74.9 48.4 74.9 48.4 042-G550-B1-48×75-M12-IT 0.45 0.41 14.3 74.9 48.2 74.9 48.2 042-G550-B1-60×75-M12-CT 0.45 0.41 14.3 74.9 60.3 74.9 60.1 042-G550-B1-60×75-M12-IT 0.45 0.41 14.3 74.9 60.2 74.9 60.0 042-G550-B1-12×75-M12-CD 0.45 0.41 14.3 74.9 12.2 74.9 12.1 042-G550-B1-12×75-M12-ID 0.45 0.41 14.3 74.9 12.0 74.9 12.0 042-G550-B1-24×75-M12-CD 0.45 0.41 14.3 74.9 23.8 74.9 24.4 042-G550-B1-24×75-M12-ID 0.45 0.41 14.3 74.9 24.2 74.9 24.5 042-G550-B1-36×75-M12-CD 0.45 0.41 14.3 74.9 36.1 74.9 36.3 042-G550-B1-36×75-M12-ID 0.45 0.41 14.3 74.9 35.9 74.9 36.3 042-G550-B1-48×75-M12-CD 0.45 0.41 14.3 74.6 47.8 74.9 48.1 042-G550-B1-48×75-M12-ID 0.45 0.41 14.3 74.9 48.0 74.9 48.1 042-G550-B1-60×75-M12-CD 0.45 0.41 14.3 74.9 60.2 74.9 60.3 042-G550-B1-60×75-M12-ID 0.45 0.41 14.3 74.9 60.3 74.9 60.3

59

Table C2 060-G550 Single Bolt Connection Test Dimensions Top BottomSpecimen tc tb d w e1 w e1 (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G550-B1-12×75-M12-IL 0.64 0.59 14.3 74.9 12.3 75.0 12.2 060-G550-B1-24×75-M12-IL 0.64 0.59 14.3 75.0 24.2 75.0 24.1 060-G550-B1-36×75-M12-IL 0.64 0.59 14.3 75.0 36.2 75.0 36.0 060-G550-B1-48×75-M12-IL 0.64 0.59 14.3 75.0 47.9 75.0 48.1 060-G550-B1-60×75-M12-IL 0.64 0.59 14.3 75.0 60.0 75.0 59.9 060-G550-B1-12×75-M12-IT 0.64 0.59 14.3 74.9 12.4 74.9 12.3 060-G550-B1-24×75-M12-IT 0.64 0.59 14.3 74.9 24.1 74.9 24.1 060-G550-B1-36×75-M12-IT 0.64 0.59 14.3 74.9 36.1 74.9 36.2 060-G550-B1-48×75-M12-IT 0.64 0.59 14.3 74.9 48.1 74.9 47.9 060-G550-B1-60×75-M12-IT 0.64 0.59 14.3 74.9 60.3 74.9 60.5 060-G550-B1-12×75-M12-ID 0.64 0.59 14.3 74.9 12.2 74.9 12.5 060-G550-B1-24×75-M12-ID 0.64 0.59 14.3 74.9 23.9 74.9 23.9 060-G550-B1-36×75-M12-ID 0.64 0.59 14.3 74.9 36.2 74.9 35.9 060-G550-B1-48×75-M12-ID 0.64 0.59 14.3 74.9 48.2 74.9 47.8 060-G550-B1-60×75-M12-ID 0.64 0.59 14.3 74.9 59.8 74.9 59.9

Table C3 060-G300 Single Bolt Connection Test Dimensions Top BottomSpecimen tc tb d w e1 w e1 (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G300-B1-12×75-M12-IL 0.63 0.58 14.3 74.9 12.9 74.9 12.2 060-G300-B1-24×75-M12-IL 0.63 0.58 14.3 74.8 24.4 74.8 24.0 060-G300-B1-36×75-M12-IL 0.63 0.58 14.3 74.8 36.2 74.8 36.2 060-G300-B1-48×75-M12-IL 0.63 0.58 14.3 74.9 48.1 74.9 48.0 060-G300-B1-60×75-M12-IL 0.63 0.58 14.3 74.9 60.2 74.9 60.0 060-G300-B1-12×75-M12-IT 0.63 0.58 14.3 74.9 12.1 75.0 12.4 060-G300-B1-24×75-M12-IT 0.63 0.58 14.3 74.9 24.0 74.9 24.0 060-G300-B1-36×75-M12-IT 0.63 0.58 14.3 74.9 36.3 74.9 35.9 060-G300-B1-48×75-M12-IT 0.63 0.58 14.3 74.9 48.2 74.9 47.9 060-G300-B1-60×75-M12-IT 0.63 0.58 14.3 74.9 60.2 74.9 59.9 060-G300-B1-12×75-M12-ID 0.63 0.58 14.3 74.9 12.1 74.9 11.8 060-G300-B1-24×75-M12-ID 0.63 0.58 14.3 74.9 24.2 74.7 24.3 060-G300-B1-36×75-M12-ID 0.63 0.58 14.3 74.9 35.7 74.9 36.2 060-G300-B1-48×75-M12-ID 0.63 0.58 14.3 74.9 48.0 74.9 48.1 060-G300-B1-60×75-M12-ID 0.63 0.58 14.3 74.9 60.0 74.9 59.4

60

Table C4 042-G550 Multiple Bolt Connection Test Dimensions Top BottomSpecimen tc tb d w e1 e2 e3 w e1 e2 e3 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

042-G550-B2-48×55-M12-CL 0.45 0.41 14.3 55.0 48.2 35.3 - 55.0 48.3 36.1 - 042-G550-B2-48×55-M12-IL 0.45 0.41 14.3 55.0 48.1 36.3 - 55.0 48.0 36.3 - 042-G550-B2-48×75-M12-CL 0.45 0.41 14.3 74.8 48.5 35.8 - 74.8 48.4 36.2 - 042-G550-B2-48×75-M12-IL 0.45 0.41 14.3 74.8 48.0 36.1 - 74.8 48.0 36.5 - 042-G550-B2-48×95-M12-CL 0.45 0.41 14.3 95.0 47.8 36.3 - 95.0 48.0 36.3 - 042-G550-B2-48×95-M12-IL 0.45 0.41 14.3 95.0 47.8 36.0 - 95.0 48.2 36.0 - 042-G550-B3-48×55-M12-CLc 0.45 0.41 14.3 55.2 48.8 35.9 36.5 55.2 48.7 36.4 36.0 042-G550-B3-48×55-M12-ILc 0.45 0.41 14.3 55.1 48.7 35.6 35.7 55.1 48.3 36.1 36.5 042-G550-B2-48×55-M12-CT 0.45 0.41 14.3 55.0 47.9 36.3 - 55.0 47.7 36.4 - 042-G550-B2-48×55-M12-IT 0.45 0.41 14.3 55.0 47.6 36.3 - 55.0 48.2 36.0 - 042-G550-B2-48×75-M12-CT 0.45 0.41 14.3 74.8 48.2 36.1 - 74.8 48.3 35.9 - 042-G550-B2-48×75-M12-IT 0.45 0.41 14.3 74.8 48.1 36.5 - 74.8 48.6 35.2 - 042-G550-B2-48×95-M12-CT 0.45 0.41 14.3 95.0 48.1 36.1 - 95.0 48.1 35.8 - 042-G550-B2-48×95-M12-IT 0.45 0.41 14.3 95.0 48.0 35.9 - 95.0 48.1 36.2 - 042-G550-B3-48×55-M12-CTc 0.45 0.41 14.3 55.2 48.3 36.3 35.9 55.3 48.5 36.0 36.1 042-G550-B3-48×55-M12-ITc 0.45 0.41 14.3 55.0 48.8 35.8 35.4 55.1 47.2 36.8 35.5 042-G550-B2-48×55-M12-CDc 0.45 0.41 14.3 55.0 48.0 36.1 - 55.0 47.8 36.8 - 042-G550-B2-48×55-M12-ID 0.45 0.41 14.3 55.0 47.9 36.1 - 55.0 48.1 36.1 - 042-G550-B2-48×75-M12-CD 0.45 0.41 14.3 74.8 47.8 36.0 - 74.8 48.3 35.7 - 042-G550-B2-48×75-M12-ID 0.45 0.41 14.3 74.8 48.5 36.2 - 74.8 48.0 36.4 - 042-G550-B2-48×95-M12-CD 0.45 0.41 14.3 95.0 47.8 35.6 - 95.0 47.7 36.3 - 042-G550-B2-48×95-M12-ID 0.45 0.41 14.3 95.0 47.8 36.3 - 95.0 47.7 36.5 - 042-G550-B3-48×55-M12-CDc 0.45 0.41 14.3 55.2 48.8 36.1 36.9 55.2 49.3 35.3 36.5 042-G550-B3-48×55-M12-IDc 0.45 0.41 14.3 55.2 48.8 36.0 35.3 55.2 49.1 35.2 36.4

61

Table C5 060-G550 Multiple Bolt Connection Test Dimensions Top BottomSpecimen tc tb d e w e1 e2 e3 w e1 e2 e3 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G550-B2-48×55-M12-ILc 0.64 0.59 14.3 - 55.0 48.1 36.0 - 55.0 47.6 36.5 - 060-G550-B2-48×75-M12-ILc 0.64 0.59 14.3 - 74.8 48.2 36.3 - 74.8 48.4 35.9 - 060-G550-B2-48×95-M12-ILc 0.64 0.59 14.3 - 95.0 48.1 36.1 - 95.0 47.7 36.2 - 060-G550-B3-48×55-M12-ILc 0.64 0.59 14.3 - 55.0 48.3 35.8 36.7 55.0 47.4 36.7 36.4 060-G550-B2-48×75-M12-IL-E10c 0.64 0.59 14.3 10.0 74.8 48.3 36.2 - 74.8 48.1 36.4 - 060-G550-B3-48×55-M12-IL-E10c 0.64 0.59 14.3 10.0 55.6 40.8 21.8 21.9 54.8 40.9 21.5 22.1 060-G550-B2-48×55-M12-ITc 0.64 0.59 14.3 - 55.0 48.0 36.1 - 55.0 47.9 36.1 - 060-G550-B2-48×75-M12-ITc 0.64 0.59 14.3 - 74.8 47.8 36.6 - 74.8 48.4 36.0 - 060-G550-B2-48×95-M12-ITc 0.64 0.59 14.3 - 95.0 48.0 36.1 - 95.0 48.1 36.2 - 060-G550-B3-48×55-M12-ITc 0.64 0.59 14.3 - 55.0 47.8 36.6 36.0 55.0 47.8 36.5 36.7 060-G550-B2-48×75-M12-IT-E15c 0.64 0.59 14.3 15.0 74.8 48.3 35.4 - 74.8 47.8 36.1 - 060-G550-B2-48×55-M12-IDc 0.64 0.59 14.3 - 55.0 47.9 36.1 - 54.9 47.6 36.2 - 060-G550-B2-48×75-M12-IDc 0.64 0.59 14.3 - 74.8 48.1 35.9 - 74.8 48.3 35.7 - 060-G550-B2-48×95-M12-IDc 0.64 0.59 14.3 - 95.0 47.8 36.5 - 95.0 48.2 35.7 - 060-G550-B3-48×55-M12-IDc 0.64 0.59 14.3 - 55.0 47.9 36.4 36.2 55.0 48.1 36.6 36.1 060-G550-B2-48×75-M12-ID-E20c 0.64 0.59 14.3 20.0 74.8 47.8 36.6 - 74.8 48.0 36.0 - 060-G550-B3-48×55-M12-ID-E20c 0.64 0.59 14.3 20.0 55.8 41.0 21.9 21.8 55.9 41.0 21.8 22.0

62

Table C6 060-G300 Multiple Bolt Connection Test Dimensions Top BottomSpecimen tc tb d e w e1 e2 e3 w e1 e2 e3 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G300-B2-48×55-M12-ILc 0.63 0.58 14.3 - 54.9 47.9 36.3 - 54.9 48.2 35.7 - 060-G300-B2-48×75-M12-ILc 0.63 0.58 14.3 - 74.8 48.3 35.9 - 74.8 48.1 36.2 - 060-G300-B2-48×95-M12-ILc 0.63 0.58 14.3 - 95.0 48.2 36.5 - 95.0 48.0 36.0 - 060-G300-B3-48×55-M12-ILc 0.63 0.58 14.3 - 54.9 48.4 36.1 36.3 55.0 48.1 36.2 35.8 060-G300-B2-48×75-M12-IL-E10c 0.63 0.58 14.3 10.0 74.8 48.0 36.4 - 74.7 48.3 36.3 - 060-G300-B2-48×55-M12-ITc 0.63 0.58 14.3 - 54.9 48.0 35.9 - 54.9 48.0 35.9 - 060-G300-B2-48×75-M12-ITc 0.63 0.58 14.3 - 74.8 47.9 35.8 - 74.8 48.0 36.0 - 060-G300-B2-48×95-M12-ITc 0.63 0.58 14.3 - 95.0 47.9 36.2 - 95.0 48.0 36.2 - 060-G300-B3-48×55-M12-ITc 0.63 0.58 14.3 - 55.0 48.2 35.8 36.5 55.0 48.1 35.8 36.3 060-G300-B2-48×75-M12-IT-E20c 0.63 0.58 14.3 20.0 74.7 48.1 36.3 - 74.7 48.2 36.0 - 060-G300-B2-48×55-M12-IDc 0.63 0.58 14.3 - 54.9 47.9 35.6 - 54.9 47.8 35.9 - 060-G300-B2-48×75-M12-IDc 0.63 0.58 14.3 - 74.8 48.2 36.5 - 74.8 48.4 35.7 - 060-G300-B2-48×95-M12-IDc 0.63 0.58 14.3 - 95.0 47.9 36.2 - 95.0 47.8 36.5 - 060-G300-B3-48×55-M12-IDc 0.63 0.58 14.3 - 54.9 48.0 35.8 36.3 55.0 48.1 36.2 36.6 060-G300-B2-48×75-M12-ID-E15c 0.63 0.58 14.3 15.0 74.7 48.5 35.9 - 74.7 48.5 35.8 -

63

Table C7 042-G550 Single Bolt Winged Connection Test Dimensions Top BottomSpecimen tc tb d w e1 l1 l2 w e1 l1 l2 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

042-G550-B1W-24×75-M12-CL 0.45 0.41 14.3 75.3 24.4 15.5 16.2 75.3 24.4 15.8 15.8 042-G550-B1W-24×75-M12-IL 0.45 0.41 14.3 74.9 24.0 16.3 15.9 74.3 24.2 16.8 15.8 042-G550-B1W-36×75-M12-CL 0.45 0.41 14.3 75.8 36.7 15.7 15.2 76.0 36.8 16.0 14.8 042-G550-B1W-36×75-M12-IL 0.45 0.41 14.3 75.3 36.8 16.2 15.2 75.8 36.6 15.8 15.5 042-G550-B1W-48×75-M12-CL 0.45 0.41 14.3 76.1 48.3 15.3 15.8 76.2 48.1 15.8 15.5 042-G550-B1W-48×75-M12-IL 0.45 0.41 14.3 75.2 48.2 15.7 16.2 74.1 48.0 16.1 16.5 042-G550-B1W-24×75-M12-CT 0.45 0.41 14.3 76.2 24.6 15.8 15.0 75.8 24.4 15.3 16.2 042-G550-B1W-24×75-M12-IT 0.45 0.41 14.3 75.1 24.5 16.0 15.7 75.6 24.2 15.9 15.5 042-G550-B1W-36×75-M12-CT 0.45 0.41 14.3 75.6 35.9 15.9 15.2 75.7 36.7 15.1 16.2 042-G550-B1W-36×75-M12-IT 0.45 0.41 14.3 76.1 36.2 15.1 15.7 75.0 35.8 16.3 15.6 042-G550-B1W-48×75-M12-CT 0.45 0.41 14.3 76.1 48.0 15.9 15.1 75.7 48.5 14.9 16.1 042-G550-B1W-48×75-M12-IT 0.45 0.41 14.3 76.0 48.0 15.9 14.9 75.8 48.9 16.3 15.2 042-G550-B1W-24×75-M12-CD 0.45 0.41 14.3 75.2 24.6 15.9 15.6 74.7 24.6 16.6 15.2 042-G550-B1W-24×75-M12-ID 0.45 0.41 14.3 74.9 24.6 15.2 16.2 75.7 24.0 16.8 15.7 042-G550-B1W-36×75-M12-CD 0.45 0.41 14.3 75.3 36.4 15.5 15.7 75.4 36.6 15.4 15.6 042-G550-B1W-36×75-M12-ID 0.45 0.41 14.3 76.0 37.1 15.8 14.8 74.9 36.7 16.0 15.7 042-G550-B1W-48×75-M12-CD 0.45 0.41 14.3 75.5 48.3 15.4 15.5 76.7 48.6 15.3 15.0 042-G550-B1W-48×75-M12-ID 0.45 0.41 14.3 75.8 48.3 15.9 14.9 74.8 47.8 16.3 15.5

64

Table C8 060-G550 Single Bolt Winged Connection Test Dimensions Top BottomSpecimen tc tb d e w e1 l1 l2 w e1 l1 l2 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G550-B1W-24×75-M12-IL 0.64 0.59 14.3 - 73.6 24.4 18.2 15.4 75.9 24.6 14.8 16.5 060-G550-B1W-36×75-M12-IL 0.64 0.59 14.3 - 76.7 36.4 15.6 15.1 76.1 36.1 15.1 15.9 060-G550-B1W-48×75-M12-IL 0.64 0.59 14.3 - 75.2 48.2 16.5 15.1 76.6 48.5 15.1 15.7 060-G550-B1W-24×75-M12-IT 0.64 0.59 14.3 - 75.3 24.2 15.7 16.4 74.2 24.0 15.8 17.5 060-G550-B1W-36×75-M12-IT 0.64 0.59 14.3 - 77.4 35.8 14.9 14.8 77.4 36.3 15.3 15.3 060-G550-B1W-48×75-M12-IT 0.64 0.59 14.3 - 75.1 48.3 16.7 14.4 75.5 48.8 15.6 16.3 060-G550-B1W-24×75-M12-IT-E2 0.64 0.59 14.3 2.0 74.3 24.1 16.4 16.6 75.3 24.3 17.5 15.7 060-G550-B1W-36×75-M12-IT-E4 0.64 0.59 14.3 4.0 76.3 36.1 15.2 15.4 76.4 36.0 15.2 15.7 060-G550-B1W-48×75-M12-IT-E6 0.64 0.59 14.3 6.0 76.4 48.3 16.4 15.0 75.8 48.7 16.5 15.0 060-G550-B1W-24×75-M12-ID 0.64 0.59 14.3 - 75.1 24.6 16.1 16.6 75.9 24.6 15.5 16.3 060-G550-B1W-36×75-M12-ID 0.64 0.59 14.3 - 75.5 36.3 15.5 16.2 75.2 36.3 15.7 16.3 060-G550-B1W-48×75-M12-ID 0.64 0.59 14.3 - 76.8 48.3 15.6 15.2 75.8 48.3 15.6 15.7 060-G550-B1W-24×75-M12-ID- 0.64 0.59 14.3 2.0 76.9 24.5 14.7 15.7 75.2 24.5 16.4 15.6 060-G550-B1W-36×75-M12-ID- 0.64 0.59 14.3 4.0 75.6 36.3 15.6 16.1 75.7 36.4 15.4 16.2 060-G550-B1W-48×75-M12-ID- 0.64 0.59 14.3 6.0 76.3 48.3 16.1 15.2 75.8 48.1 16.5 15.0

65

Table C9 060-G300 Single Bolt Winged Connection Test Dimensions Top BottomSpecimen tc tb d w e1 l1 l2 w e1 l1 l2 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

060-G300-B1W-24×75-M12-IL 0.63 0.58 14.3 75.3 24.4 15.5 16.9 75.6 24.3 14.8 17.1 060-G300-B1W-36×75-M12-IL 0.63 0.58 14.3 76.7 36.4 16.9 15.5 77.1 36.0 16.1 14.7 060-G300-B1W-48×75-M12-IL 0.63 0.58 14.3 76.7 48.1 16.1 15.0 76.9 48.4 16.6 15.0 060-G300-B1W-24×75-M12-IT 0.63 0.58 14.3 78.1 24.1 15.6 15.6 77.2 24.2 15.5 15.1 060-G300-B1W-36×75-M12-IT 0.63 0.58 14.3 76.2 35.9 15.9 15.7 76.5 36.7 15.6 15.7 060-G300-B1W-48×75-M12-IT 0.63 0.58 14.3 75.8 48.7 17.5 14.3 77.0 48.4 14.9 15.9 060-G300-B1W-24×75-M12-ID 0.63 0.58 14.3 75.1 24.4 15.5 17.2 76.3 24.0 16.8 16.2 060-G300-B1W-36×75-M12-ID 0.63 0.58 14.3 77.4 36.7 15.6 14.9 77.5 36.2 16.1 15.5 060-G300-B1W-48×75-M12-ID 0.63 0.58 14.3 77.9 48.4 15.6 14.6 76.5 48.1 15.1 16.0

66

APPENDIX 'D' BOLTED CONNECTION TEST AND PREDICTED LOADS, TEST-TO- PREDICTED RATIOS, AND FAILURE PATTERNS

D1 General The ultimate load, Pt, as well as the displacement at ultimate, δult, for each of the test specimens is provided in Table D1 of this Appendix. Displacement based capacity determined by the load at either 3mm (ECCS, 1983) or 6.35mm (AISC, 1988, 1989, 1993) extension was not used due to a possible 4.6mm of slip before bearing and the 10-30mm of material deformation prior to failure. However, the maximum load, P6.35, recorded within the first 6.35mm of extension, from the point of initial bearing, is provided for all of the test specimens in Tables D2 to D41 of this Appendix. All predicted loads, Pp, based on connection limit states for the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996) and European (Eurocode, 1996) Design Standards were determined using the base metal thickness and corresponding full value of the dynamic material properties (see Table 3.1). That is, predicted loads for gross section, net section fracture, end pull-out and bearing failure modes, given in Tables D2 to D41 of this Appendix, were determined using procedures outlined for the relevant design standards in Appendix 'A' without the use of 0.75fy and 0.75fu specified for 042-G550 and 060-G550 sheet steels. Test-to-predicted ratios, Pt / Pp, are listed for the controlling failure mode based on the lowest predicted load.

D2 Failure Patterns Various failure patterns were observed for the 158 bolted connection specimens tested. Tables D2 to D41 list the actual failure pattern for each of the bolted connections, as well as the predicted failure pattern based on the lowest calculated load. Schematic diagrams of the three typical failure patterns which occurred; end pull-out, bearing and net section fracture are shown in Figure D1. A number of bolted specimens exhibited large amounts of bearing distortion, i.e. piling of sheet material in front of the bolt, prior to failure through the net section. Net section failure was identified in this case due to slight necking of the specimen followed by fracture of the material at the centre of the originally drilled bolt hole furthest from the end of the specimen. Connections which failed by bearing exhibited an initial pull out tear in the direction of load, and in some cases additional diagonal tears at the edge of the piled material nearest the end of the test specimen. Photographs of each of the failure types can be found in Figures 3.5 to 3.8 and in Appendix 'H'.

67

Figure D1 Bolted Connection Failure Patterns

68

Table D1 Bolted Connection Ultimate Load and Displacement Test Data 060-G300-I2 060-G550-I 042-G550-I 042-G550-C3

Specimen Pt δult1 Pt δult Pt δult Pt δult

Type (kN) (mm) (kN) (mm) (kN) (mm) (kN) (mm)

B1-12L 2.73 11.1 3.96 8.5 3.14 10.1 3.62 5.3B1-24L 5.87 13.2 9.05 13.3 6.15 11.0 6.99 9.2B1W-24L 6.61 18.2 8.37 13.9 7.12 13.4 7.44 10.0B1-36L 6.20 14.1 10.0 14.4 7.39 12.7 6.00 13.0B1W-36L 7.35 18.2 11.5 20.4 7.50 14.4 6.50 15.8B1-48L 6.38 14.0 9.81 13.0 7.75 12.2 7.26 16.7B1W-48L 9.08 22.5 10.9 20.3 7.58 14.2 7.40 12.2B1-60L 6.39 14.3 11.1 18.7 7.42 10.1 6.59 9.5

B1-12T 2.71 10.9 4.05 9.5 2.08 7.3 3.96 4.9B1-24T 6.29 17.3 8.37 13.0 7.05 7.5 6.93 6.4B1W-24T 6.06 16.1 8.01 11.0 6.71 13.0 5.47 13.1B1W-24T-E2 - - 8.48 9.9 - - - -B1-36T 6.06 14.3 10.1 17.8 7.89 15.2 6.29 7.1B1W-36T 7.82 21.3 11.2 18.6 7.72 18.5 6.56 18.4B1W-36T-E4 - - 10.1 16.4 - - - -B1-48T 6.18 14.1 11.0 17.7 7.93 15.0 7.78 13.0B1W-48T 9.04 23.9 10.7 17.0 7.15 15.3 6.74 18.5B1W-48T-E6 - - 10.6 19.6 - - - -B1-60T 6.26 14.3 9.51 15.9 7.10 17.2 6.72 11.4

B1-12D 2.70 13.1 4.20 10.0 3.36 6.8 4.31 7.8B1-24D 6.54 20.0 8.92 16.1 6.10 14.2 5.79 13.7B1W-24D 6.18 18.3 8.30 14.7 5.82 8.2 6.36 14.8B1W-24D-E2 - - 9.61 10.8 - - - -B1-36D 6.65 15.6 10.5 17.6 6.54 16.2 7.65 7.8B1W-36D 8.65 16.9 9.76 15.3 6.88 17.4 6.44 8.9B1W-36D-E4 - - 9.88 16.7 - - - -B1-48D 6.67 15.0 9.67 19.1 7.14 15.6 7.20 6.7B1W-48D 9.61 22.5 12.1 20.2 6.98 13.0 6.98 17.3B1W-48D-E6 - - 11.6 21.3 - - - -B1-60D 6.51 14.4 9.23 13.5 7.40 13.4 5.70 3.9

B2-55L 10.1c 13.6 17.2c 13.1 12.1 14.0 10.5 9.8B2-75L 14.3c 17.9 20.4c 18.2 13.5 18.0 13.0 13.1B2-75L-E 14.2c 16.9 22.1c 18.7 - - - -B2-95L 15.4c 17.2 23.0c 17.0 13.7 16.3 13.5 -B2-55T 10.1c 11.8 19.3c 14.2 13.6 13.5 13.2 15.5B2-75T 14.4c 16.7 21.1c 18.1 15.3 17.6 12.6 13.6B2-75T-E 14.4c 21.2 21.9c 15.1 - - - -B2-95T 15.4c 19.3 22.3c 19.4 14.4 15.9 13.6 12.0B2-55D 9.95c 13.2 17.4c 13.1 12.3 16.2 12.5c 15.2B2-75D 14.5c 15.4 22.1c 18.8 13.4 16.8 12.5 12.1B2-75D-E 14.5c 17.1 23.0c 21.8 - - - -B2-95D 16.1c 20.1 21.0c 17.1 13.0 20.1 11.1 15.6

B3-55L 9.70c 12.1 17.3c 9.8 13.3c 10.4 13.8c 8.0B3-55L-E10 - - 16.7c 6.6 - - - -B3-55T 10.0c 11.6 18.8c 10.1 12.9c 9.7 13.7c 6.6B3-55D 10.1c 9.5 17.2c 9.6 13.0c 10.9 12.9c 7.8B3-55D-E20 - - 16.6c 5.8 - - - -

Note: 1. Displacement of connection at ultimate load (may include up to 4.6mm of slippage due to oversize holes.

2. Bolt(s) with integral washers used. 3. Bolt(s) with conventional washers used.

69

Table D2 042-G550 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B1-12×75-M12-CL 0.41 719 3.62 3.62 22.1 10.4 3.64 10.6 0.995 End pull-out End pull-out 042-G550-B1-12×75-M12-IL 0.41 719 3.14 3.14 22.1 10.4 3.58 10.6 0.878 End pull-out End pull-out 042-G550-B1-24×75-M12-CL 0.41 719 6.93 6.99 22.1 10.4 7.21 10.6 0.970 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IL 0.41 719 5.14 6.15 22.1 10.4 7.06 10.6 0.871 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CL 0.41 719 5.37 6.00 22.1 10.4 10.5 10.6 0.578 Net section Bearing 042-G550-B1-36×75-M12-IL 0.41 719 5.32 7.39 22.1 10.4 10.5 10.6 0.713 Net section Bearing 042-G550-B1-48×75-M12-CL 0.41 719 6.01 7.26 22.1 10.4 14.0 10.6 0.700 Net section Bearing 042-G550-B1-48×75-M12-IL 0.41 719 5.96 7.75 22.1 10.4 14.2 10.6 0.748 Net section Bearing 042-G550-B1-60×75-M12-CL 0.41 719 6.11 6.59 22.1 10.4 17.7 10.6 0.636 Net section Bearing 042-G550-B1-60×75-M12-IL 0.41 719 6.61 7.42 22.1 10.4 17.6 10.6 0.716 Net section Bearing

042-G550-B1-12×75-M12-CT 0.41 817 3.96 3.96 25.1 11.8 3.97 12.1 0.997 End pull-out End pull-out 042-G550-B1-12×75-M12-IT 0.41 817 2.08 2.08 25.1 11.8 3.90 12.1 0.533 End pull-out End pull-out 042-G550-B1-24×75-M12-CT 0.41 817 6.93 6.93 25.1 11.8 8.02 12.1 0.864 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IT 0.41 817 7.05 7.05 25.1 11.8 8.05 12.1 0.875 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CT 0.41 817 6.29 6.29 25.1 11.8 12.0 12.1 0.534 Net section Bearing 042-G550-B1-36×75-M12-IT 0.41 817 6.28 7.89 25.1 11.8 12.1 12.1 0.669 Net section Bearing 042-G550-B1-48×75-M12-CT 0.41 817 7.25 7.78 25.1 11.8 16.2 12.1 0.660 Net section Bearing 042-G550-B1-48×75-M12-IT 0.41 817 5.49 7.93 25.1 11.8 16.1 12.1 0.673 Net section Bearing 042-G550-B1-60×75-M12-CT 0.41 817 6.54 6.72 25.1 11.8 20.1 12.1 0.570 Net section Bearing 042-G550-B1-60×75-M12-IT 0.41 817 5.39 7.10 25.1 11.8 20.1 12.1 0.602 Net section Bearing

042-G550-B1-12×75-M12-CD 0.41 731 4.31 4.31 22.4 10.5 3.61 10.8 1.195 End pull-out End pull-out 042-G550-B1-12×75-M12-ID 0.41 731 3.36 3.36 22.4 10.5 3.58 10.8 0.939 End pull-out End pull-out 042-G550-B1-24×75-M12-CD 0.41 731 5.62 5.79 22.4 10.5 7.12 10.8 0.814 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-ID 0.41 731 4.74 6.10 22.4 10.5 7.24 10.8 0.843 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CD 0.41 731 7.54 7.65 22.4 10.5 10.8 10.8 0.725 Net section Bearing 042-G550-B1-36×75-M12-ID 0.41 731 4.92 6.54 22.4 10.5 10.7 10.8 0.620 Net section Bearing 042-G550-B1-48×75-M12-CD 0.41 731 6.90 7.20 22.4 10.5 14.3 10.8 0.684 Net section Bearing 042-G550-B1-48×75-M12-ID 0.41 731 5.85 7.14 22.4 10.5 14.4 10.8 0.677 Net section Bearing 042-G550-B1-60×75-M12-CD 0.41 731 5.70 5.70 22.4 10.5 18.0 10.8 0.541 Net section Bearing 042-G550-B1-60×75-M12-ID 0.41 731 5.72 7.40 22.4 10.5 18.1 10.8 0.702 Net section Bearing

70

Table D3 042-G550 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B1-12×75-M12-CL 0.41 719 3.62 3.62 22.1 17.9 1.84 7.08 1.970 End pull-out End pull-out 042-G550-B1-12×75-M12-IL 0.41 719 3.14 3.14 22.1 17.9 1.77 7.08 1.777 End pull-out End pull-out 042-G550-B1-24×75-M12-CL 0.41 719 6.93 6.99 22.1 17.9 6.12 7.08 1.142 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IL 0.41 719 5.14 6.15 22.1 17.9 5.94 7.08 1.035 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CL 0.41 719 5.37 6.00 22.1 17.9 10.1 7.08 0.848 Bearing Bearing 042-G550-B1-36×75-M12-IL 0.41 719 5.32 7.39 22.1 17.8 10.0 7.08 1.044 Bearing Bearing 042-G550-B1-48×75-M12-CL 0.41 719 6.01 7.26 22.1 17.9 14.3 7.08 1.026 Bearing Bearing 042-G550-B1-48×75-M12-IL 0.41 719 5.96 7.75 22.1 17.9 14.5 7.08 1.096 Bearing Bearing 042-G550-B1-60×75-M12-CL 0.41 719 6.11 6.59 22.1 17.8 18.7 7.08 0.932 Bearing Bearing 042-G550-B1-60×75-M12-IL 0.41 719 6.61 7.42 22.1 17.9 18.6 7.08 1.049 Bearing Bearing

042-G550-B1-12×75-M12-CT 0.41 817 3.96 3.96 25.1 20.3 1.89 8.04 2.094 End pull-out End pull-out 042-G550-B1-12×75-M12-IT 0.41 817 2.08 2.08 25.1 20.3 1.81 8.04 1.149 End pull-out End pull-out 042-G550-B1-24×75-M12-CT 0.41 817 6.93 6.93 25.1 20.3 6.75 8.04 1.026 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IT 0.41 817 7.05 7.05 25.1 20.3 6.79 8.04 1.038 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CT 0.41 817 6.29 6.29 25.1 20.3 11.5 8.04 0.782 Bearing Bearing 042-G550-B1-36×75-M12-IT 0.41 817 6.28 7.89 25.1 20.3 11.7 8.04 0.981 Bearing Bearing 042-G550-B1-48×75-M12-CT 0.41 817 7.25 7.78 25.1 20.3 16.6 8.04 0.968 Bearing Bearing 042-G550-B1-48×75-M12-IT 0.41 817 5.49 7.93 25.1 20.3 16.5 8.04 0.987 Bearing Bearing 042-G550-B1-60×75-M12-CT 0.41 817 6.54 6.72 25.1 20.3 21.3 8.04 0.836 Bearing Bearing 042-G550-B1-60×75-M12-IT 0.41 817 5.39 7.10 25.1 20.3 21.2 8.04 0.883 Bearing Bearing

042-G550-B1-12×75-M12-CD 0.41 731 4.31 4.31 22.4 18.2 1.76 7.19 2.449 End pull-out End pull-out 042-G550-B1-12×75-M12-ID 0.41 731 3.36 3.36 22.4 18.2 1.73 7.19 1.948 End pull-out End pull-out 042-G550-B1-24×75-M12-CD 0.41 731 5.62 5.79 22.4 18.2 5.97 7.19 0.970 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-ID 0.41 731 4.74 6.10 22.4 18.2 6.11 7.19 0.998 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CD 0.41 731 7.54 7.65 22.4 18.2 10.4 7.19 1.063 Bearing Bearing 042-G550-B1-36×75-M12-ID 0.41 731 4.92 6.54 22.4 18.2 10.3 7.19 0.909 Bearing Bearing 042-G550-B1-48×75-M12-CD 0.41 731 6.90 7.20 22.4 18.1 14.6 7.19 1.001 Bearing Bearing 042-G550-B1-48×75-M12-ID 0.41 731 5.85 7.14 22.4 18.2 14.7 7.19 0.993 Bearing Bearing 042-G550-B1-60×75-M12-CD 0.41 731 5.70 5.70 22.4 18.2 19.1 7.19 0.793 Bearing Bearing 042-G550-B1-60×75-M12-ID 0.41 731 5.72 7.40 22.4 18.2 19.1 7.19 1.029 Bearing Bearing

71

Table D4 042-G550 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B1-12×75-M12-CL 0.41 719 3.62 3.62 22.1 10.4 3.64 10.6 0.995 End pull-out End pull-out 042-G550-B1-12×75-M12-IL 0.41 719 3.14 3.14 22.1 10.4 3.58 10.6 0.878 End pull-out End pull-out 042-G550-B1-24×75-M12-CL 0.41 719 6.93 6.99 22.1 10.4 7.21 10.6 0.970 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IL 0.41 719 5.14 6.15 22.1 10.4 7.06 10.6 0.871 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CL 0.41 719 5.37 6.00 22.1 10.4 10.5 10.6 0.578 Net section Bearing 042-G550-B1-36×75-M12-IL 0.41 719 5.32 7.39 22.1 10.4 10.5 10.6 0.713 Net section Bearing 042-G550-B1-48×75-M12-CL 0.41 719 6.01 7.26 22.1 10.4 14.0 10.6 0.700 Net section Bearing 042-G550-B1-48×75-M12-IL 0.41 719 5.96 7.75 22.1 10.4 14.2 10.6 0.748 Net section Bearing 042-G550-B1-60×75-M12-CL 0.41 719 6.11 6.59 22.1 10.4 17.7 10.6 0.636 Net section Bearing 042-G550-B1-60×75-M12-IL 0.41 719 6.61 7.42 22.1 10.4 17.6 10.6 0.716 Net section Bearing

042-G550-B1-12×75-M12-CT 0.41 817 3.96 3.96 25.1 11.8 3.97 12.1 0.997 End pull-out End pull-out 042-G550-B1-12×75-M12-IT 0.41 817 2.08 2.08 25.1 11.8 3.90 12.1 0.533 End pull-out End pull-out 042-G550-B1-24×75-M12-CT 0.41 817 6.93 6.93 25.1 11.8 8.02 12.1 0.864 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IT 0.41 817 7.05 7.05 25.1 11.8 8.05 12.1 0.875 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CT 0.41 817 6.29 6.29 25.1 11.8 12.0 12.1 0.534 Net section Bearing 042-G550-B1-36×75-M12-IT 0.41 817 6.28 7.89 25.1 11.8 12.1 12.1 0.669 Net section Bearing 042-G550-B1-48×75-M12-CT 0.41 817 7.25 7.78 25.1 11.8 16.2 12.1 0.660 Net section Bearing 042-G550-B1-48×75-M12-IT 0.41 817 5.49 7.93 25.1 11.8 16.1 12.1 0.673 Net section Bearing 042-G550-B1-60×75-M12-CT 0.41 817 6.54 6.72 25.1 11.8 20.1 12.1 0.570 Net section Bearing 042-G550-B1-60×75-M12-IT 0.41 817 5.39 7.10 25.1 11.8 20.1 12.1 0.602 Net section Bearing

042-G550-B1-12×75-M12-CD 0.41 731 4.31 4.31 22.4 10.5 3.61 10.8 1.195 End pull-out End pull-out 042-G550-B1-12×75-M12-ID 0.41 731 3.36 3.36 22.4 10.5 3.58 10.8 0.939 End pull-out End pull-out 042-G550-B1-24×75-M12-CD 0.41 731 5.62 5.79 22.4 10.5 7.12 10.8 0.814 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-ID 0.41 731 4.74 6.10 22.4 10.5 7.24 10.8 0.843 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CD 0.41 731 7.54 7.65 22.4 10.5 10.8 10.8 0.725 Net section Bearing 042-G550-B1-36×75-M12-ID 0.41 731 4.92 6.54 22.4 10.5 10.7 10.8 0.620 Net section Bearing 042-G550-B1-48×75-M12-CD 0.41 731 6.90 7.20 22.4 10.5 14.3 10.8 0.684 Net section Bearing 042-G550-B1-48×75-M12-ID 0.41 731 5.85 7.14 22.4 10.5 14.4 10.8 0.677 Net section Bearing 042-G550-B1-60×75-M12-CD 0.41 731 5.70 5.70 22.4 10.5 18.0 10.8 0.541 Net section Bearing 042-G550-B1-60×75-M12-ID 0.41 731 5.72 7.40 22.4 10.5 18.1 10.8 0.702 Net section Bearing

72

Table D5 042-G550 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B1-12×75-M12-CL 0.41 719 3.62 3.62 22.1 12.0 3.03 8.84 1.194 End pull-out End pull-out 042-G550-B1-12×75-M12-IL 0.41 719 3.14 3.14 22.1 12.0 2.99 8.84 1.053 End pull-out End pull-out 042-G550-B1-24×75-M12-CL 0.41 719 6.93 6.99 22.1 12.0 6.01 8.84 1.164 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IL 0.41 719 5.14 6.15 22.1 12.0 5.88 8.84 1.045 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CL 0.41 719 5.37 6.00 22.1 12.0 8.78 8.84 0.683 End pull-out Bearing 042-G550-B1-36×75-M12-IL 0.41 719 5.32 7.39 22.1 12.0 8.73 8.84 0.846 End pull-out Bearing 042-G550-B1-48×75-M12-CL 0.41 719 6.01 7.26 22.1 12.0 11.7 8.84 0.821 Bearing Bearing 042-G550-B1-48×75-M12-IL 0.41 719 5.96 7.75 22.1 12.0 11.8 8.84 0.877 Bearing Bearing 042-G550-B1-60×75-M12-CL 0.41 719 6.11 6.59 22.1 12.0 14.8 8.84 0.745 Bearing Bearing 042-G550-B1-60×75-M12-IL 0.41 719 6.61 7.42 22.1 12.0 14.7 8.84 0.839 Bearing Bearing

042-G550-B1-12×75-M12-CT 0.41 817 3.96 3.96 25.1 13.7 3.31 10.0 1.196 End pull-out End pull-out 042-G550-B1-12×75-M12-IT 0.41 817 2.08 2.08 25.1 13.7 3.25 10.0 0.639 End pull-out End pull-out 042-G550-B1-24×75-M12-CT 0.41 817 6.93 6.93 25.1 13.7 6.68 10.0 1.037 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-IT 0.41 817 7.05 7.05 25.1 13.7 6.71 10.0 1.050 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CT 0.41 817 6.29 6.29 25.1 13.7 10.0 10.0 0.629 Bear. / E p-o Bearing 042-G550-B1-36×75-M12-IT 0.41 817 6.28 7.89 25.1 13.7 10.1 10.0 0.785 Bearing Bearing 042-G550-B1-48×75-M12-CT 0.41 817 7.25 7.78 25.1 13.7 13.5 10.0 0.774 Bearing Bearing 042-G550-B1-48×75-M12-IT 0.41 817 5.49 7.93 25.1 13.7 13.4 10.0 0.790 Bearing Bearing 042-G550-B1-60×75-M12-CT 0.41 817 6.54 6.72 25.1 13.7 16.8 10.0 0.669 Bearing Bearing 042-G550-B1-60×75-M12-IT 0.41 817 5.39 7.10 25.1 13.7 16.7 10.0 0.706 Bearing Bearing

042-G550-B1-12×75-M12-CD 0.41 731 4.31 4.31 22.4 12.2 3.01 8.99 1.434 End pull-out End pull-out 042-G550-B1-12×75-M12-ID 0.41 731 3.36 3.36 22.4 12.2 2.98 8.99 1.126 End pull-out End pull-out 042-G550-B1-24×75-M12-CD 0.41 731 5.62 5.79 22.4 12.2 5.93 8.99 0.977 End pull-out Bear. / E p-o 042-G550-B1-24×75-M12-ID 0.41 731 4.74 6.10 22.4 12.2 6.03 8.99 1.012 End pull-out Bear. / E p-o 042-G550-B1-36×75-M12-CD 0.41 731 7.54 7.65 22.4 12.2 9.00 8.99 0.850 Bearing Bearing 042-G550-B1-36×75-M12-ID 0.41 731 4.92 6.54 22.4 12.2 8.95 8.99 0.731 End pull-out Bearing 042-G550-B1-48×75-M12-CD 0.41 731 6.90 7.20 22.4 12.2 11.9 8.99 0.801 Bearing Bearing 042-G550-B1-48×75-M12-ID 0.41 731 5.85 7.14 22.4 12.2 12.0 8.99 0.794 Bearing Bearing 042-G550-B1-60×75-M12-CD 0.41 731 5.70 5.70 22.4 12.2 15.0 8.99 0.634 Bearing Bearing 042-G550-B1-60×75-M12-ID 0.41 731 5.72 7.40 22.4 12.2 15.0 8.99 0.823 Bearing Bearing

73

Table D6 060-G550 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1-12×75-M12-IL 0.59 703 3.96 3.96 31.1 14.6 5.04 14.9 0.786 End pull-out End pull-out 060-G550-B1-24×75-M12-IL 0.59 703 7.86 9.05 31.1 14.6 10.0 14.9 0.907 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IL 0.59 703 7.82 10.0 31.1 14.6 14.9 14.9 0.685 Net section Bearing 060-G550-B1-48×75-M12-IL 0.59 703 7.70 9.81 31.1 14.6 19.8 14.9 0.672 Net section Bearing 060-G550-B1-60×75-M12-IL 0.59 703 7.76 11.1 31.1 14.6 24.8 14.9 0.758 Net section Bearing 060-G550-B1-12×75-M12-IT 0.59 785 4.05 4.05 34.7 16.3 5.67 16.7 0.714 End pull-out End pull-out 060-G550-B1-24×75-M12-IT 0.59 785 8.21 8.37 34.7 16.3 11.1 16.7 0.752 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IT 0.59 785 7.87 10.1 34.7 16.3 16.7 16.7 0.620 Net section Bearing 060-G550-B1-48×75-M12-IT 0.59 785 7.68 11.0 34.7 16.3 22.2 16.7 0.678 Net section Bearing 060-G550-B1-60×75-M12-IT 0.59 785 8.19 9.51 34.7 16.3 27.9 16.7 0.584 Net section Bearing 060-G550-B1-12×75-M12-ID 0.59 707 4.20 4.20 31.3 14.7 5.07 15.0 0.828 End pull-out End pull-out 060-G550-B1-24×75-M12-ID 0.59 707 7.70 8.92 31.3 14.7 10.0 15.0 0.896 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-ID 0.59 707 7.57 10.5 31.3 14.7 15.0 15.0 0.718 Net section Bearing 060-G550-B1-48×75-M12-ID 0.59 707 8.59 9.67 31.3 14.7 19.9 15.0 0.658 Net section Bearing 060-G550-B1-60×75-M12-ID 0.59 707 8.49 9.23 31.3 14.7 24.9 15.0 0.628 Net section Bearing

74

Table D7 060-G550 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1-12×75-M12-IL 0.59 703 3.96 3.96 31.1 25.1 2.49 10.0 1.592 End pull-out End pull-out 060-G550-B1-24×75-M12-IL 0.59 703 7.86 9.05 31.1 25.2 8.41 10.0 1.076 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IL 0.59 703 7.82 10.0 31.1 25.2 14.3 10.0 1.004 Bearing Bearing 060-G550-B1-48×75-M12-IL 0.59 703 7.70 9.81 31.1 25.2 20.3 10.0 0.985 Bearing Bearing 060-G550-B1-60×75-M12-IL 0.59 703 7.76 11.1 31.1 25.2 26.2 10.0 1.112 Bearing Bearing 060-G550-B1-12×75-M12-IT 0.59 785 4.05 4.05 34.7 28.1 2.83 11.1 1.429 End pull-out End pull-out 060-G550-B1-24×75-M12-IT 0.59 785 8.21 8.37 34.7 28.1 9.39 11.1 0.892 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IT 0.59 785 7.87 10.1 34.7 28.1 16.1 11.1 0.909 Bearing Bearing 060-G550-B1-48×75-M12-IT 0.59 785 7.68 11.0 34.7 28.1 22.6 11.1 0.994 Bearing Bearing 060-G550-B1-60×75-M12-IT 0.59 785 8.19 9.51 34.7 28.1 29.5 11.1 0.856 Bearing Bearing 060-G550-B1-12×75-M12-ID 0.59 707 4.20 4.20 31.3 25.3 2.50 10.0 1.677 End pull-out End pull-out 060-G550-B1-24×75-M12-ID 0.59 707 7.70 8.92 31.3 25.3 8.36 10.0 1.066 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-ID 0.59 707 7.57 10.5 31.3 25.3 14.4 10.0 1.052 Bearing Bearing 060-G550-B1-48×75-M12-ID 0.59 707 8.59 9.67 31.3 25.3 20.3 10.0 0.965 Bearing Bearing 060-G550-B1-60×75-M12-ID 0.59 707 8.49 9.23 31.3 25.3 26.3 10.0 0.921 Bearing Bearing

75

Table D8 060-G550 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1-12×75-M12-IL 0.59 703 3.96 3.96 31.1 14.6 5.04 14.9 0.786 End pull-out End pull-out 060-G550-B1-24×75-M12-IL 0.59 703 7.86 9.05 31.1 14.6 10.0 14.9 0.907 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IL 0.59 703 7.82 10.0 31.1 14.6 14.9 14.9 0.685 Net section Bearing 060-G550-B1-48×75-M12-IL 0.59 703 7.70 9.81 31.1 14.6 19.8 14.9 0.672 Net section Bearing 060-G550-B1-60×75-M12-IL 0.59 703 7.76 11.1 31.1 14.6 24.8 14.9 0.758 Net section Bearing 060-G550-B1-12×75-M12-IT 0.59 785 4.05 4.05 34.7 16.3 5.67 16.7 0.714 End pull-out End pull-out 060-G550-B1-24×75-M12-IT 0.59 785 8.21 8.37 34.7 16.3 11.1 16.7 0.752 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IT 0.59 785 7.87 10.1 34.7 16.3 16.7 16.7 0.620 Net section Bearing 060-G550-B1-48×75-M12-IT 0.59 785 7.68 11.0 34.7 16.3 22.2 16.7 0.678 Net section Bearing 060-G550-B1-60×75-M12-IT 0.59 785 8.19 9.51 34.7 16.3 27.9 16.7 0.584 Net section Bearing 060-G550-B1-12×75-M12-ID 0.59 707 4.20 4.20 31.3 14.7 5.07 15.0 0.828 End pull-out End pull-out 060-G550-B1-24×75-M12-ID 0.59 707 7.70 8.92 31.3 14.7 10.0 15.0 0.896 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-ID 0.59 707 7.57 10.5 31.3 14.7 15.0 15.0 0.718 Net section Bearing 060-G550-B1-48×75-M12-ID 0.59 707 8.59 9.67 31.3 14.7 19.9 15.0 0.658 Net section Bearing 060-G550-B1-60×75-M12-ID 0.59 707 8.49 9.23 31.3 14.7 24.9 15.0 0.628 Net section Bearing

76

Table D9 060-G550 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1-12×75-M12-IL 0.59 703 3.96 3.96 31.1 16.9 4.20 12.4 0.943 End pull-out End pull-out 060-G550-B1-24×75-M12-IL 0.59 703 7.86 9.05 31.1 16.9 8.31 12.4 1.089 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IL 0.59 703 7.82 10.0 31.1 16.9 12.4 12.4 0.805 Bear. / E p-o Bearing 060-G550-B1-48×75-M12-IL 0.59 703 7.70 9.81 31.1 16.9 16.5 12.4 0.788 Bearing Bearing 060-G550-B1-60×75-M12-IL 0.59 703 7.76 11.1 31.1 16.9 20.7 12.4 0.890 Bearing Bearing 060-G550-B1-12×75-M12-IT 0.59 785 4.05 4.05 34.7 18.9 4.73 13.9 0.857 End pull-out End pull-out 060-G550-B1-24×75-M12-IT 0.59 785 8.21 8.37 34.7 18.9 9.28 13.9 0.902 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-IT 0.59 785 7.87 10.1 34.7 18.9 13.9 13.9 0.727 Bear. / E p-o Bearing 060-G550-B1-48×75-M12-IT 0.59 785 7.68 11.0 34.7 18.9 18.5 13.9 0.796 Bearing Bearing 060-G550-B1-60×75-M12-IT 0.59 785 8.19 9.51 34.7 18.9 23.2 13.9 0.684 Bearing Bearing 060-G550-B1-12×75-M12-ID 0.59 707 4.20 4.20 31.3 17.0 4.22 12.5 0.994 End pull-out End pull-out 060-G550-B1-24×75-M12-ID 0.59 707 7.70 8.92 31.3 17.0 8.29 12.5 1.075 End pull-out Bear. / E p-o 060-G550-B1-36×75-M12-ID 0.59 707 7.57 10.5 31.3 17.0 12.5 12.5 0.845 Bear. / E p-o Bearing 060-G550-B1-48×75-M12-ID 0.59 707 8.59 9.67 31.3 17.0 16.6 12.5 0.772 Bearing Bearing 060-G550-B1-60×75-M12-ID 0.59 707 8.49 9.23 31.3 17.0 20.8 12.5 0.737 Bearing Bearing

77

Table D10 060-G300 Concentric Single Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1-12×75-M12-IL 0.58 431 2.73 2.73 16.0 8.80 3.04 9.00 0.899 End pull-out End pull-out 060-G300-B1-24×75-M12-IL 0.58 431 5.50 5.87 16.0 8.79 5.99 9.00 0.980 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IL 0.58 431 4.82 6.20 16.0 8.79 9.04 9.00 0.705 Net section Bearing 060-G300-B1-48×75-M12-IL 0.58 431 5.65 6.38 16.0 8.80 12.0 9.00 0.725 Net section Bearing 060-G300-B1-60×75-M12-IL 0.58 431 5.74 6.39 16.0 8.80 15.0 9.00 0.727 Net section Bearing 060-G300-B1-12×75-M12-IT 0.58 428 2.57 2.71 16.6 8.73 2.99 8.94 0.908 End pull-out End pull-out 060-G300-B1-24×75-M12-IT 0.58 428 4.96 6.29 16.6 8.73 5.95 8.94 1.058 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IT 0.58 428 5.41 6.06 16.6 8.73 8.90 8.94 0.694 Net section Bearing 060-G300-B1-48×75-M12-IT 0.58 428 5.35 6.18 16.6 8.73 11.9 8.94 0.708 Net section Bearing 060-G300-B1-60×75-M12-IT 0.58 428 5.24 6.26 16.6 8.73 14.9 8.94 0.717 Net section Bearing 060-G300-B1-12×75-M12-ID 0.58 437 2.54 2.70 16.3 8.92 2.98 9.13 0.907 End pull-out End pull-out 060-G300-B1-24×75-M12-ID 0.58 437 5.22 6.54 16.3 8.91 6.13 9.13 1.067 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-ID 0.58 437 5.61 6.65 16.3 8.92 9.04 9.13 0.745 Net section Bearing 060-G300-B1-48×75-M12-ID 0.58 437 5.76 6.67 16.3 8.92 12.2 9.13 0.748 Net section Bearing 060-G300-B1-60×75-M12-ID 0.58 437 5.62 6.51 16.3 8.92 15.1 9.13 0.729 Net section Bearing

78

Table D11 060-G300 Concentric Single Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1-12×75-M12-IL 0.58 431 2.73 2.73 16.0 15.2 1.50 6.00 1.820 End pull-out End pull-out 060-G300-B1-24×75-M12-IL 0.58 431 5.50 5.87 16.0 15.1 5.04 6.00 1.165 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IL 0.58 431 4.82 6.20 16.0 15.1 8.70 6.00 1.033 Bearing Bearing 060-G300-B1-48×75-M12-IL 0.58 431 5.65 6.38 16.0 15.2 12.2 6.00 1.063 Bearing Bearing 060-G300-B1-60×75-M12-IL 0.58 431 5.74 6.39 16.0 15.2 15.8 6.00 1.065 Bearing Bearing 060-G300-B1-12×75-M12-IT 0.58 428 2.57 2.71 16.6 15.0 1.46 5.96 1.860 End pull-out End pull-out 060-G300-B1-24×75-M12-IT 0.58 428 4.96 6.29 16.6 15.0 5.00 5.96 1.257 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IT 0.58 428 5.41 6.06 16.6 15.0 8.55 5.96 1.017 Bearing Bearing 060-G300-B1-48×75-M12-IT 0.58 428 5.35 6.18 16.6 15.0 12.1 5.96 1.038 Bearing Bearing 060-G300-B1-60×75-M12-IT 0.58 428 5.24 6.26 16.6 15.0 15.7 5.96 1.051 Bearing Bearing 060-G300-B1-12×75-M12-ID 0.58 437 2.54 2.70 16.3 15.4 1.40 6.09 1.930 End pull-out End pull-out 060-G300-B1-24×75-M12-ID 0.58 437 5.22 6.54 16.3 15.3 5.17 6.09 1.263 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-ID 0.58 437 5.61 6.65 16.3 15.4 8.67 6.09 1.093 Bearing Bearing 060-G300-B1-48×75-M12-ID 0.58 437 5.76 6.67 16.3 15.4 12.4 6.09 1.096 Bearing Bearing 060-G300-B1-60×75-M12-ID 0.58 437 5.62 6.51 16.3 15.4 15.9 6.09 1.069 Bearing Bearing

79

Table D12 060-G300 Concentric Single Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1-12×75-M12-IL 0.58 431 2.73 2.73 16.0 8.80 3.04 9.00 0.899 End pull-out End pull-out 060-G300-B1-24×75-M12-IL 0.58 431 5.50 5.87 16.0 8.79 5.99 9.00 0.980 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IL 0.58 431 4.82 6.20 16.0 8.79 9.04 9.00 0.705 Net section Bearing 060-G300-B1-48×75-M12-IL 0.58 431 5.65 6.38 16.0 8.80 12.0 9.00 0.725 Net section Bearing 060-G300-B1-60×75-M12-IL 0.58 431 5.74 6.39 16.0 8.80 15.0 9.00 0.727 Net section Bearing 060-G300-B1-12×75-M12-IT 0.58 428 2.57 2.71 16.6 8.73 2.99 8.94 0.908 End pull-out End pull-out 060-G300-B1-24×75-M12-IT 0.58 428 4.96 6.29 16.6 8.73 5.95 8.94 1.058 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IT 0.58 428 5.41 6.06 16.6 8.73 8.90 8.94 0.694 Net section Bearing 060-G300-B1-48×75-M12-IT 0.58 428 5.35 6.18 16.6 8.73 11.9 8.94 0.708 Net section Bearing 060-G300-B1-60×75-M12-IT 0.58 428 5.24 6.26 16.6 8.73 14.9 8.94 0.717 Net section Bearing 060-G300-B1-12×75-M12-ID 0.58 437 2.54 2.70 16.3 8.92 2.98 9.13 0.907 End pull-out End pull-out 060-G300-B1-24×75-M12-ID 0.58 437 5.22 6.54 16.3 8.91 6.13 9.13 1.067 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-ID 0.58 437 5.61 6.65 16.3 8.92 9.04 9.13 0.745 Net section Bearing 060-G300-B1-48×75-M12-ID 0.58 437 5.76 6.67 16.3 8.92 12.2 9.13 0.748 Net section Bearing 060-G300-B1-60×75-M12-ID 0.58 437 5.62 6.51 16.3 8.92 15.1 9.13 0.729 Net section Bearing

80

Table D13 060-G300 Concentric Single Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1-12×75-M12-IL 0.58 431 2.73 2.73 16.0 10.2 2.53 7.50 1.079 End pull-out End pull-out 060-G300-B1-24×75-M12-IL 0.58 431 5.50 5.87 16.0 10.2 4.99 7.50 1.177 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IL 0.58 431 4.82 6.20 16.0 10.2 7.53 7.50 0.826 Bearing Bearing 060-G300-B1-48×75-M12-IL 0.58 431 5.65 6.38 16.0 10.2 10.0 7.50 0.850 Bearing Bearing 060-G300-B1-60×75-M12-IL 0.58 431 5.74 6.39 16.0 10.2 12.5 7.50 0.852 Bearing Bearing 060-G300-B1-12×75-M12-IT 0.58 428 2.57 2.71 16.6 10.1 2.49 7.45 1.089 End pull-out End pull-out 060-G300-B1-24×75-M12-IT 0.58 428 4.96 6.29 16.6 10.1 4.95 7.45 1.270 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-IT 0.58 428 5.41 6.06 16.6 10.1 7.42 7.45 0.817 End pull-out Bearing 060-G300-B1-48×75-M12-IT 0.58 428 5.35 6.18 16.6 10.1 9.90 7.45 0.830 Bearing Bearing 060-G300-B1-60×75-M12-IT 0.58 428 5.24 6.26 16.6 10.1 12.4 7.45 0.841 Bearing Bearing 060-G300-B1-12×75-M12-ID 0.58 437 2.54 2.70 16.3 10.3 2.48 7.61 1.088 End pull-out End pull-out 060-G300-B1-24×75-M12-ID 0.58 437 5.22 6.54 16.3 10.3 5.10 7.61 1.281 End pull-out Bear. / E p-o 060-G300-B1-36×75-M12-ID 0.58 437 5.61 6.65 16.3 10.3 7.54 7.61 0.883 End pull-out Bearing 060-G300-B1-48×75-M12-ID 0.58 437 5.76 6.67 16.3 10.3 10.1 7.61 0.877 Bearing Bearing 060-G300-B1-60×75-M12-ID 0.58 437 5.62 6.51 16.3 10.3 12.5 7.61 0.855 Bearing Bearing

81

Table D14 042-G550 Concentric Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B2-48×55-M12-CL 0.41 719 10.3 10.5 16.2 10.5 22.5 21.2 0.993 Net section Bearing1 042-G550-B2-48×55-M12-IL 0.41 719 8.45 12.1 16.2 10.5 22.7 21.2 1.149 Net section Net section2 042-G550-B2-48×75-M12-CL 0.41 719 10.6 13.0 22.1 14.1 22.7 21.2 0.922 Net section Bearing 042-G550-B2-48×75-M12-IL 0.41 719 10.1 13.5 22.1 14.1 22.7 21.2 0.954 Net section Bearing 042-G550-B2-48×95-M12-CL 0.41 719 10.3 13.5 28.0 17.6 22.7 21.2 0.768 Net section Bearing 042-G550-B2-48×95-M12-IL 0.41 719 9.87 13.7 28.0 17.6 22.6 21.2 0.776 Net section Bearing 042-G550-B3-48×55-M12-CLc 0.41 719 13.8 13.8 16.3 11.1 31.5 31.8 1.250 Net section Net section 042-G550-B3-48×55-M12-ILc 0.41 719 12.3 13.3 16.2 11.0 31.1 31.8 1.207 Net section Net section 042-G550-B2-48×55-M12-CT 0.41 817 10.2 13.2 18.4 12.0 25.8 24.1 1.104 Net section Net section2 042-G550-B2-48×55-M12-IT 0.41 817 11.2 13.6 18.4 12.0 25.7 24.1 1.137 Net section Net section2 042-G550-B2-48×75-M12-CT 0.41 817 11.3 12.6 25.0 16.0 25.8 24.1 0.788 Net section Bearing 042-G550-B2-48×75-M12-IT 0.41 817 9.89 15.3 25.0 16.0 25.6 24.1 0.957 Net section Bearing 042-G550-B2-48×95-M12-CT 0.41 817 10.5 13.6 31.8 20.0 25.7 24.1 0.679 Net section Bearing 042-G550-B2-48×95-M12-IT 0.41 817 8.60 14.4 31.8 20.0 25.7 24.1 0.719 Net section Bearing 042-G550-B3-48×55-M12-CTc 0.41 817 13.7 13.7 18.5 12.6 35.5 36.2 1.090 Net section Net section 042-G550-B3-48×55-M12-ITc 0.41 817 12.9 12.9 18.4 12.5 35.2 36.2 1.027 Net section Net section 042-G550-B2-48×55-M12-CDc 0.41 731 8.78 12.5 16.5 10.7 23.0 21.6 1.168 Net section Net section 042-G550-B2-48×55-M12-ID 0.41 731 9.08 12.3 16.5 10.7 23.0 21.6 1.145 Net section Net section2 042-G550-B2-48×75-M12-CD 0.41 731 11.4 12.5 22.4 14.3 23.0 21.6 0.873 Net section Bearing 042-G550-B2-48×75-M12-ID 0.41 731 10.3 13.4 22.4 14.3 23.1 21.6 0.934 Net section Bearing 042-G550-B2-48×95-M12-CD 0.41 731 8.81 11.1 28.5 17.9 22.8 21.6 0.620 Net section Bearing 042-G550-B2-48×95-M12-ID 0.41 731 8.27 13.0 28.5 17.9 23.0 21.6 0.726 Net section Bearing 042-G550-B3-48×55-M12-CDc 0.41 731 12.9 12.9 16.5 11.2 32.0 32.4 1.150 Net section Net section 042-G550-B3-48×55-M12-IDc 0.41 731 13.0 13.0 16.5 11.2 31.7 32.4 1.154 Net section Net section

Note: 1. Residual curvature of the specimen caused the end section to fold over the bolt and bearing failure to occur. 2. Residual curvature (reverse to 1.) of the specimen caused the end section to remain flat and net section failure to occur.

82

Table D15 042-G550 Concentric Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B2-48×55-M12-CL 0.41 719 10.3 10.5 16.2 12.0 21.9 14.2 0.871 Net section Bearing1 042-G550-B2-48×55-M12-IL 0.41 719 8.45 12.1 16.2 12.0 22.2 14.2 1.008 Net section Net section2 042-G550-B2-48×75-M12-CL 0.41 719 10.6 13.0 22.1 17.8 22.2 14.2 0.919 Bearing Bearing 042-G550-B2-48×75-M12-IL 0.41 719 10.1 13.5 22.1 17.8 22.1 14.2 0.951 Bearing Bearing 042-G550-B2-48×95-M12-CL 0.41 719 10.3 13.5 28.0 23.8 22.1 14.2 0.955 Bearing Bearing 042-G550-B2-48×95-M12-IL 0.41 719 9.87 13.7 28.0 23.8 22.0 14.2 0.965 Bearing Bearing 042-G550-B3-48×55-M12-CLc 0.41 719 13.8 13.8 16.3 12.1 30.2 21.2 1.147 Net section Net section 042-G550-B3-48×55-M12-ILc 0.41 719 12.3 13.3 16.2 12.0 29.8 21.2 1.108 Net section Net section 042-G550-B2-48×55-M12-CT 0.41 817 10.2 13.2 18.4 13.6 25.2 16.1 0.969 Net section Net section2 042-G550-B2-48×55-M12-IT 0.41 817 11.2 13.6 18.4 13.6 25.1 16.1 0.997 Net section Net section2 042-G550-B2-48×75-M12-CT 0.41 817 11.3 12.6 25.0 20.3 25.2 16.1 0.786 Bearing Bearing 042-G550-B2-48×75-M12-IT 0.41 817 9.89 15.3 25.0 20.3 25.0 16.1 0.953 Bearing Bearing 042-G550-B2-48×95-M12-CT 0.41 817 10.5 13.6 31.8 27.0 25.1 16.1 0.844 Bearing Bearing 042-G550-B2-48×95-M12-IT 0.41 817 8.60 14.4 31.8 27.0 25.1 16.1 0.894 Bearing Bearing 042-G550-B3-48×55-M12-CTc 0.41 817 13.7 13.7 18.5 13.7 34.0 24.1 1.000 Net section Net section 042-G550-B3-48×55-M12-ITc 0.41 817 12.9 12.9 18.4 13.6 33.6 24.1 0.943 Net section Net section 042-G550-B2-48×55-M12-CDc 0.41 731 8.78 12.5 16.5 12.2 22.5 14.4 1.024 Net section Net section 042-G550-B2-48×55-M12-ID 0.41 731 9.08 12.3 16.5 12.2 22.5 14.4 1.005 Net section Net section2 042-G550-B2-48×75-M12-CD 0.41 731 11.4 12.5 22.4 18.1 22.4 14.4 0.870 Bearing Bearing 042-G550-B2-48×75-M12-ID 0.41 731 10.3 13.4 22.4 18.1 22.6 14.4 0.931 Bearing Bearing 042-G550-B2-48×95-M12-CD 0.41 731 8.81 11.1 28.5 24.2 22.3 14.4 0.770 Bearing Bearing 042-G550-B2-48×95-M12-ID 0.41 731 8.27 13.0 28.5 24.2 22.5 14.4 0.902 Bearing Bearing 042-G550-B3-48×55-M12-CDc 0.41 731 12.9 12.9 16.5 12.3 30.7 21.6 1.055 Net section Net section 042-G550-B3-48×55-M12-IDc 0.41 731 13.0 13.0 16.5 12.3 30.3 21.6 1.058 Net section Net section

Note: 1. Residual curvature of the specimen caused the end section to fold over the bolt and bearing failure to occur. 2. Residual curvature (reverse to 1.) of the specimen caused the end section to remain flat and net section failure to occur.

83

Table D16 042-G550 Concentric Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B2-48×55-M12-CL 0.41 719 10.3 10.5 16.2 10.5 22.5 21.2 0.993 Net section Bearing1 042-G550-B2-48×55-M12-IL 0.41 719 8.45 12.1 16.2 10.5 22.7 21.2 1.149 Net section Net section2 042-G550-B2-48×75-M12-CL 0.41 719 10.6 13.0 22.1 14.1 22.7 21.2 0.922 Net section Bearing 042-G550-B2-48×75-M12-IL 0.41 719 10.1 13.5 22.1 14.1 22.7 21.2 0.954 Net section Bearing 042-G550-B2-48×95-M12-CL 0.41 719 10.3 13.5 28.0 17.6 22.7 21.2 0.768 Net section Bearing 042-G550-B2-48×95-M12-IL 0.41 719 9.87 13.7 28.0 17.6 22.6 21.2 0.776 Net section Bearing 042-G550-B3-48×55-M12-CLc 0.41 719 13.8 13.8 16.3 11.1 31.5 31.8 1.250 Net section Net section 042-G550-B3-48×55-M12-ILc 0.41 719 12.3 13.3 16.2 11.0 31.1 31.8 1.207 Net section Net section 042-G550-B2-48×55-M12-CT 0.41 817 10.2 13.2 18.4 12.0 25.8 24.1 1.104 Net section Net section2 042-G550-B2-48×55-M12-IT 0.41 817 11.2 13.6 18.4 12.0 25.7 24.1 1.137 Net section Net section2 042-G550-B2-48×75-M12-CT 0.41 817 11.3 12.6 25.0 16.0 25.8 24.1 0.788 Net section Bearing 042-G550-B2-48×75-M12-IT 0.41 817 9.89 15.3 25.0 16.0 25.6 24.1 0.957 Net section Bearing 042-G550-B2-48×95-M12-CT 0.41 817 10.5 13.6 31.8 20.0 25.7 24.1 0.679 Net section Bearing 042-G550-B2-48×95-M12-IT 0.41 817 8.60 14.4 31.8 20.0 25.7 24.1 0.719 Net section Bearing 042-G550-B3-48×55-M12-CTc 0.41 817 13.7 13.7 18.5 12.6 35.5 36.2 1.090 Net section Net section 042-G550-B3-48×55-M12-ITc 0.41 817 12.9 12.9 18.4 12.5 35.2 36.2 1.027 Net section Net section 042-G550-B2-48×55-M12-CDc 0.41 731 8.78 12.5 16.5 10.7 23.0 21.6 1.168 Net section Net section 042-G550-B2-48×55-M12-ID 0.41 731 9.08 12.3 16.5 10.7 23.0 21.6 1.145 Net section Net section2 042-G550-B2-48×75-M12-CD 0.41 731 11.4 12.5 22.4 14.3 23.0 21.6 0.873 Net section Bearing 042-G550-B2-48×75-M12-ID 0.41 731 10.3 13.4 22.4 14.3 23.1 21.6 0.934 Net section Bearing 042-G550-B2-48×95-M12-CD 0.41 731 8.81 11.1 28.5 17.9 22.8 21.6 0.620 Net section Bearing 042-G550-B2-48×95-M12-ID 0.41 731 8.27 13.0 28.5 17.9 23.0 21.6 0.726 Net section Bearing 042-G550-B3-48×55-M12-CDc 0.41 731 12.9 12.9 16.5 11.2 32.0 32.4 1.150 Net section Net section 042-G550-B3-48×55-M12-IDc 0.41 731 13.0 13.0 16.5 11.2 31.7 32.4 1.154 Net section Net section

Note: 1. Residual curvature of the specimen caused the end section to fold over the bolt and bearing failure to occur. 2. Residual curvature (reverse to 1.) of the specimen caused the end section to remain flat and net section failure to occur.

84

Table D17 042-G550 Concentric Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

042-G550-B2-48×55-M12-CL 0.41 719 10.3 10.5 16.2 11.3 18.7 17.7 0.927 Net section Bearing1 042-G550-B2-48×55-M12-IL 0.41 719 8.45 12.1 16.2 11.3 18.9 17.7 1.073 Net section Net section2 042-G550-B2-48×75-M12-CL 0.41 719 10.6 13.0 22.1 14.9 18.9 17.7 0.871 Net section Bearing 042-G550-B2-48×75-M12-IL 0.41 719 10.1 13.5 22.1 14.9 18.9 17.7 0.902 Net section Bearing 042-G550-B2-48×95-M12-CL 0.41 719 10.3 13.5 28.0 18.5 18.9 17.7 0.764 Bearing Bearing 042-G550-B2-48×95-M12-IL 0.41 719 9.87 13.7 28.0 18.5 18.8 17.7 0.772 Bearing Bearing 042-G550-B3-48×55-M12-CLc 0.41 719 13.8 13.8 16.3 11.6 26.2 26.5 1.196 Net section Net section 042-G550-B3-48×55-M12-ILc 0.41 719 12.3 13.3 16.2 11.5 26.0 26.5 1.155 Net section Net section 042-G550-B2-48×55-M12-CT 0.41 817 10.2 13.2 18.4 12.8 21.5 20.1 1.031 Net section Net section2 042-G550-B2-48×55-M12-IT 0.41 817 11.2 13.6 18.4 12.8 21.4 20.1 1.061 Net section Net section2 042-G550-B2-48×75-M12-CT 0.41 817 11.3 12.6 25.0 17.0 21.5 20.1 0.745 Net section Bearing 042-G550-B2-48×75-M12-IT 0.41 817 9.89 15.3 25.0 17.0 21.4 20.1 0.904 Net section Bearing 042-G550-B2-48×95-M12-CT 0.41 817 10.5 13.6 31.8 21.0 21.4 20.1 0.675 Bearing Bearing 042-G550-B2-48×95-M12-IT 0.41 817 8.60 14.4 31.8 21.0 21.4 20.1 0.715 Bearing Bearing 042-G550-B3-48×55-M12-CTc 0.41 817 13.7 13.7 18.5 13.1 29.6 30.1 1.042 Net section Net section 042-G550-B3-48×55-M12-ITc 0.41 817 12.9 12.9 18.4 13.1 29.3 30.1 0.982 Net section Net section 042-G550-B2-48×55-M12-CDc 0.41 731 8.78 12.5 16.5 11.5 19.2 18.0 1.090 Net section Net section 042-G550-B2-48×55-M12-ID 0.41 731 9.08 12.3 16.5 11.5 19.2 18.0 1.069 Net section Net section2 042-G550-B2-48×75-M12-CD 0.41 731 11.4 12.5 22.4 15.2 19.1 18.0 0.825 Net section Bearing 042-G550-B2-48×75-M12-ID 0.41 731 10.3 13.4 22.4 15.2 19.3 18.0 0.883 Net section Bearing 042-G550-B2-48×95-M12-CD 0.41 731 8.81 11.1 28.5 18.8 19.0 18.0 0.616 Bearing Bearing 042-G550-B2-48×95-M12-ID 0.41 731 8.27 13.0 28.5 18.8 19.2 18.0 0.722 Bearing Bearing 042-G550-B3-48×55-M12-CDc 0.41 731 12.9 12.9 16.5 11.8 26.7 27.0 1.100 Net section Net section 042-G550-B3-48×55-M12-IDc 0.41 731 13.0 13.0 16.5 11.8 26.4 27.0 1.103 Net section Net section

Note: 1. Residual curvature of the specimen caused the end section to fold over the bolt and bearing failure to occur. 2. Residual curvature (reverse to 1.) of the specimen caused the end section to remain flat and net section failure to occur.

85

Table D18 060-G550 Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B2-48×55-M12-ILc 0.59 703 12.9 17.2 22.8 14.8 31.9 29.9 1.163 Net section Net section 060-G550-B2-48×75-M12-ILc 0.59 703 15.4 20.4 31.0 19.8 32.0 29.9 1.028 Net section Bearing 060-G550-B2-48×95-M12-ILc 0.59 703 16.5 23.0 39.4 24.8 31.8 29.9 0.930 Net section Bearing 060-G550-B3-48×55-M12-ILc 0.59 703 17.3 17.3 22.8 15.5 44.0 44.8 1.118 Net section Net section 060-G550-B2-48×75-M12-IL-E10c 0.59 703 15.5 22.1 31.0 19.8 32.1 29.9 1.116 Net section Bearing 060-G550-B3-48×55-M12-IL-E10c 0.59 703 16.7 16.7 22.7 15.4 43.9 44.8 1.082 Net section Net section 060-G550-B2-48×55-M12-ITc 0.59 785 15.8 19.3 25.5 16.5 35.6 33.3 1.168 Net section Net section 060-G550-B2-48×75-M12-ITc 0.59 785 15.2 21.1 34.6 22.1 35.7 33.3 0.954 Net section Bearing 060-G550-B2-48×95-M12-ITc 0.59 785 15.1 22.3 44.0 27.6 35.6 33.3 0.808 Net section Bearing 060-G550-B3-48×55-M12-ITc 0.59 785 18.8 18.8 25.5 17.3 49.1 50.0 1.086 Net section Net section 060-G550-B2-48×75-M12-IT-E15c 0.59 785 15.9 21.9 34.6 22.1 35.4 33.3 0.989 Net section Bearing 060-G550-B2-48×55-M12-IDc 0.59 707 15.9 17.4 22.9 14.9 32.0 30.0 1.172 Net section Net section 060-G550-B2-48×75-M12-IDc 0.59 707 16.4 22.1 31.2 20.0 32.0 30.0 1.108 Net section Bearing 060-G550-B2-48×95-M12-IDc 0.59 707 14.2 21.0 39.6 24.9 32.0 30.0 0.844 Net section Bearing 060-G550-B3-48×55-M12-IDc 0.59 707 17.2 17.2 22.9 15.6 44.3 45.1 1.104 Net section Net section 060-G550-B2-48×75-M12-ID-E20c 0.59 707 15.1 23.0 31.2 20.0 32.0 30.0 1.153 Net section Bearing 060-G550-B3-48×55-M12-ID-E20c 0.59 707 16.6 16.6 23.3 15.8 44.3 45.1 1.047 Net section Net section

86

Table D19 060-G550 Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B2-48×55-M12-ILc 0.59 703 12.9 17.2 22.8 16.9 31.2 19.9 1.020 Net section Net section 060-G550-B2-48×75-M12-ILc 0.59 703 15.4 20.4 31.0 25.1 31.3 19.9 1.025 Bearing Bearing 060-G550-B2-48×95-M12-ILc 0.59 703 16.5 23.0 39.4 33.5 31.1 19.9 1.157 Bearing Bearing 060-G550-B3-48×55-M12-ILc 0.59 703 17.3 17.3 22.8 16.9 42.2 29.9 1.026 Net section Net section 060-G550-B2-48×75-M12-IL-E10c 0.59 703 15.5 22.1 31.0 25.1 31.4 19.9 1.112 Bearing Bearing 060-G550-B3-48×55-M12-IL-E10c 0.59 703 16.7 16.7 22.7 16.8 42.1 29.9 0.995 Net section Net section 060-G550-B2-48×55-M12-ITc 0.59 785 15.8 19.3 25.5 18.8 34.7 22.2 1.025 Net section Net section 060-G550-B2-48×75-M12-ITc 0.59 785 15.2 21.1 34.6 28.0 34.9 22.2 0.950 Bearing Bearing 060-G550-B2-48×95-M12-ITc 0.59 785 15.1 22.3 44.0 37.4 34.8 22.2 1.004 Bearing Bearing 060-G550-B3-48×55-M12-ITc 0.59 785 18.8 18.8 25.5 18.8 47.0 33.3 0.997 Net section Net section 060-G550-B2-48×75-M12-IT-E15c 0.59 785 15.9 21.9 34.6 28.0 34.6 22.2 0.986 Bearing Bearing 060-G550-B2-48×55-M12-IDc 0.59 707 15.9 17.4 22.9 16.9 31.2 20.0 1.029 Net section Net section 060-G550-B2-48×75-M12-IDc 0.59 707 16.4 22.1 31.2 25.2 31.3 20.0 1.104 Bearing Bearing 060-G550-B2-48×95-M12-IDc 0.59 707 14.2 21.0 39.6 33.7 31.2 20.0 1.049 Bearing Bearing 060-G550-B3-48×55-M12-IDc 0.59 707 17.2 17.2 22.9 17.0 42.4 30.0 1.013 Net section Net section 060-G550-B2-48×75-M12-ID-E20c 0.59 707 15.1 23.0 31.2 25.2 31.3 20.0 1.149 Bearing Bearing 060-G550-B3-48×55-M12-ID-E20c 0.59 707 16.6 16.6 23.3 17.3 42.4 30.0 0.958 Net section Net section

87

Table D20 060-G550 Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B2-48×55-M12-ILc 0.59 703 12.9 17.2 22.8 14.8 31.9 29.9 1.163 Net section Net section 060-G550-B2-48×75-M12-ILc 0.59 703 15.4 20.4 31.0 19.8 32.0 29.9 1.028 Net section Bearing 060-G550-B2-48×95-M12-ILc 0.59 703 16.5 23.0 39.4 24.8 31.8 29.9 0.930 Net section Bearing 060-G550-B3-48×55-M12-ILc 0.59 703 17.3 17.3 22.8 15.5 44.0 44.8 1.118 Net section Net section 060-G550-B2-48×75-M12-IL-E10c 0.59 703 15.5 22.1 31.0 19.8 32.1 29.9 1.116 Net section Bearing 060-G550-B3-48×55-M12-IL-E10c 0.59 703 16.7 16.7 22.7 15.4 43.9 44.8 1.082 Net section Net section 060-G550-B2-48×55-M12-ITc 0.59 785 15.8 19.3 25.5 16.5 35.6 33.3 1.168 Net section Net section 060-G550-B2-48×75-M12-ITc 0.59 785 15.2 21.1 34.6 22.1 35.7 33.3 0.954 Net section Bearing 060-G550-B2-48×95-M12-ITc 0.59 785 15.1 22.3 44.0 27.6 35.6 33.3 0.808 Net section Bearing 060-G550-B3-48×55-M12-ITc 0.59 785 18.8 18.8 25.5 17.3 49.1 50.0 1.086 Net section Net section 060-G550-B2-48×75-M12-IT-E15c 0.59 785 15.9 21.9 34.6 22.1 35.4 33.3 0.989 Net section Bearing 060-G550-B2-48×55-M12-IDc 0.59 707 15.9 17.4 22.9 14.9 32.0 30.0 1.172 Net section Net section 060-G550-B2-48×75-M12-IDc 0.59 707 16.4 22.1 31.2 20.0 32.0 30.0 1.108 Net section Bearing 060-G550-B2-48×95-M12-IDc 0.59 707 14.2 21.0 39.6 24.9 32.0 30.0 0.844 Net section Bearing 060-G550-B3-48×55-M12-IDc 0.59 707 17.2 17.2 22.9 15.6 44.3 45.1 1.104 Net section Net section 060-G550-B2-48×75-M12-ID-E20c 0.59 707 15.1 23.0 31.2 20.0 32.0 30.0 1.153 Net section Bearing 060-G550-B3-48×55-M12-ID-E20c 0.59 707 16.6 16.6 23.3 15.8 44.3 45.1 1.047 Net section Net section

88

Table D21 060-G550 Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B2-48×55-M12-ILc 0.59 703 12.9 17.2 22.8 15.9 26.6 24.9 1.085 Net section Net section 060-G550-B2-48×75-M12-ILc 0.59 703 15.4 20.4 31.0 21.0 26.6 24.9 0.971 Net section Bearing 060-G550-B2-48×95-M12-ILc 0.59 703 16.5 23.0 39.4 26.0 26.5 24.9 0.925 Bearing Bearing 060-G550-B3-48×55-M12-ILc 0.59 703 17.3 17.3 22.8 16.2 36.7 37.3 1.069 Net section Net section 060-G550-B2-48×75-M12-IL-E10c 0.59 703 15.5 22.1 31.0 21.0 26.7 24.9 1.055 Net section Bearing 060-G550-B3-48×55-M12-IL-E10c 0.59 703 16.7 16.7 22.7 16.1 36.6 37.3 1.035 Net section Net section 060-G550-B2-48×55-M12-ITc 0.59 785 15.8 19.3 25.5 17.7 29.6 27.8 1.090 Net section Net section 060-G550-B2-48×75-M12-ITc 0.59 785 15.2 21.1 34.6 23.4 29.8 27.8 0.901 Net section Bearing 060-G550-B2-48×95-M12-ITc 0.59 785 15.1 22.3 44.0 29.0 29.7 27.8 0.803 Bearing Bearing 060-G550-B3-48×55-M12-ITc 0.59 785 18.8 18.8 25.5 18.1 40.9 41.7 1.039 Net section Net section 060-G550-B2-48×75-M12-IT-E15c 0.59 785 15.9 21.9 34.6 23.4 29.5 27.8 0.935 Net section Bearing 060-G550-B2-48×55-M12-IDc 0.59 707 15.9 17.4 22.9 15.9 26.6 25.0 1.093 Net section Net section 060-G550-B2-48×75-M12-IDc 0.59 707 16.4 22.1 31.2 21.1 26.7 25.0 1.047 Net section Bearing 060-G550-B2-48×95-M12-IDc 0.59 707 14.2 21.0 39.6 26.1 26.7 25.0 0.839 Bearing Bearing 060-G550-B3-48×55-M12-IDc 0.59 707 17.2 17.2 22.9 16.3 36.9 37.6 1.056 Net section Net section 060-G550-B2-48×75-M12-ID-E20c 0.59 707 15.1 23.0 31.2 21.1 26.7 25.0 1.090 Net section Bearing 060-G550-B3-48×55-M12-ID-E20c 0.59 707 16.6 16.6 23.3 16.6 36.9 37.6 1.002 Net section Net section

89

Table D22 060-G300 Multiple Bolt Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B2-48×55-M12-ILc 0.58 431 9.16 10.1 11.7 8.91 19.2 18.0 1.137 Net section Net section 060-G300-B2-48×75-M12-ILc 0.58 431 11.0 14.3 16.0 12.0 19.3 18.0 1.196 Net section Net section 060-G300-B2-48×95-M12-ILc 0.58 431 10.1 15.4 20.3 14.9 19.2 18.0 1.029 Net section Bearing 060-G300-B3-48×55-M12-ILc 0.58 431 9.60 9.70 11.7 9.32 26.4 27.0 1.040 Net section Net section 060-G300-B2-48×75-M12-IL-E10c 0.58 431 10.7 14.2 15.9 11.9 19.3 18.0 1.188 Net section Net section 060-G300-B2-48×55-M12-ITc 0.58 428 9.80 10.1 12.1 8.85 19.0 17.9 1.143 Net section Net section 060-G300-B2-48×75-M12-ITc 0.58 428 10.2 14.4 16.5 11.9 19.0 17.9 1.216 Net section Net section 060-G300-B2-48×95-M12-ITc 0.58 428 10.3 15.4 21.0 14.8 19.1 17.9 1.043 Net section Bearing 060-G300-B3-48×55-M12-ITc 0.58 428 9.74 10.0 12.2 9.28 26.3 26.8 1.082 Net section Net section 060-G300-B2-48×75-M12-IT-E20c 0.58 428 8.72 14.4 16.5 11.9 19.1 17.9 1.215 Net section Net section 060-G300-B2-48×55-M12-IDc 0.58 437 9.43 9.95 12.0 9.04 19.4 18.3 1.100 Net section Net section 060-G300-B2-48×75-M12-IDc 0.58 437 11.0 14.5 16.3 12.1 19.5 18.3 1.194 Net section Net section 060-G300-B2-48×95-M12-IDc 0.58 437 9.64 16.1 20.7 15.1 19.5 18.3 1.066 Net section Bearing 060-G300-B3-48×55-M12-IDc 0.58 437 10.1 10.1 12.0 9.46 26.8 27.4 1.065 Net section Net section 060-G300-B2-48×75-M12-ID-E15c 0.58 437 11.2 14.5 16.3 12.1 19.6 18.3 1.194 Net section Net section

90

Table D23 060-G300 Multiple Bolt Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B2-48×55-M12-ILc 0.58 431 9.16 10.1 11.7 10.2 18.7 12.0 0.998 Net section Net section 060-G300-B2-48×75-M12-ILc 0.58 431 11.0 14.3 16.0 15.1 18.8 12.0 1.192 Bearing Net section 060-G300-B2-48×95-M12-ILc 0.58 431 10.1 15.4 20.3 20.2 18.8 12.0 1.280 Bearing Bearing 060-G300-B3-48×55-M12-ILc 0.58 431 9.60 9.70 11.7 10.2 25.3 18.0 0.955 Net section Net section 060-G300-B2-48×75-M12-IL-E10c 0.58 431 10.7 14.2 15.9 15.1 18.9 12.0 1.182 Bearing Net section 060-G300-B2-48×55-M12-ITc 0.58 428 9.80 10.1 12.1 10.1 18.6 11.9 1.004 Net section Net section 060-G300-B2-48×75-M12-ITc 0.58 428 10.2 14.4 16.5 15.0 18.5 11.9 1.212 Bearing Net section 060-G300-B2-48×95-M12-ITc 0.58 428 10.3 15.4 21.0 20.0 18.6 11.9 1.296 Bearing Bearing 060-G300-B3-48×55-M12-ITc 0.58 428 9.74 10.0 12.2 10.1 25.1 17.9 0.993 Net section Net section 060-G300-B2-48×75-M12-IT-E20c 0.58 428 8.72 14.4 16.5 15.0 18.7 11.9 1.209 Bearing Net section 060-G300-B2-48×55-M12-IDc 0.58 437 9.43 9.95 12.0 10.3 18.9 12.2 0.966 Net section Net section 060-G300-B2-48×75-M12-IDc 0.58 437 11.0 14.5 16.3 15.3 19.1 12.2 1.189 Bearing Net section 060-G300-B2-48×95-M12-IDc 0.58 437 9.64 16.1 20.7 20.5 19.1 12.2 1.326 Bearing Bearing 060-G300-B3-48×55-M12-IDc 0.58 437 10.1 10.1 12.0 10.3 25.7 18.3 0.979 Net section Net section 060-G300-B2-48×75-M12-ID-E15c 0.58 437 11.2 14.5 16.3 15.3 19.1 12.2 1.188 Bearing Net section

91

Table D24 060-G300 Multiple Bolt Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B2-48×55-M12-ILc 0.58 431 9.16 10.1 11.7 8.91 19.2 18.0 1.137 Net section Net section 060-G300-B2-48×75-M12-ILc 0.58 431 11.0 14.3 16.0 12.0 19.3 18.0 1.196 Net section Net section 060-G300-B2-48×95-M12-ILc 0.58 431 10.1 15.4 20.3 14.9 19.2 18.0 1.029 Net section Bearing 060-G300-B3-48×55-M12-ILc 0.58 431 9.60 9.70 11.7 9.32 26.4 27.0 1.040 Net section Net section 060-G300-B2-48×75-M12-IL-E10c 0.58 431 10.7 14.2 15.9 11.9 19.3 18.0 1.188 Net section Net section 060-G300-B2-48×55-M12-ITc 0.58 428 9.80 10.1 12.1 8.85 19.0 17.9 1.143 Net section Net section 060-G300-B2-48×75-M12-ITc 0.58 428 10.2 14.4 16.5 11.9 19.0 17.9 1.216 Net section Net section 060-G300-B2-48×95-M12-ITc 0.58 428 10.3 15.4 21.0 14.8 19.1 17.9 1.043 Net section Bearing 060-G300-B3-48×55-M12-ITc 0.58 428 9.74 10.0 12.2 9.28 26.3 26.8 1.082 Net section Net section 060-G300-B2-48×75-M12-IT-E20c 0.58 428 8.72 14.4 16.5 11.9 19.1 17.9 1.215 Net section Net section 060-G300-B2-48×55-M12-IDc 0.58 437 9.43 9.95 12.0 9.04 19.4 18.3 1.100 Net section Net section 060-G300-B2-48×75-M12-IDc 0.58 437 11.0 14.5 16.3 12.1 19.5 18.3 1.194 Net section Net section 060-G300-B2-48×95-M12-IDc 0.58 437 9.64 16.1 20.7 15.1 19.5 18.3 1.066 Net section Bearing 060-G300-B3-48×55-M12-IDc 0.58 437 10.1 10.1 12.0 9.46 26.8 27.4 1.065 Net section Net section 060-G300-B2-48×75-M12-ID-E15c 0.58 437 11.2 14.5 16.3 12.1 19.6 18.3 1.194 Net section Net section

92

Table D25 060-G300 Multiple Bolt Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B2-48×55-M12-ILc 0.58 431 9.16 10.1 11.7 9.55 16.0 15.0 1.061 Net section Net section 060-G300-B2-48×75-M12-ILc 0.58 431 11.0 14.3 16.0 12.7 16.0 15.0 1.130 Net section Net section 060-G300-B2-48×95-M12-ILc 0.58 431 10.1 15.4 20.3 15.7 16.0 15.0 1.024 Bearing Bearing 060-G300-B3-48×55-M12-ILc 0.58 431 9.60 9.70 11.7 9.75 22.0 22.5 0.995 Net section Net section 060-G300-B2-48×75-M12-IL-E10c 0.58 431 10.7 14.2 15.9 12.6 16.1 15.0 1.122 Net section Net section 060-G300-B2-48×55-M12-ITc 0.58 428 9.80 10.1 12.1 9.48 15.9 14.9 1.067 Net section Net section 060-G300-B2-48×75-M12-ITc 0.58 428 10.2 14.4 16.5 12.6 15.8 14.9 1.149 Net section Net section 060-G300-B2-48×95-M12-ITc 0.58 428 10.3 15.4 21.0 15.5 15.9 14.9 1.037 Bearing Bearing 060-G300-B3-48×55-M12-ITc 0.58 428 9.74 10.0 12.2 9.70 21.9 22.3 1.034 Net section Net section 060-G300-B2-48×75-M12-IT-E20c 0.58 428 8.72 14.4 16.5 12.6 15.9 14.9 1.148 Net section Net section 060-G300-B2-48×55-M12-IDc 0.58 437 9.43 9.95 12.0 9.69 16.1 15.2 1.027 Net section Net section 060-G300-B2-48×75-M12-IDc 0.58 437 11.0 14.5 16.3 12.8 16.3 15.2 1.128 Net section Net section 060-G300-B2-48×95-M12-IDc 0.58 437 9.64 16.1 20.7 15.9 16.3 15.2 1.061 Bearing Bearing 060-G300-B3-48×55-M12-IDc 0.58 437 10.1 10.1 12.0 9.89 22.4 22.8 1.019 Net section Net section 060-G300-B2-48×75-M12-ID-E15c 0.58 437 11.2 14.5 16.3 12.8 16.3 15.2 1.128 Net section Net section

93

Table D26 042-G550 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode 042-G550-B1W-24×75-M12-CL 0.41 719 6.72 7.44 31.3 15.6 7.18 10.6 1.036 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IL 0.41 719 5.59 7.12 31.3 15.8 7.06 10.6 1.009 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CL 0.41 719 6.07 6.50 31.3 15.5 10.8 10.6 0.612 Bearing Bearing 042-G550-B1W-36×75-M12-IL 0.41 719 5.49 7.50 31.3 15.6 10.8 10.6 0.706 Bearing Bearing 042-G550-B1W-48×75-M12-CL 0.41 719 6.00 7.40 31.4 15.6 14.2 10.6 0.697 Bearing Bearing 042-G550-B1W-48×75-M12-IL 0.41 719 6.34 7.58 31.2 15.8 14.1 10.6 0.714 Bearing Bearing 042-G550-B1W-24×75-M12-CT 0.41 817 4.18 5.47 35.6 17.6 8.15 12.1 0.670 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IT 0.41 817 5.15 6.71 35.5 17.8 8.09 12.1 0.829 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CT 0.41 817 5.36 6.56 35.5 17.7 12.0 12.1 0.547 End pull-out Bearing 042-G550-B1W-36×75-M12-IT 0.41 817 5.34 7.72 35.5 17.6 12.0 12.1 0.645 End pull-out Bearing 042-G550-B1W-48×75-M12-CT 0.41 817 4.52 6.74 35.5 17.7 16.1 12.1 0.559 Bearing Bearing 042-G550-B1W-48×75-M12-IT 0.41 817 5.31 7.15 35.5 17.6 16.1 12.1 0.593 Bearing Bearing 042-G550-B1W-24×75-M12-CD 0.41 731 5.49 6.36 31.7 15.9 7.36 10.8 0.864 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-ID 0.41 731 5.82 5.82 31.6 15.9 7.18 10.8 0.811 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CD 0.41 731 5.58 6.44 31.6 15.8 10.9 10.8 0.597 Bearing Bearing 042-G550-B1W-36×75-M12-ID 0.41 731 5.35 6.88 31.7 15.7 11.0 10.8 0.638 Bearing Bearing 042-G550-B1W-48×75-M12-CD 0.41 731 6.34 6.98 31.6 15.8 14.5 10.8 0.647 Bearing Bearing 042-G550-B1W-48×75-M12-ID 0.41 731 5.78 6.98 31.7 15.8 14.3 10.8 0.647 Bearing Bearing

94

Table D27 042-G550 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode 042-G550-B1W-24×75-M12-CL 0.41 719 6.72 7.44 31.3 27.1 6.08 7.08 1.223 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IL 0.41 719 5.59 7.12 31.3 27.1 5.94 7.08 1.198 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CL 0.41 719 6.07 6.50 31.3 27.0 10.4 7.08 0.919 Bearing Bearing 042-G550-B1W-36×75-M12-IL 0.41 719 5.49 7.50 31.3 27.0 10.4 7.08 1.059 Bearing Bearing 042-G550-B1W-48×75-M12-CL 0.41 719 6.00 7.40 31.4 27.1 14.5 7.08 1.046 Bearing Bearing 042-G550-B1W-48×75-M12-IL 0.41 719 6.34 7.58 31.2 27.0 14.4 7.08 1.071 Bearing Bearing 042-G550-B1W-24×75-M12-CT 0.41 817 4.18 5.47 35.6 30.8 6.91 8.04 0.791 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IT 0.41 817 5.15 6.71 35.5 30.7 6.83 8.04 0.982 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CT 0.41 817 5.36 6.56 35.5 30.7 11.5 8.04 0.816 Bearing Bearing 042-G550-B1W-36×75-M12-IT 0.41 817 5.34 7.72 35.5 30.7 11.5 8.04 0.961 Bearing Bearing 042-G550-B1W-48×75-M12-CT 0.41 817 4.52 6.74 35.5 30.7 16.4 8.04 0.839 Bearing Bearing 042-G550-B1W-48×75-M12-IT 0.41 817 5.31 7.15 35.5 30.7 16.4 8.04 0.889 Bearing Bearing 042-G550-B1W-24×75-M12-CD 0.41 731 5.49 6.36 31.7 27.4 6.26 7.19 1.016 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-ID 0.41 731 5.82 5.82 31.6 27.3 6.04 7.19 0.963 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CD 0.41 731 5.58 6.44 31.6 27.4 10.5 7.19 0.895 Bearing Bearing 042-G550-B1W-36×75-M12-ID 0.41 731 5.35 6.88 31.7 27.4 10.6 7.19 0.956 Bearing Bearing 042-G550-B1W-48×75-M12-CD 0.41 731 6.34 6.98 31.6 27.4 14.8 7.19 0.971 Bearing Bearing 042-G550-B1W-48×75-M12-ID 0.41 731 5.78 6.98 31.7 27.4 14.6 7.19 0.971 Bearing Bearing

95

Table D28 042-G550 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode 042-G550-B1W-24×75-M12-CL 0.41 719 6.72 7.44 31.3 15.6 7.18 10.6 1.036 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IL 0.41 719 5.59 7.12 31.3 15.8 7.06 10.6 1.009 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CL 0.41 719 6.07 6.50 31.3 15.5 10.8 10.6 0.612 Bearing Bearing 042-G550-B1W-36×75-M12-IL 0.41 719 5.49 7.50 31.3 15.6 10.8 10.6 0.706 Bearing Bearing 042-G550-B1W-48×75-M12-CL 0.41 719 6.00 7.40 31.4 15.6 14.2 10.6 0.697 Bearing Bearing 042-G550-B1W-48×75-M12-IL 0.41 719 6.34 7.58 31.2 15.8 14.1 10.6 0.714 Bearing Bearing 042-G550-B1W-24×75-M12-CT 0.41 817 4.18 5.47 35.6 17.6 8.15 12.1 0.670 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IT 0.41 817 5.15 6.71 35.5 17.8 8.09 12.1 0.829 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CT 0.41 817 5.36 6.56 35.5 17.7 12.0 12.1 0.547 End pull-out Bearing 042-G550-B1W-36×75-M12-IT 0.41 817 5.34 7.72 35.5 17.6 12.0 12.1 0.645 End pull-out Bearing 042-G550-B1W-48×75-M12-CT 0.41 817 4.52 6.74 35.5 17.7 16.1 12.1 0.559 Bearing Bearing 042-G550-B1W-48×75-M12-IT 0.41 817 5.31 7.15 35.5 17.6 16.1 12.1 0.593 Bearing Bearing 042-G550-B1W-24×75-M12-CD 0.41 731 5.49 6.36 31.7 15.9 7.36 10.8 0.864 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-ID 0.41 731 5.82 5.82 31.6 15.9 7.18 10.8 0.811 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CD 0.41 731 5.58 6.44 31.6 15.8 10.9 10.8 0.597 Bearing Bearing 042-G550-B1W-36×75-M12-ID 0.41 731 5.35 6.88 31.7 15.7 11.0 10.8 0.638 Bearing Bearing 042-G550-B1W-48×75-M12-CD 0.41 731 6.34 6.98 31.6 15.8 14.5 10.8 0.647 Bearing Bearing 042-G550-B1W-48×75-M12-ID 0.41 731 5.78 6.98 31.7 15.8 14.3 10.8 0.647 Bearing Bearing

96

Table D29 042-G550 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode 042-G550-B1W-24×75-M12-CL 0.41 719 6.72 7.44 31.3 18.1 5.98 8.84 1.244 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IL 0.41 719 5.59 7.12 31.3 18.3 5.88 8.84 1.211 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CL 0.41 719 6.07 6.50 31.3 18.0 9.00 8.84 0.735 Bearing Bearing 042-G550-B1W-36×75-M12-IL 0.41 719 5.49 7.50 31.3 18.1 8.98 8.84 0.847 Bearing Bearing 042-G550-B1W-48×75-M12-CL 0.41 719 6.00 7.40 31.4 18.0 11.8 8.84 0.837 Bearing Bearing 042-G550-B1W-48×75-M12-IL 0.41 719 6.34 7.58 31.2 18.3 11.8 8.84 0.857 Bearing Bearing 042-G550-B1W-24×75-M12-CT 0.41 817 4.18 5.47 35.6 20.4 6.80 10.0 0.804 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-IT 0.41 817 5.15 6.71 35.5 20.6 6.74 10.0 0.995 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CT 0.41 817 5.36 6.56 35.5 20.5 10.0 10.0 0.656 End pull-out Bearing 042-G550-B1W-36×75-M12-IT 0.41 817 5.34 7.72 35.5 20.4 9.98 10.0 0.774 End pull-out Bearing 042-G550-B1W-48×75-M12-CT 0.41 817 4.52 6.74 35.5 20.4 13.4 10.0 0.671 Bearing Bearing 042-G550-B1W-48×75-M12-IT 0.41 817 5.31 7.15 35.5 20.4 13.4 10.0 0.711 Bearing Bearing 042-G550-B1W-24×75-M12-CD 0.41 731 5.49 6.36 31.7 18.5 6.13 8.99 1.037 End pull-out Bear. / E p-o 042-G550-B1W-24×75-M12-ID 0.41 731 5.82 5.82 31.6 18.4 5.98 8.99 0.973 End pull-out Bear. / E p-o 042-G550-B1W-36×75-M12-CD 0.41 731 5.58 6.44 31.6 18.3 9.08 8.99 0.716 Bearing Bearing 042-G550-B1W-36×75-M12-ID 0.41 731 5.35 6.88 31.7 18.2 9.15 8.99 0.765 Bearing Bearing 042-G550-B1W-48×75-M12-CD 0.41 731 6.34 6.98 31.6 18.3 12.0 8.99 0.776 Bearing Bearing 042-G550-B1W-48×75-M12-ID 0.41 731 5.78 6.98 31.7 18.3 11.9 8.99 0.777 Bearing Bearing

97

Table D30 060-G550 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IL 0.59 703 7.25 8.37 44.0 22.4 10.1 14.9 0.829 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IL 0.59 703 7.67 11.5 43.9 21.8 15.0 14.9 0.773 Bearing Bearing 060-G550-B1W-48×75-M12-IL 0.59 703 8.16 10.9 43.8 21.9 20.0 14.9 0.732 Bearing Bearing 060-G550-B1W-24×75-M12-IT 0.59 785 6.99 8.01 49.2 24.6 11.1 16.7 0.722 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT 0.59 785 7.51 11.2 49.0 24.0 16.5 16.7 0.674 End pull-out Bearing 060-G550-B1W-48×75-M12-IT 0.59 785 8.14 10.7 48.6 24.3 22.3 16.7 0.641 Bearing Bearing 060-G550-B1W-24×75-M12-ID 0.59 707 7.61 8.30 44.4 22.1 10.2 15.0 0.810 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID 0.59 707 7.61 9.76 44.2 22.1 15.1 15.0 0.650 Bearing Bearing 060-G550-B1W-48×75-M12-ID 0.59 707 7.35 12.1 44.2 22.0 20.1 15.0 0.808 Bearing Bearing

Table D31 060-G550 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.)

Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IL 0.59 703 7.25 8.37 44.0 38.0 8.56 10.0 0.978 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IL 0.59 703 7.67 11.5 43.9 38.0 14.4 10.0 1.160 Bearing Bearing 060-G550-B1W-48×75-M12-IL 0.59 703 8.16 10.9 43.8 37.9 20.4 10.0 1.097 Bearing Bearing 060-G550-B1W-24×75-M12-IT 0.59 785 6.99 8.01 49.2 42.6 9.33 11.1 0.858 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT 0.59 785 7.51 11.2 49.0 42.4 15.9 11.1 1.004 Bearing Bearing 060-G550-B1W-48×75-M12-IT 0.59 785 8.14 10.7 48.6 42.0 22.8 11.1 0.961 Bearing Bearing 060-G550-B1W-24×75-M12-ID 0.59 707 7.61 8.30 44.4 38.5 8.71 10.0 0.952 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID 0.59 707 7.61 9.76 44.2 38.3 14.6 10.0 0.975 Bearing Bearing 060-G550-B1W-48×75-M12-ID 0.59 707 7.35 12.1 44.2 38.2 20.6 10.0 1.212 Bearing Bearing

98

Table D32 060-G550 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IL 0.59 703 7.25 8.37 44.0 22.4 10.1 14.9 0.829 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IL 0.59 703 7.67 11.5 43.9 21.8 15.0 14.9 0.773 Bearing Bearing 060-G550-B1W-48×75-M12-IL 0.59 703 8.16 10.9 43.8 21.9 20.0 14.9 0.732 Bearing Bearing 060-G550-B1W-24×75-M12-IT 0.59 785 6.99 8.01 49.2 24.6 11.1 16.7 0.722 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT 0.59 785 7.51 11.2 49.0 24.0 16.5 16.7 0.674 End pull-out Bearing 060-G550-B1W-48×75-M12-IT 0.59 785 8.14 10.7 48.6 24.3 22.3 16.7 0.641 Bearing Bearing 060-G550-B1W-24×75-M12-ID 0.59 707 7.61 8.30 44.4 22.1 10.2 15.0 0.810 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID 0.59 707 7.61 9.76 44.2 22.1 15.1 15.0 0.650 Bearing Bearing 060-G550-B1W-48×75-M12-ID 0.59 707 7.35 12.1 44.2 22.0 20.1 15.0 0.808 Bearing Bearing

Table D33 060-G550 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.)

Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IL 0.59 703 7.25 8.37 44.0 26.0 8.42 12.4 0.995 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IL 0.59 703 7.67 11.5 43.9 25.2 12.5 12.4 0.928 Bearing Bearing 060-G550-B1W-48×75-M12-IL 0.59 703 8.16 10.9 43.8 25.4 16.6 12.4 0.878 Bearing Bearing 060-G550-B1W-24×75-M12-IT 0.59 785 6.99 8.01 49.2 28.5 9.24 13.9 0.867 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT 0.59 785 7.51 11.2 49.0 27.7 13.8 13.9 0.809 End pull-out Bearing 060-G550-B1W-48×75-M12-IT 0.59 785 8.14 10.7 48.6 28.2 18.6 13.9 0.769 Bearing Bearing 060-G550-B1W-24×75-M12-ID 0.59 707 7.61 8.30 44.4 25.6 8.54 12.5 0.972 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID 0.59 707 7.61 9.76 44.2 25.6 12.6 12.5 0.780 Bearing Bearing 060-G550-B1W-48×75-M12-ID 0.59 707 7.35 12.1 44.2 25.5 16.8 12.5 0.970 Bearing Bearing

99

Table D34 060-G300 Concentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1W-24×75-M12-IL 0.58 431 4.69 6.61 22.7 13.3 6.06 9.00 1.090 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IL 0.58 431 4.96 7.35 22.8 13.1 8.99 9.00 0.818 End pull-out Bearing 060-G300-B1W-48×75-M12-IL 0.58 431 6.20 9.08 22.8 13.1 12.0 9.00 1.009 Bearing Bearing 060-G300-B1W-24×75-M12-IT 0.58 428 4.75 6.06 23.6 13.0 5.97 8.94 1.015 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IT 0.58 428 5.09 7.82 23.6 13.1 8.90 8.94 0.879 End pull-out Bearing 060-G300-B1W-48×75-M12-IT 0.58 428 5.09 9.04 23.5 13.2 12.0 8.94 1.012 Bearing Bearing 060-G300-B1W-24×75-M12-ID 0.58 437 5.02 6.18 23.3 13.6 6.07 9.13 1.017 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-ID 0.58 437 4.64 8.65 23.3 13.2 9.17 9.13 0.947 Bearing Bearing 060-G300-B1W-48×75-M12-ID 0.58 437 5.89 9.61 23.2 13.3 12.2 9.13 1.052 Bearing Bearing

Table D35 060-G300 Concentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.)

Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1W-24×75-M12-IL 0.58 431 4.69 6.61 22.7 23.0 5.13 6.00 1.288 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IL 0.58 431 4.96 7.35 22.8 23.1 8.64 6.00 1.225 Bearing Bearing 060-G300-B1W-48×75-M12-IL 0.58 431 6.20 9.08 22.8 23.1 12.3 6.00 1.514 Bearing Bearing 060-G300-B1W-24×75-M12-IT 0.58 428 4.75 6.06 23.6 22.9 5.03 5.96 1.204 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IT 0.58 428 5.09 7.82 23.6 22.9 8.55 5.96 1.312 Bearing Bearing 060-G300-B1W-48×75-M12-IT 0.58 428 5.09 9.04 23.5 22.9 12.3 5.96 1.518 Bearing Bearing 060-G300-B1W-24×75-M12-ID 0.58 437 5.02 6.18 23.3 23.4 5.11 6.09 1.208 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-ID 0.58 437 4.64 8.65 23.3 23.4 8.83 6.09 1.420 Bearing Bearing 060-G300-B1W-48×75-M12-ID 0.58 437 5.89 9.61 23.2 23.4 12.4 6.09 1.578 Bearing Bearing

100

Table D36 060-G300 Concentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1W-24×75-M12-IL 0.58 431 4.69 6.61 22.7 13.3 6.06 9.00 1.090 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IL 0.58 431 4.96 7.35 22.8 13.1 8.99 9.00 0.818 End pull-out Bearing 060-G300-B1W-48×75-M12-IL 0.58 431 6.20 9.08 22.8 13.1 12.0 9.00 1.009 Bearing Bearing 060-G300-B1W-24×75-M12-IT 0.58 428 4.75 6.06 23.6 13.0 5.97 8.94 1.015 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IT 0.58 428 5.09 7.82 23.6 13.1 8.90 8.94 0.879 End pull-out Bearing 060-G300-B1W-48×75-M12-IT 0.58 428 5.09 9.04 23.5 13.2 12.0 8.94 1.012 Bearing Bearing 060-G300-B1W-24×75-M12-ID 0.58 437 5.02 6.18 23.3 13.6 6.07 9.13 1.017 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-ID 0.58 437 4.64 8.65 23.3 13.2 9.17 9.13 0.947 Bearing Bearing 060-G300-B1W-48×75-M12-ID 0.58 437 5.89 9.61 23.2 13.3 12.2 9.13 1.052 Bearing Bearing

Table D37 060-G300 Concentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.)

Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G300-B1W-24×75-M12-IL 0.58 431 4.69 6.61 22.7 15.4 5.05 7.50 1.308 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IL 0.58 431 4.96 7.35 22.8 15.2 7.49 7.50 0.981 End pull-out Bearing 060-G300-B1W-48×75-M12-IL 0.58 431 6.20 9.08 22.8 15.2 10.0 7.50 1.211 Bearing Bearing 060-G300-B1W-24×75-M12-IT 0.58 428 4.75 6.06 23.6 15.0 4.98 7.45 1.218 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-IT 0.58 428 5.09 7.82 23.6 15.2 7.42 7.45 1.054 End pull-out Bearing 060-G300-B1W-48×75-M12-IT 0.58 428 5.09 9.04 23.5 15.2 10.0 7.45 1.214 Bearing Bearing 060-G300-B1W-24×75-M12-ID 0.58 437 5.02 6.18 23.3 15.7 5.06 7.61 1.220 End pull-out Bear. / E p-o 060-G300-B1W-36×75-M12-ID 0.58 437 4.64 8.65 23.3 15.3 7.64 7.61 1.136 Bearing Bearing 060-G300-B1W-48×75-M12-ID 0.58 437 5.89 9.61 23.2 15.4 10.2 7.61 1.262 Bearing Bearing

101

Table D38 060-G550 Eccentric Single Bolt Winged Connection AS/NZS 4600 (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IT-E2 0.59 785 8.15 8.48 49.1 24.8 11.1 16.7 0.762 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT-E4 0.59 785 7.74 10.1 48.9 24.2 16.6 16.7 0.604 End pull-out Bearing 060-G550-B1W-48×75-M12-IT-E6 0.59 785 7.66 10.6 49.1 24.4 22.3 16.7 0.638 Bearing Bearing 060-G550-B1W-24×75-M12-ID- 0.59 707 8.14 9.61 44.2 22.1 10.2 15.0 0.942 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID- 0.59 707 7.58 9.88 44.3 22.1 15.1 15.0 0.658 Bearing Bearing 060-G550-B1W-48×75-M12-ID- 0.59 707 7.85 11.6 44.3 22.0 20.0 15.0 0.769 Bearing Bearing

Table D39 060-G550 Eccentric Single Bolt Winged Connection CSA-S136 (1994) Test-To-Predicted Values (B.M.T.)

Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IT-E2 0.59 785 8.15 8.48 49.1 42.5 9.39 11.1 0.903 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT-E4 0.59 785 7.74 10.1 48.9 42.3 16.0 11.1 0.905 Bearing Bearing 060-G550-B1W-48×75-M12-IT-E6 0.59 785 7.66 10.6 49.1 42.5 22.8 11.1 0.956 Bearing Bearing 060-G550-B1W-24×75-M12-ID- 0.59 707 8.14 9.61 44.2 38.3 8.66 10.0 1.109 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID- 0.59 707 7.58 9.88 44.3 38.3 14.6 10.0 0.987 Bearing Bearing 060-G550-B1W-48×75-M12-ID- 0.59 707 7.85 11.6 44.3 38.3 20.5 10.0 1.154 Bearing Bearing

102

Table D40 060-G550 Eccentric Single Bolt Winged Connection AISI (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IT-E2 0.59 785 8.15 8.48 49.1 24.8 11.1 16.7 0.762 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT-E4 0.59 785 7.74 10.1 48.9 24.2 16.6 16.7 0.604 End pull-out Bearing 060-G550-B1W-48×75-M12-IT-E6 0.59 785 7.66 10.6 49.1 24.4 22.3 16.7 0.638 Bearing Bearing 060-G550-B1W-24×75-M12-ID- 0.59 707 8.14 9.61 44.2 22.1 10.2 15.0 0.942 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID- 0.59 707 7.58 9.88 44.3 22.1 15.1 15.0 0.658 Bearing Bearing 060-G550-B1W-48×75-M12-ID- 0.59 707 7.85 11.6 44.3 22.0 20.0 15.0 0.769 Bearing Bearing

Table D41 060-G550 Eccentric Single Bolt Winged Connection Eurocode (1996) Test-To-Predicted Values (B.M.T.) Gross Net End Bearing Predicted Actual Specimen tb fu P6.35 Pt Section Section Pull-Out Pt / Pp Failure Failure (mm) (MPa) (kN) (kN) (kN) (kN) (kN) (kN) Mode Mode

060-G550-B1W-24×75-M12-IT-E2 0.59 785 8.15 8.48 49.1 28.8 9.28 13.9 0.914 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-IT-E4 0.59 785 7.74 10.1 48.9 28.0 13.9 13.9 0.725 End pull-out Bearing 060-G550-B1W-48×75-M12-IT-E6 0.59 785 7.66 10.6 49.1 28.3 18.6 13.9 0.765 Bearing Bearing 060-G550-B1W-24×75-M12-ID- 0.59 707 8.14 9.61 44.2 25.7 8.50 12.5 1.130 End pull-out Bear. / E p-o 060-G550-B1W-36×75-M12-ID- 0.59 707 7.58 9.88 44.3 25.6 12.6 12.5 0.789 Bearing Bearing 060-G550-B1W-48×75-M12-ID- 0.59 707 7.85 11.6 44.3 25.5 16.7 12.5 0.923 Bearing Bearing

103

APPENDIX 'E' FAILURE STRESS RATIOS

E1 General Tables E1 to E3 of this Appendix list the ratio of cross-sectional stress (either bearing or end pull-out stress) at ultimate load to the full dynamic ultimate strength of the material, fbu/fu, calculated using the base metal thickness (without the 0.75fu reduction). The cross-sectional stress was calculated using the following formula; fbu = Pt / (n⋅d⋅tb), where Pt is the ultimate tensile load of the test specimen, n is the number of bolts in the connection, d is the nominal bolt diameter and tb is the base metal thickness. The ratio of end distance to bolt diameter, e/d, is also provided, where e is the lesser of the distance from the centre of the last bolt hole to the end of the specimen or the distance from the centre of any of the internal bolt holes to the edge of the adjacent bolt hole. Table E4 of this Appendix contains the ratio of net section fracture stress at ultimate load to the full dynamic ultimate strength of the material, fnet/fu, determined using the base metal thickness (without the 0.75fu reduction). The ratio of bolt diameter to test specimen width, d/s, where s = w, is also presented. Tables E1 to E3 contain data for specimens which failed either by end pull-out or bearing or a combination of both. Table E4 contains data for specimens which failed by net section fracture alone.

104

Table E1 042-G550 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios Specimen fbu/fu e/d Specimen fbu/fu e/d Specimen fbu/fu e/d

042-G550-B1-12×75-M12-CL 1.02 1.03 042-G550-B1-24×75-M12-CD 1.61 1.98 042-G550-B1W-24×75-M12-CL 2.10 2.03 042-G550-B1-12×75-M12-IL 0.89 1.01 042-G550-B1-24×75-M12-ID 1.70 2.01 042-G550-B1W-24×75-M12-IL 2.01 2.00 042-G550-B1-24×75-M12-CL 1.98 2.04 042-G550-B1-36×75-M12-CD 2.13 3.00 042-G550-B1W-36×75-M12-CL 1.84 3.05 042-G550-B1-24×75-M12-IL 1.74 2.00 042-G550-B1-36×75-M12-ID 1.82 2.99 042-G550-B1W-36×75-M12-IL 2.12 3.05 042-G550-B1-36×75-M12-CL 1.70 2.98 042-G550-B1-48×75-M12-CD 2.00 3.98 042-G550-B1W-48×75-M12-CL 2.09 4.00 042-G550-B1-36×75-M12-IL 2.09 2.96 042-G550-B1-48×75-M12-ID 1.99 4.00 042-G550-B1W-48×75-M12-IL 2.14 4.00 042-G550-B1-48×75-M12-CL 2.05 3.97 042-G550-B1-60×75-M12-CD 1.59 5.01 042-G550-B1-48×75-M12-IL 2.19 4.01 042-G550-B1-60×75-M12-ID 2.06 5.02 042-G550-B1W-24×75-M12-CT 1.36 2.03 042-G550-B1-60×75-M12-CL 1.86 5.01 042-G550-B1W-24×75-M12-IT 1.67 2.01 042-G550-B1-60×75-M12-IL 2.10 4.98 042-G550-B2-48×75-M12-CL 1.84 2.39 042-G550-B1W-36×75-M12-CT 1.63 2.99 042-G550-B2-48×75-M12-IL 1.90 2.41 042-G550-B1W-36×75-M12-IT 1.92 2.98 042-G550-B1-12×75-M12-CT 0.98 0.99 042-G550-B2-48×95-M12-CL 1.91 2.43 042-G550-B1W-48×75-M12-CT 1.68 4.00 042-G550-B1-12×75-M12-IT 0.52 0.97 042-G550-B2-48×95-M12-IL 1.93 2.40 042-G550-B1W-48×75-M12-IT 1.78 4.00 042-G550-B1-24×75-M12-CT 1.72 2.00 042-G550-B1-24×75-M12-IT 1.75 2.00 042-G550-B2-48×75-M12-CT 1.57 2.40 042-G550-B1W-24×75-M12-CD 1.77 2.05 042-G550-B1-36×75-M12-CT 1.56 2.99 042-G550-B2-48×75-M12-IT 1.91 2.34 042-G550-B1W-24×75-M12-ID 1.62 2.05 042-G550-B1-36×75-M12-IT 1.96 3.01 042-G550-B2-48×95-M12-CT 1.69 2.39 042-G550-B1W-36×75-M12-CD 1.79 3.03 042-G550-B1-48×75-M12-CT 1.94 4.03 042-G550-B2-48×95-M12-IT 1.79 2.40 042-G550-B1W-36×75-M12-ID 1.91 3.05 042-G550-B1-48×75-M12-IT 1.97 4.01 042-G550-B1W-48×75-M12-CD 1.94 4.02 042-G550-B1-60×75-M12-CT 1.67 5.00 042-G550-B2-48×75-M12-CD 1.74 2.38 042-G550-B1W-48×75-M12-ID 1.94 3.98 042-G550-B1-60×75-M12-IT 1.77 5.00 042-G550-B2-48×75-M12-ID 1.86 2.42 042-G550-B2-48×95-M12-CD 1.54 2.37 042-G550-B1-12×75-M12-CD 1.20 1.00 042-G550-B2-48×95-M12-ID 1.80 2.43 042-G550-B1-12×75-M12-ID 0.93 1.00

105

Table E2 060-G550 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios Specimen fbu/fu e/d Specimen fbu/fu e/d Specimen fbu/fu e/d

060-G550-B1-12×75-M12-IL 0.80 1.01 060-G550-B2-48×75-M12-ILc 2.05 2.40 060-G550-B1W-24×75-M12-IT 1.44 2.00 060-G550-B1-24×75-M12-IL 1.82 2.00 060-G550-B2-48×95-M12-ILc 2.31 2.41 060-G550-B1W-36×75-M12-IT 2.01 2.98 060-G550-B1-36×75-M12-IL 2.01 3.00 060-G550-B1W-48×75-M12-IT 1.92 4.02 060-G550-B1-48×75-M12-IL 1.97 3.99 060-G550-B2-48×75-M12-ITc 1.90 2.40 060-G550-B1-60×75-M12-IL 2.22 4.99 060-G550-B2-48×95-M12-ITc 2.01 2.41 060-G550-B1W-24×75-M12-ID 1.66 2.05 060-G550-B1W-36×75-M12-ID 1.95 3.02 060-G550-B1-12×75-M12-IT 0.73 1.02 060-G550-B2-48×75-M12-IDc 2.21 2.38 060-G550-B1W-48×75-M12-ID 2.42 4.02 060-G550-B1-24×75-M12-IT 1.51 2.00 060-G550-B2-48×95-M12-IDc 2.10 2.38 060-G550-B1-36×75-M12-IT 1.82 3.00 060-G550-B1W-24×75-M12-IT-E2 1.53 2.00 060-G550-B1-48×75-M12-IT 1.99 3.99 060-G550-B2-48×75-M12-IL-E10c 2.22 2.42 060-G550-B1W-36×75-M12-IT-E4 1.81 3.00 060-G550-B1-60×75-M12-IT 1.71 5.02 060-G550-B2-48×75-M12-IT-E15c 1.97 2.35 060-G550-B1W-48×75-M12-IT-E6 1.91 4.02 060-G550-B2-48×75-M12-ID-E20c 2.30 2.40 060-G550-B1-12×75-M12-ID 0.84 1.01 060-G550-B1W-24×75-M12-ID-E2 1.92 2.04 060-G550-B1-24×75-M12-ID 1.78 1.99 060-G550-B1W-24×75-M12-IL 1.68 2.03 060-G550-B1W-36×75-M12-ID-E4 1.97 3.02 060-G550-B1-36×75-M12-ID 2.10 2.99 060-G550-B1W-36×75-M12-IL 2.32 3.00 060-G550-B1W-48×75-M12-ID-E6 2.31 4.00 060-G550-B1-48×75-M12-ID 1.93 3.98 060-G550-B1W-48×75-M12-IL 2.19 4.01 060-G550-B1-60×75-M12-ID 1.84 4.98

106

Table E3 060-G300 End Pull-Out and Bearing Failure Stress to Ultimate Strength Ratios Specimen fbu/fu e/d Specimen fbu/fu e/d Specimen fbu/fu e/d

060-G300-B1-12×75-M12-IL 0.91 1.01 060-G300-B1-12×75-M12-ID 0.89 0.98 060-G300-B1W-24×75-M12-IL 2.20 2.02 060-G300-B1-24×75-M12-IL 1.96 2.00 060-G300-B1-24×75-M12-ID 2.15 2.01 060-G300-B1W-36×75-M12-IL 2.45 3.00 060-G300-B1-36×75-M12-IL 2.07 3.01 060-G300-B1-36×75-M12-ID 2.19 2.97 060-G300-B1W-48×75-M12-IL 3.03 4.00 060-G300-B1-48×75-M12-IL 2.13 4.00 060-G300-B1-48×75-M12-ID 2.19 4.00 060-G300-B1-60×75-M12-IL 2.13 5.00 060-G300-B1-60×75-M12-ID 2.14 4.95 060-G300-B1W-24×75-M12-IT 2.03 2.00 060-G300-B1W-36×75-M12-IT 2.62 2.99 060-G300-B1-12×75-M12-IT 0.91 1.00 060-G300-B2-48×95-M12-ILc 2.56 2.40 060-G300-B1W-48×75-M12-IT 3.04 4.03 060-G300-B1-24×75-M12-IT 2.11 2.00 060-G300-B1-36×75-M12-IT 2.03 2.99 060-G300-B2-48×95-M12-ITc 2.59 2.42 060-G300-B1W-24×75-M12-ID 2.03 2.00 060-G300-B1-48×75-M12-IT 2.08 3.99 060-G300-B1W-36×75-M12-ID 2.84 3.01 060-G300-B1-60×75-M12-IT 2.10 4.99 060-G300-B2-48×95-M12-IDc 2.65 2.42 060-G300-B1W-48×75-M12-ID 3.16 4.00

107

Table E4 Net Section Failure Stress to Ultimate Strength Ratios Specimen fnet/fu d/s

042-G550-B2-48×55-M12-CL 0.87 0.22 042-G550-B2-48×55-M12-IL 1.01 0.22 042-G550-B3-48×55-M12-CLc 1.15 0.22 042-G550-B3-48×55-M12-ILc 1.11 0.22 042-G550-B2-48×55-M12-CT 0.97 0.22 042-G550-B2-48×55-M12-IT 1.00 0.22 042-G550-B3-48×55-M12-CTc 1.00 0.22 042-G550-B3-48×55-M12-ITc 0.94 0.22 042-G550-B2-48×55-M12-CDc 1.02 0.22 042-G550-B2-48×55-M12-ID 1.00 0.22 042-G550-B3-48×55-M12-CDc 1.05 0.22 042-G550-B3-48×55-M12-IDc 1.06 0.22 060-G550-B2-48×55-M12-ILc 1.02 0.22 060-G550-B3-48×55-M12-ILc 1.03 0.22 060-G550-B3-48×55-M12-IL-E10c 0.99 0.22 060-G550-B2-48×55-M12-ITc 1.02 0.22 060-G550-B3-48×55-M12-ITc 1.00 0.22 060-G550-B2-48×55-M12-IDc 1.03 0.22 060-G550-B3-48×55-M12-IDc 1.01 0.22 060-G550-B3-48×55-M12-ID-E20c 0.96 0.22 060-G300-B2-48×55-M12-ILc 1.00 0.22 060-G300-B2-48×75-M12-ILc 0.95 0.16 060-G300-B3-48×55-M12-ILc 0.96 0.22 060-G300-B2-48×55-M12-ITc 1.00 0.22 060-G300-B2-48×75-M12-ITc 0.96 0.16 060-G300-B3-48×55-M12-ITc 0.99 0.22 060-G300-B2-48×55-M12-IDc 0.97 0.22 060-G300-B2-48×75-M12-IDc 0.94 0.16 060-G300-B3-48×55-M12-IDc 0.98 0.22 060-G300-B2-48×75-M12-IL-E10c 0.94 0.16 060-G300-B2-48×75-M12-IT-E20c 0.96 0.16 060-G300-B2-48×75-M12-ID-E15c 0.94 0.16

108

APPENDIX 'F' RELIABILITY STUDY

F1 General A reliability study was completed to provide resistance (capacity) factors, φ, for use in connection design. Equations for the following bolted connection failure modes; end pull-out, bearing and net section fracture, according to the relevant design standards (SA/SNZ, 1996; CSA, 1994, AISI, 1996; Eurocode, 1996), were calibrated using data obtained from a G550 Commonisation study (1996) and a BHP material testing study. Calibration results for all of the design standards using both the full ultimate strength, fu, and the reduced ultimate strength, 0.75fu, are included. Additional test data was required to determine the reliability and applicability of current bolted connection design methods for 042-G550 sheet steels. It was necessary for the test data to consist of various G550 sheet steels which represent the wide range of existing material properties and possible rolling procedures. The laboratory methods used to obtain the additional test data varied from those used at the University of Sydney, making it necessary to compare the resulting material properties from each test facility. A BHP material testing study was completed using sheet steels from the University of Sydney with BHP Research testing methodology. With this information it was possible to determine the similarity of test results completed at BHP Research and the University of Sydney, as well as the usability of sheet steels tested in the BHP Commonisation study (see Rogers and Hancock, (1996)).

F2 Bolted Connection Test Data

The predicted loads and test-to-predicted ratios for 042-G550 test specimens, given in Tables F1 to F12 of this Appendix, are based on the actual failure modes observed during testing, rather than the failure mode predicted using the relevant design standards. Similar information is available for the 060-G550 and 060-G300 test specimens in Tables F19 to F42, although it is not used for calibration of the connection design equations. Data is provided for the full ultimate strength, fu, and each direction of testing, i.e. longitudinal, transverse and diagonal, for the Australian, New Zealand, Canadian, USA and European Design Standards (SA/SNZ, 1996; CSA, 1994, AISI, 1996; Eurocode, 1996). Specimens observed to fail in a combination of end pull-out and bearing were classified as end pull-out failures for this calibration process.

F3 Reliability Study An overview of the AISI recommended calibration process is presented in this Appendix (see Rogers and Hancock (1996) for a detailed description). The reliability of a structure at various limit states can be estimated by means of a first and second order moment (FOSM), i.e. mean and coefficient of variation, reliability analysis method. Standards which incorporate a limit states philosophy as a basis for design, e.g. Australia / New Zealand AS/NZS 4600 (1996), are dependent on load, γi, and

109

resistance (capacity), φ, factors to account for uncertainties and variabilities associated with loads, analysis, the limit state model, material properties, geometry and fabrication. (AISI Commentary, 1991). Limit states design philosophy requires that the sum of the factored loads applied to a member be less than or equal to the factored resistance of the member, as follows; γ φi i n Q R∑ ≤ (F1) where Qi represents the load effects and Rn represents the nominal resistance. Formulation of limit states design standards involves the definition of reliability indices, β, which depend only on measures of central tendency and dispersion, and are a measure of the safety of a design, i.e. when multiple β values are compared the larger is considered more reliable with a lower probability of failure (AISI, 1996; Ellingwood et al., 1980). The basic equation used to calculate resistance (capacity) factors, φ, based on a reliability index, β, is specified by the AISI Commentary (1996), as well as by Ravindra and Galambos (1978).

( )β =+

ln R Q

V Vm m

R2

Q2

(F2)

Resistance parameters, which are dependent on the test data compiled in this report, are necessary to calibrate accurate resistance (capacity) factors for bolted connection design. The mean member resistance, Rm, and corresponding coefficient of variation, VR, are calculated using the following equations: R M F P Rm m m m n= ⋅ ⋅ ⋅ (F3) V V V VR M

2F2

P2= + + (F4)

where Rn is the equation for nominal tensile resistance, and Mm, Fm, Pm, VM, VF, and VP are mean values and coefficients of variation for material properties, fabrication variables and design equations. The combined live and dead load parameters; mean load effect, Qm, and the corresponding coefficient of variation, VQ, are required to calculate the reliability index of a design method. These parameters are dependent on the ratio of dead, D, to live, L, load typically found in a structure, as well as the load combinations specified by the standard used for design. The total load values used in this reliability study are based on combinations of dead and live loads specified in the applicable design standards. The Australian AS 1170.1 (1989), New Zealand NZS 4203 (1992), North American (CSA, 1994; AISI, 1996) and European (Eurocode, 1996) Design Standards require the following combinations of dead and live loads: Q D L= +125 15. . Australia AS 1170.1and Canada CSA-S136 (F5) Q D L= +12 16. . New Zealand NZS 4203 and USA AISI (F6) Q D L= +135 15. . Europe Eurocode 3 (F7)

110

The reliability expression may be restated for the relevant design standards with the appropriate load parameters substituted into the reliability index equation. The calibration method outlined in this section is based on the recommendations contained in the AISI Commentary (1996) which differ from those used in the current Eurocode 3 (1996). Calibration of the connection resistance equations specified in Eurocode 3 according to the AISI procedures is included in this section for comparison only.

( ) ( )( )

βφ

=⋅ ⋅

+ + +

ln M F P

V V Vm m m

M2

F2

P2

0 691

0 212

.

. Australia and Canada (F8)

( ) ( )( )

βφ

=⋅ ⋅

+ + +

ln M F P

V V Vm m m

M2

F2

P2

0 657

0 212

.

. New Zealand and USA (F9)

( ) ( )( )

βφ

=⋅ ⋅

+ + +

ln M F P

V V Vm m m

M2

F2

P2

0 683

0 212

.

. Europe (F10)

Resistance (capacity) factors, φ, may be calculated for the connection strength expressions of each design standard by rearranging Eqs. F8 to F10, substituting an appropriate value for the target reliability index, βo, and solving for φ. The Commentary for the AISI Specification (1996) recommends that βo be taken as 3.5 for connections, whereas the Canadian Commentary (CSA, 1995) recommends that βo range between 3.0 and 4.0 (βo = 4.0 is applicable to normal buildings where sudden failure may occur (CSA, 1981)). A βo of 3.5 was assumed for calibration of the European Standard (Eurocode, 1996) following the AISI Commentary specified procedure. Peköz (1990) states that a target reliability index of 4.0 is commonly used because failure of a connection may cause overall failure of the structure. Ellingwood et al. (1982) previously recommended that a target reliability index of 4.5 be used in the calibration of design equations for connections. Based on this rationale and due to the nature of failures observed with thin G550 sheet steels target reliability indices of 3.5, 4.0 and 4.5 are used in this report. The basic material properties used in the design of tensile connections are the yield stress, fy, and the ultimate strength, fu. All bolted specimens tested in this study failed either by; end pull-out, bearing or net section fracture, i.e. yielding of the gross cross-section did not occur. Therefore, only the ultimate strength is used to calibrate the connection resistance equations. The normalised material strength, Mm, and corresponding coefficient of variation, VM, are represented as follows:

Mf f

fmu,Comm u,SU

u,BHP

= ⋅550

(F11)

V VM f,Comm= (F12) where f u,Comm is the mean dynamic ultimate strength of all specimens included in the BHP Commonisation study (1996), f u,SU is the mean static ultimate strength of coupons tested at the University of Sydney (see Table 3.1 of Rogers and Hancock (1996)), f u,BHP is the mean dynamic ultimate strength of coupons tested at BHP

111

Research, and Vf,Comm is the adjusted coefficient of variation (see Eq. F17) for data obtained from the BHP Commonisation study. Typically, coupon tests are performed at strain rates which exceed the rate of loading found in actual structures. For this reason the mean static ultimate strength is required to calibrate the model for the bolted connection strength of structural members (Galambos and Ravindra, 1978). The ratio of f u,SU to f u,BHP provides a factor with which the dynamic mean ultimate strength of the Commonisation study data can be reduced to an equivalent static value. For calibration using 0.75fu the nominal ultimate strength was defined as 412.5MPa. Fabrication of G550 sheet steels modelled in this reliability study involves the cold reduction of mild 2.5mm sheets to a nominal base metal thickness of 0.42mm. This thickness measurement is used as a fundamental variable in the design of tensile connections, and hence is included as the normalised fabrication variable, Fm, with the corresponding coefficient of variation, VF.

Ft t

tmb,Comm b,SU

b,BHP

= ⋅0 42.

(F13)

V VF t,Comm= (F14) where t b,Comm , tb,SU , and t b,BHP are the mean base metal thicknesses of specimens included in the BHP Commonisation study (1996), the University of Sydney study (Rogers and Hancock, 1996), and the BHP Research study, respectively. The adjusted coefficient of variation (see Eq. F17) for the BHP Commonisation study is represented by Vt,Comm . The normalised professional model is based on the results of the bolted connection tests completed at the University of Sydney. The predicted tensile resistance of the test specimens is dependent on the specific standard used for design, i.e. Australia / New Zealand (SA/SNZ, 1996), North America (CSA, 1994; AISI, 1996), and Europe (Eurocode, 1996) (see Appendix 'A'). It is not possible to define the connection resistance of a G550 member by one equation for the Australian / New Zealand, North American, and European Design Standards, therefore, the design equations presented in Appendix 'A' were used in this calibration. Use of the full dynamic ultimate strength to predict the load carrying capacity of the bolted test specimens provides a conservative approach whereby the test-to-predicted ratios are decreased due to the larger ultimate strength, i.e. the dynamic ultimate strength is greater than the commonly used static ultimate strength.

PTTm

t,SU

p,SU

= (F15)

V VP t /p,SU= (F16) where Pm is the overall mean and Vf is the overall adjusted coefficient of variation of test-to-predicted ratios (see Tables F1 to F12). The value of Pm was adjusted for calibration using 0.75fu to determine the appropriate test-to-predicted ratios. The coefficients of variation used in this study have been adjusted by an appropriate correction factor Cp, which is based on the number of tests, n, included in the sample set (Eq. F1-3 AISI, 1991).

112

C nnp =

−−

13

(F17)

F4 Calculated Resistance (Capacity) Factors, φ Results of the reliability study following the AISI Commentary (1996) recommended calibration procedure reveal that not all of the calculated resistance factors meet the requirements currently specified in the Australian / New Zealand (SA/SNZ, 1996), North American (CSA, 1994; AISI, 1996), and European (Eurocode, 1996) Design Standards. Tables F13 to F18 list all current and calculated capacity factors, as well as all pertinent statistical parameters. Due to the anisotropic nature of G550 sheet steels, calibration for the longitudinal, transverse and diagonal directions is presented. Comparison of the calculated and specified resistance (capacity) factors, φ, for use with standards calibrated according to the AISI Commentary (1996) requires that calculated values exceed specified. If this occurs the degree of reliability indicated by the ability of the bolted connection to carry the specified design loads is greater than that considered adequate by the relevant design standard.

F4.1 Australia AS/NZS 4600 and AS 1170.1 The Australian Cold Formed Steel Design Standard (SA/SNZ, 1996) specifies that φ = 0.60 for end pull-out and bearing resistance and φ = 0.55 for the net section fracture resistance of bolted connections with washers. Capacity factors determined for net section failure using Australian dead and live load combinations (SA, 1989) for both the full ultimate strength, fu, and 0.75fu exceed the current values in all directions for the target reliability indices presented, i.e. βo = 3.5, 4.0 and 4.5. The minimum calculated capacity factor, φ = 0.76, occurs for the diagonal direction with βo = 4.5. A higher degree of reliability will exist when the specified capacity factors are used in design, i.e. β > βo. Calculated capacity factors for the bearing failure design expression using the full ultimate strength, fu, do not meet the required values for any of the target reliability indices used. The current equation for bearing specified in the AS/NZS 4600 Design Standard (1996) is not reliable for use in the design of G550 sheet steel bolted connections. However, when calibration values are based on 0.75fu the calculated capacity factors for the bearing failure design expression exceed the currently specified capacity factor. Capacity factors determined using the end pull-out data and the full ultimate strength, fu, are adequate for test data in the longitudinal direction, but not the transverse or diagonal directions. This is do in part to the limited amount of data available and the large scatter or results, e.g. the coefficient of variation based on test-to-predicted ratios in the transverse direction is 0.269 (see Table F14). Calculated capacity factors are adequate for all directions when 0.75fu is used in the calibration procedure. F4.2 New Zealand AS/NZS 4600 and NZS 4203, as well as USA AISI Capacity factors calculated for the New Zealand AS/NZS 4600 (1996) and USA AISI (1996) Design Standards are identical due to the use of the same design equations, as

113

well as dead and live load combinations (NZS, 1992). Both design standards specify that φ = 0.60 for end pull-out and bearing resistance and φ = 0.55 for net section fracture resistance of bolted connections with washers. Similar to the results of the Australian reliability study using the full ultimate strength, fu, net section failure can be reliably predicted using the current design provisions. However, capacity factors determined for the bearing failure expression do not meet the specified values, hence bearing design of bolted connections is not reliable for G550 sheet steels. End pull-out failure can be reliably predicted in the longitudinal direction but not in the transverse or diagonal directions due to the wide scatter of results, e.g. the coefficient of variation based on test-to-predicted ratios in the transverse direction is 0.269 (see Tables F15 and F17). Calibration results using 0.75fu show that all of the design expressions are adequate with respect to the current capacity factors.

F4.3 Canada CSA-S136 The CSA-S136 Design Standard (1994) specifies that φ = 0.75 for end pull-out, bearing and net section fracture resistance of bolted connections with washers. Capacity factors determined using the full ultimate strength, fu, for net section failure exceed the current values for βo = 3.5 and 4.0, except for longitudinal specimens where φ = 0.74 for βo = 4.0. Net section fracture capacities calculated using a reliability index of 4.5 are not reliable for any direction. Bearing resistance can be reliably predicted for βo = 3.5 in the longitudinal and transverse directions, however, all capacity factors determined for the higher target reliability indices and for the diagonal direction are inadequate. The extreme scatter of results observed for the end pull-out test-to-predicted data caused capacity factors to be significantly below the required φ = 0.75 (see Table F16). The mean values of the Pt / Pp ratios for end pull-out failure are all conservative, however unreliable as a consistent predictor of capacity in this mode. Calibration results using 0.75fu show that the net section fracture and bearing design expressions are adequate with respect to the current capacity factors. However, the end pull-out design equation remain conservative, yet unreliable for specimens which fail in this mode.

F4.4 Europe Eurocode 3 AISI calculated capacity factors based on the European Design Standard (Eurocode, 1996) require that 1/γM = 0.80 for all bolted connection failure modes considered. Net section failure using the full ultimate strength, fu, can be adequately predicted for βo = 3.5 and 4.0, however, for βo = 4.5 the design expression becomes unreliable. All capacity factors are lower than the required values for the bearing design equations, similar to the end pull-out capacity prediction for the transverse and diagonal directions. The design standard can be used to reliably predict the end pull-out strength of test specimens in the longitudinal direction for βo = 3.5 and 4.0, however not for βo = 4.5. These results are in contrast to the information provided using the calibration procedure with 0.75fu. The calculated capacity factors are reliable for all modes of failure and directions except for transverse end pull-out when βo = 4.5 is used.

Table F1 042-G550 Longitudinal AS/NZS 4600 (1996) Reliability Study Data

114

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CL 0.41 3.62 3.64 0.995 End pull-out042-G550-B1-12×75-M12-IL 0.41 3.14 3.58 0.878 End pull-out042-G550-B1-24×75-M12-CL 0.41 6.99 7.21 0.970 End pull-out042-G550-B1-24×75-M12-IL 0.41 6.15 7.06 0.871 End pull-out042-G550-B1W-24×75-M12-CL 0.41 7.44 7.18 1.036 End pull-out042-G550-B1W-24×75-M12-IL 0.41 7.12 7.06 1.009 End pull-out

Mean 0.960 No. 6 S.D. 0.0697 C.o.V. 0.0937

042-G550-B1-36×75-M12-CL 0.41 6.00 10.6 0.565 Bearing042-G550-B1-36×75-M12-IL 0.41 7.39 10.6 0.696 Bearing042-G550-B1-48×75-M12-CL 0.41 7.26 10.6 0.684 Bearing042-G550-B1-48×75-M12-IL 0.41 7.75 10.6 0.731 Bearing042-G550-B1-60×75-M12-CL 0.41 6.59 10.6 0.621 Bearing042-G550-B1-60×75-M12-IL 0.41 7.42 10.6 0.699 Bearing042-G550-B2-48×75-M12-CL 0.41 13.0 21.2 0.612 Bearing042-G550-B2-48×75-M12-IL 0.41 13.5 21.2 0.634 Bearing042-G550-B2-48×95-M12-CL 0.41 13.5 21.2 0.637 Bearing042-G550-B2-48×95-M12-IL 0.41 13.7 21.2 0.643 Bearing042-G550-B1W-36×75-M12-CL 0.41 6.50 10.6 0.612 Bearing042-G550-B1W-36×75-M12-IL 0.41 7.50 10.6 0.706 Bearing042-G550-B1W-48×75-M12-CL 0.41 7.40 10.6 0.697 Bearing042-G550-B1W-48×75-M12-IL 0.41 7.58 10.6 0.714 Bearing

Mean 0.661 No. 14 S.D. 0.0492 C.o.V. 0.0809

042-G550-B2-48×55-M12-IL 0.41 12.1 10.5 1.149 Net section042-G550-B3-48×55-M12-CLc 0.41 13.8 11.1 1.250 Net section042-G550-B3-48×55-M12-ILc 0.41 13.3 11.0 1.207 Net section

Mean 1.202 No. 3 S.D. 0.0508 C.o.V. 0.0732

Note: Full fu used for Pp calculation.

115

Table F2 042-G550 Transverse AS/NZS 4600 (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CT 0.41 3.96 3.97 0.997 End pull-out042-G550-B1-12×75-M12-IT 0.41 2.08 3.90 0.533 End pull-out042-G550-B1-24×75-M12-CT 0.41 6.93 8.02 0.864 End pull-out042-G550-B1-24×75-M12-IT 0.41 7.05 8.05 0.875 End pull-out042-G550-B1W-24×75-M12-CT 0.41 5.47 8.15 0.670 End pull-out042-G550-B1W-24×75-M12-IT 0.41 6.71 8.09 0.829 End pull-out

Mean 0.795 No. 6 S.D. 0.166 C.o.V. 0.269

042-G550-B1-36×75-M12-CT 0.41 6.29 12.1 0.522 Bearing042-G550-B1-36×75-M12-IT 0.41 7.89 12.1 0.654 Bearing042-G550-B1-48×75-M12-CT 0.41 7.78 12.1 0.645 Bearing042-G550-B1-48×75-M12-IT 0.41 7.93 12.1 0.658 Bearing042-G550-B1-60×75-M12-CT 0.41 6.72 12.1 0.557 Bearing042-G550-B1-60×75-M12-IT 0.41 7.10 12.1 0.589 Bearing042-G550-B2-48×75-M12-CT 0.41 12.6 24.1 0.524 Bearing042-G550-B2-48×75-M12-IT 0.41 15.3 24.1 0.636 Bearing042-G550-B2-48×95-M12-CT 0.41 13.6 24.1 0.563 Bearing042-G550-B2-48×95-M12-IT 0.41 14.4 24.1 0.596 Bearing042-G550-B1W-36×75-M12-CT 0.41 6.56 12.1 0.544 Bearing042-G550-B1W-36×75-M12-IT 0.41 7.72 12.1 0.640 Bearing042-G550-B1W-48×75-M12-CT 0.41 6.74 12.1 0.559 Bearing042-G550-B1W-48×75-M12-IT 0.41 7.14 12.1 0.593 Bearing

Mean 0.591 No. 14 S.D. 0.0484 C.o.V. 0.0889

042-G550-B2-48×55-M12-CT 0.41 13.2 12.0 1.104 Net section042-G550-B2-48×55-M12-IT 0.41 13.6 12.0 1.137 Net section042-G550-B3-48×55-M12-CTc 0.41 13.7 12.6 1.090 Net section042-G550-B3-48×55-M12-ITc 0.41 12.9 12.5 1.027 Net section

Mean 1.089 No. 4 S.D. 0.0461 C.o.V. 0.0733

Note: Full fu used for Pp calculation.

116

Table F3 042-G550 Diagonal AS/NZS 4600 (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CD 0.41 4.31 3.61 1.195 End pull-out042-G550-B1-12×75-M12-ID 0.41 3.36 3.58 0.939 End pull-out042-G550-B1-24×75-M12-CD 0.41 5.79 7.12 0.814 End pull-out042-G550-B1-24×75-M12-ID 0.41 6.10 7.24 0.843 End pull-out042-G550-B1W-24×75-M12-CD 0.41 6.36 7.36 0.864 End pull-out042-G550-B1W-24×75-M12-ID 0.41 5.82 7.18 0.811 End pull-out

Mean 0.911 No. 6 S.D. 0.147 C.o.V. 0.208

042-G550-B1-36×75-M12-CD 0.41 7.64 10.8 0.709 Bearing042-G550-B1-36×75-M12-ID 0.41 6.54 10.8 0.606 Bearing042-G550-B1-48×75-M12-CD 0.41 7.20 10.8 0.667 Bearing042-G550-B1-48×75-M12-ID 0.41 7.14 10.8 0.662 Bearing042-G550-B1-60×75-M12-CD 0.41 5.70 10.8 0.528 Bearing042-G550-B1-60×75-M12-ID 0.41 7.40 10.8 0.686 Bearing042-G550-B2-48×75-M12-CD 0.41 12.5 21.6 0.580 Bearing042-G550-B2-48×75-M12-ID 0.41 13.4 21.6 0.621 Bearing042-G550-B2-48×95-M12-CD 0.41 11.1 21.6 0.514 Bearing042-G550-B2-48×95-M12-ID 0.41 13.0 21.6 0.601 Bearing042-G550-B1W-36×75-M12-CD 0.41 6.44 10.8 0.597 Bearing042-G550-B1W-36×75-M12-ID 0.41 6.88 10.8 0.638 Bearing042-G550-B1W-48×75-M12-CD 0.41 6.98 10.8 0.647 Bearing042-G550-B1W-48×75-M12-ID 0.41 6.98 10.8 0.647 Bearing

Mean 0.622 No. 14 S.D. 0.0557 C.o.V. 0.0974

042-G550-B2-48×55-M12-CDc 0.41 12.5 10.7 1.168 Net section042-G550-B2-48×55-M12-ID 0.41 12.3 10.7 1.145 Net section042-G550-B3-48×55-M12-CDc 0.41 12.9 11.2 1.150 Net section042-G550-B3-48×55-M12-IDc 0.41 13.0 11.2 1.154 Net section

Mean 1.154 No. 4 S.D. 0.0097 C.o.V. 0.0146

Note: Full fu used for Pp calculation.

117

Table F4 042-G550 Longitudinal CSA-S136 (1994) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CL 0.41 3.62 1.84 1.970 End pull-out042-G550-B1-12×75-M12-IL 0.41 3.14 1.77 1.777 End pull-out042-G550-B1-24×75-M12-CL 0.41 6.99 6.12 1.142 End pull-out042-G550-B1-24×75-M12-IL 0.41 6.15 5.94 1.035 End pull-out042-G550-B1W-24×75-M12-CL 0.41 7.44 6.08 1.223 End pull-out042-G550-B1W-24×75-M12-IL 0.41 7.12 5.94 1.198 End pull-out

Mean 1.391 No. 6 S.D. 0.384 C.o.V. 0.357

042-G550-B1-36×75-M12-CL 0.41 6.00 7.07 0.848 Bearing042-G550-B1-36×75-M12-IL 0.41 7.39 7.07 1.044 Bearing042-G550-B1-48×75-M12-CL 0.41 7.26 7.07 1.026 Bearing042-G550-B1-48×75-M12-IL 0.41 7.75 7.07 1.096 Bearing042-G550-B1-60×75-M12-CL 0.41 6.59 7.07 0.932 Bearing042-G550-B1-60×75-M12-IL 0.41 7.42 7.07 1.049 Bearing042-G550-B2-48×75-M12-CL 0.41 13.0 14.1 0.919 Bearing042-G550-B2-48×75-M12-IL 0.41 13.5 14.1 0.951 Bearing042-G550-B2-48×95-M12-CL 0.41 13.5 14.1 0.955 Bearing042-G550-B2-48×95-M12-IL 0.41 13.7 14.1 0.965 Bearing042-G550-B1W-36×75-M12-CL 0.41 6.50 7.07 0.919 Bearing042-G550-B1W-36×75-M12-IL 0.41 7.50 7.07 1.059 Bearing042-G550-B1W-48×75-M12-CL 0.41 7.40 7.07 1.046 Bearing042-G550-B1W-48×75-M12-IL 0.41 7.58 7.07 1.071 Bearing

Mean 0.991 No. 14 S.D. 0.0737 C.o.V. 0.0809

042-G550-B2-48×55-M12-IL 0.41 12.1 12.0 1.008 Net section042-G550-B3-48×55-M12-CLc 0.41 13.8 12.1 1.147 Net section042-G550-B3-48×55-M12-ILc 0.41 13.3 12.0 1.108 Net section

Mean 1.088 No. 3 S.D. 0.0717 C.o.V. 0.114

Note: Full fu used for Pp calculation.

118

Table F5 042-G550 Transverse CSA-S136 (1994) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CT 0.41 3.96 1.89 2.094 End pull-out042-G550-B1-12×75-M12-IT 0.41 2.08 1.81 1.149 End pull-out042-G550-B1-24×75-M12-CT 0.41 6.93 6.75 1.026 End pull-out042-G550-B1-24×75-M12-IT 0.41 7.05 6.79 1.038 End pull-out042-G550-B1W-24×75-M12-CT 0.41 5.47 6.91 0.791 End pull-out042-G550-B1W-24×75-M12-IT 0.41 6.71 6.83 0.982 End pull-out

Mean 1.180 No. 6 S.D. 0.463 C.o.V. 0.507

042-G550-B1-36×75-M12-CT 0.41 6.29 8.04 0.782 Bearing042-G550-B1-36×75-M12-IT 0.41 7.89 8.04 0.981 Bearing042-G550-B1-48×75-M12-CT 0.41 7.78 8.04 0.968 Bearing042-G550-B1-48×75-M12-IT 0.41 7.93 8.04 0.987 Bearing042-G550-B1-60×75-M12-CT 0.41 6.72 8.04 0.836 Bearing042-G550-B1-60×75-M12-IT 0.41 7.10 8.04 0.883 Bearing042-G550-B2-48×75-M12-CT 0.41 12.6 16.1 0.786 Bearing042-G550-B2-48×75-M12-IT 0.41 15.3 16.1 0.953 Bearing042-G550-B2-48×95-M12-CT 0.41 13.6 16.1 0.844 Bearing042-G550-B2-48×95-M12-IT 0.41 14.4 16.1 0.894 Bearing042-G550-B1W-36×75-M12-CT 0.41 6.56 8.04 0.816 Bearing042-G550-B1W-36×75-M12-IT 0.41 7.72 8.04 0.961 Bearing042-G550-B1W-48×75-M12-CT 0.41 6.74 8.04 0.839 Bearing042-G550-B1W-48×75-M12-IT 0.41 7.14 8.04 0.889 Bearing

Mean 0.887 No. 14 S.D. 0.0725 C.o.V. 0.0889

042-G550-B2-48×55-M12-CT 0.41 13.2 13.6 0.969 Net section042-G550-B2-48×55-M12-IT 0.41 13.6 13.6 0.997 Net section042-G550-B3-48×55-M12-CTc 0.41 13.7 13.7 1.000 Net section042-G550-B3-48×55-M12-ITc 0.41 12.9 13.6 0.943 Net section

Mean 0.977 No. 4 S.D. 0.0268 C.o.V. 0.0475

Note: Full fu used for Pp calculation.

119

Table F6 042-G550 Diagonal CSA-S136 (1994) ) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CD 0.41 4.31 1.76 2.449 End pull-out042-G550-B1-12×75-M12-ID 0.41 3.36 1.73 1.948 End pull-out042-G550-B1-24×75-M12-CD 0.41 5.79 5.97 0.970 End pull-out042-G550-B1-24×75-M12-ID 0.41 6.10 6.11 0.998 End pull-out042-G550-B1W-24×75-M12-CD 0.41 6.36 6.26 1.016 End pull-out042-G550-B1W-24×75-M12-ID 0.41 5.82 6.04 0.963 End pull-out

Mean 1.391 No. 6 S.D. 0.646 C.o.V. 0.599

042-G550-B1-36×75-M12-CD 0.41 7.64 7.19 1.063 Bearing042-G550-B1-36×75-M12-ID 0.41 6.54 7.19 0.909 Bearing042-G550-B1-48×75-M12-CD 0.41 7.20 7.19 1.001 Bearing042-G550-B1-48×75-M12-ID 0.41 7.14 7.19 0.993 Bearing042-G550-B1-60×75-M12-CD 0.41 5.70 7.19 0.793 Bearing042-G550-B1-60×75-M12-ID 0.41 7.40 7.19 1.029 Bearing042-G550-B2-48×75-M12-CD 0.41 12.5 14.4 0.870 Bearing042-G550-B2-48×75-M12-ID 0.41 13.4 14.4 0.931 Bearing042-G550-B2-48×95-M12-CD 0.41 11.1 14.4 0.770 Bearing042-G550-B2-48×95-M12-ID 0.41 13.0 14.4 0.902 Bearing042-G550-B1W-36×75-M12-CD 0.41 6.44 7.19 0.895 Bearing042-G550-B1W-36×75-M12-ID 0.41 6.88 7.19 0.956 Bearing042-G550-B1W-48×75-M12-CD 0.41 6.98 7.19 0.971 Bearing042-G550-B1W-48×75-M12-ID 0.41 6.98 7.19 0.971 Bearing

Mean 0.933 No. 14 S.D. 0.0836 C.o.V. 0.0974

042-G550-B2-48×55-M12-CDc 0.41 12.5 12.2 1.024 Net section042-G550-B2-48×55-M12-ID 0.41 12.3 12.2 1.005 Net section042-G550-B3-48×55-M12-CDc 0.41 12.9 12.3 1.055 Net section042-G550-B3-48×55-M12-IDc 0.41 13.0 12.3 1.058 Net section

Mean 1.036 No. 4 S.D. 0.0256 C.o.V. 0.0429

Note: Full fu used for Pp calculation.

120

Table F7 042-G550 Longitudinal AISI (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CL 0.41 3.62 3.64 0.995 End pull-out042-G550-B1-12×75-M12-IL 0.41 3.14 3.58 0.878 End pull-out042-G550-B1-24×75-M12-CL 0.41 6.99 7.21 0.970 End pull-out042-G550-B1-24×75-M12-IL 0.41 6.15 7.06 0.871 End pull-out042-G550-B1W-24×75-M12-CL 0.41 7.44 7.18 1.036 End pull-out042-G550-B1W-24×75-M12-IL 0.41 7.12 7.06 1.009 End pull-out

Mean 0.960 No. 6 S.D. 0.0697 C.o.V. 0.0937

042-G550-B1-36×75-M12-CL 0.41 6.00 10.6 0.565 Bearing042-G550-B1-36×75-M12-IL 0.41 7.39 10.6 0.696 Bearing042-G550-B1-48×75-M12-CL 0.41 7.26 10.6 0.684 Bearing042-G550-B1-48×75-M12-IL 0.41 7.75 10.6 0.731 Bearing042-G550-B1-60×75-M12-CL 0.41 6.59 10.6 0.621 Bearing042-G550-B1-60×75-M12-IL 0.41 7.42 10.6 0.699 Bearing042-G550-B2-48×75-M12-CL 0.41 13.0 21.2 0.612 Bearing042-G550-B2-48×75-M12-IL 0.41 13.5 21.2 0.634 Bearing042-G550-B2-48×95-M12-CL 0.41 13.5 21.2 0.637 Bearing042-G550-B2-48×95-M12-IL 0.41 13.7 21.2 0.643 Bearing042-G550-B1W-36×75-M12-CL 0.41 6.50 10.6 0.612 Bearing042-G550-B1W-36×75-M12-IL 0.41 7.50 10.6 0.706 Bearing042-G550-B1W-48×75-M12-CL 0.41 7.40 10.6 0.697 Bearing042-G550-B1W-48×75-M12-IL 0.41 7.58 10.6 0.714 Bearing

Mean 0.661 No. 14 S.D. 0.0492 C.o.V. 0.0809

042-G550-B2-48×55-M12-IL 0.41 12.1 10.5 1.149 Net section042-G550-B3-48×55-M12-CLc 0.41 13.8 11.1 1.250 Net section042-G550-B3-48×55-M12-ILc 0.41 13.3 11.0 1.207 Net section

Mean 1.202 No. 3 S.D. 0.0508 C.o.V. 0.0732

Note: Full fu used for Pp calculation.

121

Table F8 042-G550 Transverse AISI (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CT 0.41 3.96 3.97 0.997 End pull-out042-G550-B1-12×75-M12-IT 0.41 2.08 3.90 0.533 End pull-out042-G550-B1-24×75-M12-CT 0.41 6.93 8.02 0.864 End pull-out042-G550-B1-24×75-M12-IT 0.41 7.05 8.05 0.875 End pull-out042-G550-B1W-24×75-M12-CT 0.41 5.47 8.15 0.670 End pull-out042-G550-B1W-24×75-M12-IT 0.41 6.71 8.09 0.829 End pull-out

Mean 0.795 No. 6 S.D. 0.166 C.o.V. 0.269

042-G550-B1-36×75-M12-CT 0.41 6.29 12.1 0.522 Bearing042-G550-B1-36×75-M12-IT 0.41 7.89 12.1 0.654 Bearing042-G550-B1-48×75-M12-CT 0.41 7.78 12.1 0.645 Bearing042-G550-B1-48×75-M12-IT 0.41 7.93 12.1 0.658 Bearing042-G550-B1-60×75-M12-CT 0.41 6.72 12.1 0.557 Bearing042-G550-B1-60×75-M12-IT 0.41 7.10 12.1 0.589 Bearing042-G550-B2-48×75-M12-CT 0.41 12.6 24.1 0.524 Bearing042-G550-B2-48×75-M12-IT 0.41 15.3 24.1 0.636 Bearing042-G550-B2-48×95-M12-CT 0.41 13.6 24.1 0.563 Bearing042-G550-B2-48×95-M12-IT 0.41 14.4 24.1 0.596 Bearing042-G550-B1W-36×75-M12-CT 0.41 6.56 12.1 0.544 Bearing042-G550-B1W-36×75-M12-IT 0.41 7.72 12.1 0.640 Bearing042-G550-B1W-48×75-M12-CT 0.41 6.74 12.1 0.559 Bearing042-G550-B1W-48×75-M12-IT 0.41 7.14 12.1 0.593 Bearing

Mean 0.591 No. 14 S.D. 0.0484 C.o.V. 0.0889

042-G550-B2-48×55-M12-CT 0.41 13.2 12.0 1.104 Net section042-G550-B2-48×55-M12-IT 0.41 13.6 12.0 1.137 Net section042-G550-B3-48×55-M12-CTc 0.41 13.7 12.6 1.090 Net section042-G550-B3-48×55-M12-ITc 0.41 12.9 12.5 1.027 Net section

Mean 1.089 No. 4 S.D. 0.0461 C.o.V. 0.0733

Note: Full fu used for Pp calculation.

122

Table F9 042-G550 Diagonal AISI (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CD 0.41 4.31 3.61 1.195 End pull-out042-G550-B1-12×75-M12-ID 0.41 3.36 3.58 0.939 End pull-out042-G550-B1-24×75-M12-CD 0.41 5.79 7.12 0.814 End pull-out042-G550-B1-24×75-M12-ID 0.41 6.10 7.24 0.843 End pull-out042-G550-B1W-24×75-M12-CD 0.41 6.36 7.36 0.864 End pull-out042-G550-B1W-24×75-M12-ID 0.41 5.82 7.18 0.811 End pull-out

Mean 0.911 No. 6 S.D. 0.147 C.o.V. 0.208

042-G550-B1-36×75-M12-CD 0.41 7.64 10.8 0.709 Bearing042-G550-B1-36×75-M12-ID 0.41 6.54 10.8 0.606 Bearing042-G550-B1-48×75-M12-CD 0.41 7.20 10.8 0.667 Bearing042-G550-B1-48×75-M12-ID 0.41 7.14 10.8 0.662 Bearing042-G550-B1-60×75-M12-CD 0.41 5.70 10.8 0.528 Bearing042-G550-B1-60×75-M12-ID 0.41 7.40 10.8 0.686 Bearing042-G550-B2-48×75-M12-CD 0.41 12.5 21.6 0.580 Bearing042-G550-B2-48×75-M12-ID 0.41 13.4 21.6 0.621 Bearing042-G550-B2-48×95-M12-CD 0.41 11.1 21.6 0.514 Bearing042-G550-B2-48×95-M12-ID 0.41 13.0 21.6 0.601 Bearing042-G550-B1W-36×75-M12-CD 0.41 6.44 10.8 0.597 Bearing042-G550-B1W-36×75-M12-ID 0.41 6.88 10.8 0.638 Bearing042-G550-B1W-48×75-M12-CD 0.41 6.98 10.8 0.647 Bearing042-G550-B1W-48×75-M12-ID 0.41 6.98 10.8 0.647 Bearing

Mean 0.622 No. 14 S.D. 0.0557 C.o.V. 0.0974

042-G550-B2-48×55-M12-CDc 0.41 12.5 10.7 1.168 Net section042-G550-B2-48×55-M12-ID 0.41 12.3 10.7 1.145 Net section042-G550-B3-48×55-M12-CDc 0.41 12.9 11.2 1.150 Net section042-G550-B3-48×55-M12-IDc 0.41 13.0 11.2 1.154 Net section

Mean 1.154 No. 4 S.D. 0.0097 C.o.V. 0.0146

Note: Full fu used for Pp calculation.

123

Table F10 042-G550 Longitudinal Eurocode (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CL 0.41 3.62 3.03 1.194 End pull-out042-G550-B1-12×75-M12-IL 0.41 3.14 2.98 1.053 End pull-out042-G550-B1-24×75-M12-CL 0.41 6.99 6.01 1.164 End pull-out042-G550-B1-24×75-M12-IL 0.41 6.15 5.88 1.045 End pull-out042-G550-B1W-24×75-M12-CL 0.41 7.44 5.98 1.244 End pull-out042-G550-B1W-24×75-M12-IL 0.41 7.12 5.88 1.211 End pull-out

Mean 1.152 No. 6 S.D. 0.0836 C.o.V. 0.0937

042-G550-B1-36×75-M12-CL 0.41 6.00 8.84 0.678 Bearing042-G550-B1-36×75-M12-IL 0.41 7.39 8.84 0.835 Bearing042-G550-B1-48×75-M12-CL 0.41 7.26 8.84 0.821 Bearing042-G550-B1-48×75-M12-IL 0.41 7.75 8.84 0.877 Bearing042-G550-B1-60×75-M12-CL 0.41 6.59 8.84 0.745 Bearing042-G550-B1-60×75-M12-IL 0.41 7.42 8.84 0.839 Bearing042-G550-B2-48×75-M12-CL 0.41 13.0 17.7 0.735 Bearing042-G550-B2-48×75-M12-IL 0.41 13.5 17.7 0.761 Bearing042-G550-B2-48×95-M12-CL 0.41 13.5 17.7 0.764 Bearing042-G550-B2-48×95-M12-IL 0.41 13.7 17.7 0.772 Bearing042-G550-B1W-36×75-M12-CL 0.41 6.50 8.84 0.735 Bearing042-G550-B1W-36×75-M12-IL 0.41 7.50 8.84 0.847 Bearing042-G550-B1W-48×75-M12-CL 0.41 7.40 8.84 0.837 Bearing042-G550-B1W-48×75-M12-IL 0.41 7.58 8.84 0.857 Bearing

Mean 0.793 No. 14 S.D. 0.0590 C.o.V. 0.0809

042-G550-B2-48×55-M12-IL 0.41 12.1 11.3 1.073 Net section042-G550-B3-48×55-M12-CLc 0.41 13.8 11.6 1.196 Net section042-G550-B3-48×55-M12-ILc 0.41 13.3 11.5 1.155 Net section

Mean 1.141 No. 3 S.D. 0.0629 C.o.V. 0.0955

Note: Full fu used for Pp calculation.

124

Table F11 042-G550 Transverse Eurocode (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CT 0.41 3.96 3.31 1.196 End pull-out042-G550-B1-12×75-M12-IT 0.41 2.08 3.25 0.639 End pull-out042-G550-B1-24×75-M12-CT 0.41 6.93 6.68 1.037 End pull-out042-G550-B1-24×75-M12-IT 0.41 7.05 6.71 1.050 End pull-out042-G550-B1W-24×75-M12-CT 0.41 5.47 6.79 0.804 End pull-out042-G550-B1W-24×75-M12-IT 0.41 6.71 6.74 0.995 End pull-out

Mean 0.954 No. 6 S.D. 0.199 C.o.V. 0.269

042-G550-B1-36×75-M12-CT 0.41 6.29 10.0 0.626 Bearing042-G550-B1-36×75-M12-IT 0.41 7.89 10.0 0.785 Bearing042-G550-B1-48×75-M12-CT 0.41 7.78 10.0 0.774 Bearing042-G550-B1-48×75-M12-IT 0.41 7.93 10.0 0.790 Bearing042-G550-B1-60×75-M12-CT 0.41 6.72 10.0 0.669 Bearing042-G550-B1-60×75-M12-IT 0.41 7.10 10.0 0.706 Bearing042-G550-B2-48×75-M12-CT 0.41 12.6 20.1 0.629 Bearing042-G550-B2-48×75-M12-IT 0.41 15.3 20.1 0.763 Bearing042-G550-B2-48×95-M12-CT 0.41 13.6 20.1 0.675 Bearing042-G550-B2-48×95-M12-IT 0.41 14.4 20.1 0.715 Bearing042-G550-B1W-36×75-M12-CT 0.41 6.56 10.0 0.653 Bearing042-G550-B1W-36×75-M12-IT 0.41 7.72 10.0 0.769 Bearing042-G550-B1W-48×75-M12-CT 0.41 6.74 10.0 0.671 Bearing042-G550-B1W-48×75-M12-IT 0.41 7.14 10.0 0.711 Bearing

Mean 0.710 No. 14 S.D. 0.0580 C.o.V. 0.0889

042-G550-B2-48×55-M12-CT 0.41 13.2 12.8 1.031 Net section042-G550-B2-48×55-M12-IT 0.41 13.6 12.8 1.061 Net section042-G550-B3-48×55-M12-CTc 0.41 13.7 13.1 1.042 Net section042-G550-B3-48×55-M12-ITc 0.41 12.9 13.1 0.982 Net section

Mean 1.029 No. 4 S.D. 0.0336 C.o.V. 0.0566

Note: Full fu used for Pp calculation.

125

Table F12 042-G550 Diagonal Eurocode (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

042-G550-B1-12×75-M12-CD 0.41 4.31 3.01 1.434 End pull-out042-G550-B1-12×75-M12-ID 0.41 3.36 2.98 1.126 End pull-out042-G550-B1-24×75-M12-CD 0.41 5.79 5.93 0.977 End pull-out042-G550-B1-24×75-M12-ID 0.41 6.10 6.03 1.012 End pull-out042-G550-B1W-24×75-M12-CD 0.41 6.36 6.13 1.037 End pull-out042-G550-B1W-24×75-M12-ID 0.41 5.82 5.98 0.973 End pull-out

Mean 1.093 No. 6 S.D. 0.176 C.o.V. 0.208

042-G550-B1-36×75-M12-CD 0.41 7.64 8.99 0.850 Bearing042-G550-B1-36×75-M12-ID 0.41 6.54 8.99 0.728 Bearing042-G550-B1-48×75-M12-CD 0.41 7.20 8.99 0.801 Bearing042-G550-B1-48×75-M12-ID 0.41 7.14 8.99 0.794 Bearing042-G550-B1-60×75-M12-CD 0.41 5.70 8.99 0.634 Bearing042-G550-B1-60×75-M12-ID 0.41 7.40 8.99 0.823 Bearing042-G550-B2-48×75-M12-CD 0.41 12.5 18.0 0.696 Bearing042-G550-B2-48×75-M12-ID 0.41 13.4 18.0 0.745 Bearing042-G550-B2-48×95-M12-CD 0.41 11.1 18.0 0.616 Bearing042-G550-B2-48×95-M12-ID 0.41 13.0 18.0 0.722 Bearing042-G550-B1W-36×75-M12-CD 0.41 6.44 8.99 0.716 Bearing042-G550-B1W-36×75-M12-ID 0.41 6.88 8.99 0.765 Bearing042-G550-B1W-48×75-M12-CD 0.41 6.98 8.99 0.776 Bearing042-G550-B1W-48×75-M12-ID 0.41 6.98 8.99 0.777 Bearing

Mean 0.746 No. 14 S.D. 0.0669 C.o.V. 0.0974

042-G550-B2-48×55-M12-CDc 0.41 12.5 11.5 1.090 Net section042-G550-B2-48×55-M12-ID 0.41 12.3 11.5 1.069 Net section042-G550-B3-48×55-M12-CDc 0.41 12.9 11.8 1.100 Net section042-G550-B3-48×55-M12-IDc 0.41 13.0 11.8 1.103 Net section

Mean 1.091 No. 4 S.D. 0.0156 C.o.V. 0.0248

Note: Full fu used for Pp calculation.

126

Table F13 042-G550 AISI Derived Resistance (Capacity) Factor, φ, Statistical Data for Bolted Connection Failure Types

Longitudinal Transverse Diagonal

f u,Comm (MPa) 735 814 726 f u,SU (MPa) 658 745 648 f u,BHP (MPa) 673 763 672

Mm 1.308 1.445 1.272 Mm (with 0.75fu) 1.744 1.927 1.696 VM 0.0578 0.0453 0.0603

t b,Comm (mm) 0.41 0.41 0.41 tb,SU (mm) 0.41 0.41 0.41 t b,BHP (mm) 0.42 0.41 0.42 Fm 0.962 0.975 0.967 VF 0.0161 0.0161 0.0161

Table F14 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - Australia (SA/SNZ, 1996)

Failure Type Longitudinal Transverse Diagonal

End pull-out Pm 0.960 0.795 0.911 Pm (with 0.75fu) 1.280 1.060 1.215 VP 0.0937 0.269 0.208 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.76/0.68/0.60 0.49/0.41/0.34 0.56/0.48/0.42 φ (calc. 0.75 fu) 1.35/1.21/1.07 0.87/0.73/0.60 0.99/0.85/0.75 φ (current) 0.60 0.60 0.60

Bearing Pm 0.661 0.591 0.622 Pm (with 0.75fu) 0.881 0.788 0.829 VP 0.0809 0.0889 0.0974 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.53/0.47/0.42 0.53/0.47/0.42 0.48/0.42/0.38 φ (calc. 0.75 fu) 0.94/0.84/0.75 0.94/0.84/0.75 0.85/0.75/0.68 φ (current) 0.60 0.60 0.60

Net section fracture Pm 1.202 1.089 1.154 Pm (with 0.75fu) 1.603 1.452 1.539 VP 0.0732 0.0733 0.0146 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.98/0.87/0.78 1.00/0.89/0.80 0.95/0.85/0.76 φ (calc. 0.75 fu) 1.74/1.55/1.39 1.78/1.58/1.42 1.69/1.51/1.35 φ (current) 0.55 0.55 0.55

127

Table F15 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - New Zealand (SA/SNZ, 1996)

Failure Type Longitudinal Transverse Diagonal

End pull-out Pm 0.960 0.795 0.911 Pm (with 0.75fu) 1.280 1.060 1.215 VP 0.0937 0.269 0.208 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.80/0.71/0.63 0.51/0.43/0.36 0.59/0.51/0.44 φ (calc. 0.75 fu) 1.42/1.26/1.12 0.91/0.76/0.64 1.05/0.91/0.78 φ (current) 0.60 0.60 0.60

Bearing Pm 0.661 0.591 0.622 Pm (with 0.75fu) 0.881 0.788 0.829 VP 0.0809 0.0889 0.0974 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.56/0.50/0.44 0.56/0.50/0.44 0.50/0.45/0.40 φ (calc. 0.75 fu) 0.99/0.89/0.78 0.99/0.89/0.78 0.89/0.80/0.71 φ (current) 0.60 0.60 0.60

Net section fracture Pm 1.202 1.089 1.154 Pm (with 0.75fu) 1.603 1.452 1.539 VP 0.0732 0.0733 0.0146 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 1.03/0.92/0.82 1.05/0.94/0.84 1.00/0.90/0.80 φ (calc. 0.75 fu) 1.83/1.64/1.46 1.87/1.67/1.49 1.78/1.60/1.42 φ (current) 0.55 0.55 0.55

Table F16 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted

Connection Failure Types - Canada (CSA, 1994) Failure Type Longitudinal Transverse Diagonal

End pull-out Pm 1.391 1.180 1.391 Pm (with 0.75fu) 1.855 1.573 1.855 VP 0.357 0.507 0.599 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.59/0.48/0.39 0.35/0.27/0.20 0.27/0.19/0.14 φ (calc. 0.75 fu) 1.05/0.85/0.69 0.62/0.48/0.36 0.48/0.34/0.25 φ (current) 0.75 0.75 0.75

Bearing Pm 0.991 0.887 0.933 Pm (with 0.75fu) 1.321 1.183 1.244 VP 0.0809 0.0889 0.0974 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.80/0.71/0.63 0.80/0.71/0.63 0.72/0.64/0.56 φ (calc. 0.75 fu) 1.42/1.26/1.12 1.42/1.26/1.12 1.28/1.34/0.99 φ (current) 0.75 0.75 0.75

Net section fracture Pm 1.088 0.977 1.036 Pm (with 0.75fu) 1.451 1.303 1.381 VP 0.114 0.0475 0.0429 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.84/0.74/0.65 0.92/0.82/0.74 0.84/0.76/0.68 φ (calc. 0.75 fu) 1.49/1.32/1.16 1.64/1.46/1.32 1.49/1.35/1.21 φ (current) 0.75 0.75 0.75

128

Table F17 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted Connection Failure Types - USA (AISI, 1996)

Failure Type Longitudinal Transverse Diagonal

End pull-out Pm 0.960 0.795 0.911 Pm (with 0.75fu) 1.280 1.060 1.215 VP 0.0937 0.269 0.208 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.80/0.71/0.63 0.51/0.43/0.36 0.59/0.51/0.44 φ (calc. 0.75 fu) 1.42/1.26/1.12 0.91/0.76/0.64 1.05/0.91/0.78 φ (current) 0.60 0.60 0.60

Bearing Pm 0.661 0.591 0.622 Pm (with 0.75fu) 0.881 0.788 0.829 VP 0.0809 0.0889 0.0974 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.56/0.50/0.44 0.56/0.50/0.44 0.50/0.45/0.40 φ (calc. 0.75 fu) 0.99/0.89/0.78 0.99/0.89/0.78 0.89/0.80/0.71 φ (current) 0.60 0.60 0.60

Net section fracture Pm 1.202 1.089 1.154 Pm (with 0.75fu) 1.603 1.452 1.539 VP 0.0732 0.0733 0.0146 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 1.03/0.92/0.82 1.05/0.94/0.84 1.00/0.90/0.80 φ (calc. 0.75 fu) 1.83/1.64/1.46 1.87/1.67/1.49 1.78/1.60/1.42 φ (current) 0.55 0.55 0.55

Table F18 042-G550 AISI Derived Resistance (Capacity) Factors, φ, for Bolted

Connection Failure Types - Europe (Eurocode, 1996) Failure Type Longitudinal Transverse Diagonal

End pull-out Pm 1.152 0.954 1.093 Pm (with 0.75fu) 1.536 1.272 1.457 VP 0.0937 0.269 0.208 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.92/0.82/0.73 0.59/0.50/0.42 0.68/0.59/0.51 φ (calc. 0.75 fu) 1.64/1.46/1.30 1.05/0.89/0.75 1.21/1.05/0.91 φ (current) 0.80 0.80 0.80

Bearing Pm 0.793 0.710 0.746 Pm (with 0.75fu) 1.057 0.947 0.995 VP 0.0809 0.0889 0.0974 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.65/0.58/0.51 0.65/0.58/0.51 0.58/0.51/0.46 φ (calc. 0.75 fu) 1.15/1.03/0.91 1.15/1.03/0.91 1.03/0.91/0.82 φ (current) 0.80 0.80 0.80

Net section fracture Pm 1.141 1.029 1.091 Pm (with 0.75fu) 1.521 1.372 1.455 VP 0.0955 0.0566 0.0248 βo 3.5/4.0/4.5 3.5/4.0/4.5 3.5/4.0/4.5 φ (calculated) 0.91/0.81/0.72 0.97/0.87/0.78 0.91/0.81/0.73 φ (calc. 0.75 fu) 1.62/1.44/1.28 1.72/1.55/1.39 1.62/1.44/1.30 φ (current) 0.80 0.80 0.80

129

Table F19 060-G550 Longitudinal AS/NZS 4600 (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IL 0.59 3.96 5.04 0.786 End pull-out060-G550-B1-24×75-M12-IL 0.59 9.05 10.0 0.907 End pull-out060-G550-B1W-24×75-M12-IL 0.59 8.37 10.1 0.829 End pull-out

Mean 0.841 No. 3 S.D. 0.061 C.o.V. -

060-G550-B1-36×75-M12-IL 0.59 10.0 14.9 0.670 Bearing060-G550-B1-48×75-M12-IL 0.59 9.81 14.9 0.657 Bearing060-G550-B1-60×75-M12-IL 0.59 11.1 14.9 0.741 Bearing060-G550-B2-48×75-M12-ILc 0.59 20.4 29.9 0.683 Bearing060-G550-B2-48×95-M12-ILc 0.59 23.0 29.9 0.771 Bearing060-G550-B1W-36×75-M12-IL 0.59 11.5 14.9 0.773 Bearing060-G550-B1W-48×75-M12-IL 0.59 10.9 14.9 0.732 Bearing

Mean 0.718 No. 7 S.D. 0.048 C.o.V. 0.082

060-G550-B2-48×55-M12-ILc 0.59 17.2 14.8 1.163 Net section060-G550-B3-48×55-M12-ILc 0.59 17.3 15.5 1.118 Net section

Mean 1.140 No. 2 S.D. 0.032

Note: Full fu used for Pp calculation. C.o.V. -

Table F20 060-G550 Transverse AS/NZS 4600 (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IT 0.59 4.05 5.67 0.714 End pull-out060-G550-B1-24×75-M12-IT 0.59 8.37 11.1 0.752 End pull-out060-G550-B1W-24×75-M12-IT 0.59 8.01 11.1 0.722 End pull-out

Mean 0.729 No. 3 S.D. 0.020 C.o.V. -

060-G550-B1-36×75-M12-IT 0.59 10.1 16.7 0.606 Bearing060-G550-B1-48×75-M12-IT 0.59 11.0 16.7 0.663 Bearing060-G550-B1-60×75-M12-IT 0.59 9.51 16.7 0.570 Bearing060-G550-B2-48×75-M12-ITc 0.59 21.1 33.3 0.634 Bearing060-G550-B2-48×95-M12-ITc 0.59 22.3 33.3 0.669 Bearing060-G550-B1W-36×75-M12-IT 0.59 11.2 16.7 0.669 Bearing060-G550-B1W-48×75-M12-IT 0.59 10.7 16.7 0.641 Bearing

Mean 0.636 No. 7 S.D. 0.037 C.o.V. 0.071

060-G550-B2-48×55-M12-ITc 0.59 19.3 16.5 1.168 Net section060-G550-B3-48×55-M12-ITc 0.59 18.8 17.3 1.086 Net section

Mean 1.127 No. 2 S.D. 0.058

Note: Full fu used for Pp calculation. C.o.V. -

130

Table F21 060-G550 Diagonal AS/NZS 4600 (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-ID 0.59 4.20 5.07 0.828 End pull-out060-G550-B1-24×75-M12-ID 0.59 8.92 10.0 0.896 End pull-out060-G550-B1W-24×75-M12-ID 0.59 8.30 10.2 0.810 End pull-out

Mean 0.845 No. 3 S.D. 0.045 C.o.V. -

060-G550-B1-36×75-M12-ID 0.59 10.5 15.0 0.701 Bearing060-G550-B1-48×75-M12-ID 0.59 9.67 15.0 0.643 Bearing060-G550-B1-60×75-M12-ID 0.59 9.23 15.0 0.614 Bearing060-G550-B2-48×75-M12-IDc 0.59 22.1 30.0 0.736 Bearing060-G550-B2-48×95-M12-IDc 0.59 21.0 30.0 0.700 Bearing060-G550-B1W-36×75-M12-ID 0.59 9.76 15.0 0.650 Bearing060-G550-B1W-48×75-M12-ID 0.59 12.1 15.0 0.808 Bearing

Mean 0.693 No. 7 S.D. 0.066 C.o.V. 0.116

060-G550-B2-48×55-M12-IDc 0.59 17.4 14.9 1.172 Net section060-G550-B3-48×55-M12-IDc 0.59 17.2 15.6 1.104 Net section

Mean 1.138 No. 2 S.D. 0.048

Note: Full fu used for Pp calculation. C.o.V. -

Table F22 060-G550 Longitudinal CSA-S136 (1994) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IL 0.59 3.96 2.49 1.592 End pull-out060-G550-B1-24×75-M12-IL 0.59 9.05 8.41 1.076 End pull-out060-G550-B1W-24×75-M12-IL 0.59 8.37 8.56 0.978 End pull-out

Mean 1.215 No. 3 S.D. 0.330 C.o.V. -

060-G550-B1-36×75-M12-IL 0.59 10.0 10.0 1.004 Bearing060-G550-B1-48×75-M12-IL 0.59 9.81 10.0 0.985 Bearing060-G550-B1-60×75-M12-IL 0.59 11.1 10.0 1.112 Bearing060-G550-B2-48×75-M12-ILc 0.59 20.4 19.9 1.025 Bearing060-G550-B2-48×95-M12-ILc 0.59 23.0 19.9 1.157 Bearing060-G550-B1W-36×75-M12-IL 0.59 11.5 10.0 1.160 Bearing060-G550-B1W-48×75-M12-IL 0.59 10.9 10.0 1.097 Bearing

Mean 1.077 No. 7 S.D. 0.072 C.o.V. 0.082

060-G550-B2-48×55-M12-ILc 0.59 17.2 16.9 1.020 Net section060-G550-B3-48×55-M12-ILc 0.59 17.3 16.9 1.026 Net section

Mean 1.023 No. 2 S.D. 0.004

Note: Full fu used for Pp calculation. C.o.V. -

131

Table F23 060-G550 Transverse CSA-S136 (1994) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IT 0.59 4.05 2.83 1.429 End pull-out060-G550-B1-24×75-M12-IT 0.59 8.37 9.39 0.892 End pull-out060-G550-B1W-24×75-M12-IT 0.59 8.01 9.33 0.858 End pull-out

Mean 1.060 No. 3 S.D. 0.320 C.o.V. -

060-G550-B1-36×75-M12-IT 0.59 10.1 11.1 0.909 Bearing060-G550-B1-48×75-M12-IT 0.59 11.0 11.1 0.994 Bearing060-G550-B1-60×75-M12-IT 0.59 9.51 11.1 0.856 Bearing060-G550-B2-48×75-M12-ITc 0.59 21.1 22.2 0.950 Bearing060-G550-B2-48×95-M12-ITc 0.59 22.3 22.2 1.004 Bearing060-G550-B1W-36×75-M12-IT 0.59 11.2 11.1 1.004 Bearing060-G550-B1W-48×75-M12-IT 0.59 10.7 11.1 0.961 Bearing

Mean 0.954 No. 7 S.D. 0.055 C.o.V. 0.071

060-G550-B2-48×55-M12-ITc 0.59 19.3 18.8 1.025 Net section060-G550-B3-48×55-M12-ITc 0.59 18.8 18.8 0.997 Net section

Mean 1.011 No. 2 S.D. 0.019

Note: Full fu used for Pp calculation. C.o.V. -

Table F24 060-G550 Diagonal CSA-S136 (1994) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-ID 0.59 4.20 2.50 1.677 End pull-out060-G550-B1-24×75-M12-ID 0.59 8.92 8.36 1.066 End pull-out060-G550-B1W-24×75-M12-ID 0.59 8.30 8.71 0.952 End pull-out

Mean 1.232 No. 3 S.D. 0.390 C.o.V. -

060-G550-B1-36×75-M12-ID 0.59 10.5 10.0 1.052 Bearing060-G550-B1-48×75-M12-ID 0.59 9.67 10.0 0.965 Bearing060-G550-B1-60×75-M12-ID 0.59 9.23 10.0 0.921 Bearing060-G550-B2-48×75-M12-IDc 0.59 22.1 20.0 1.104 Bearing060-G550-B2-48×95-M12-IDc 0.59 21.0 20.0 1.049 Bearing060-G550-B1W-36×75-M12-ID 0.59 9.76 10.0 0.975 Bearing060-G550-B1W-48×75-M12-ID 0.59 12.1 10.0 1.212 Bearing

Mean 1.040 No. 7 S.D. 0.098 C.o.V. 0.116

060-G550-B2-48×55-M12-IDc 0.59 17.4 16.9 1.029 Net section060-G550-B3-48×55-M12-IDc 0.59 17.2 17.0 1.013 Net section

Mean 1.021 No. 2 S.D. 0.011

Note: Full fu used for Pp calculation. C.o.V. -

132

Table F25 060-G550 Longitudinal AISI (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IL 0.59 3.96 5.04 0.786 End pull-out060-G550-B1-24×75-M12-IL 0.59 9.05 10.0 0.907 End pull-out060-G550-B1W-24×75-M12-IL 0.59 8.37 10.1 0.829 End pull-out

Mean 0.841 No. 3 S.D. 0.061 C.o.V. -

060-G550-B1-36×75-M12-IL 0.59 10.0 14.9 0.670 Bearing060-G550-B1-48×75-M12-IL 0.59 9.81 14.9 0.657 Bearing060-G550-B1-60×75-M12-IL 0.59 11.1 14.9 0.741 Bearing060-G550-B2-48×75-M12-ILc 0.59 20.4 29.9 0.683 Bearing060-G550-B2-48×95-M12-ILc 0.59 23.0 29.9 0.771 Bearing060-G550-B1W-36×75-M12-IL 0.59 11.5 14.9 0.773 Bearing060-G550-B1W-48×75-M12-IL 0.59 10.9 14.9 0.732 Bearing

Mean 0.718 No. 7 S.D. 0.048 C.o.V. 0.082

060-G550-B2-48×55-M12-ILc 0.59 17.2 14.8 1.163 Net section060-G550-B3-48×55-M12-ILc 0.59 17.3 15.5 1.118 Net section

Mean 1.140 No. 2 S.D. 0.032

Note: Full fu used for Pp calculation. C.o.V. -

Table F26 060-G550 Transverse AISI (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IT 0.59 4.05 5.67 0.714 End pull-out060-G550-B1-24×75-M12-IT 0.59 8.37 11.1 0.752 End pull-out060-G550-B1W-24×75-M12-IT 0.59 8.01 11.1 0.722 End pull-out

Mean 0.729 No. 3 S.D. 0.020 C.o.V. -

060-G550-B1-36×75-M12-IT 0.59 10.1 16.7 0.606 Bearing060-G550-B1-48×75-M12-IT 0.59 11.0 16.7 0.663 Bearing060-G550-B1-60×75-M12-IT 0.59 9.51 16.7 0.570 Bearing060-G550-B2-48×75-M12-ITc 0.59 21.1 33.3 0.634 Bearing060-G550-B2-48×95-M12-ITc 0.59 22.3 33.3 0.669 Bearing060-G550-B1W-36×75-M12-IT 0.59 11.2 16.7 0.669 Bearing060-G550-B1W-48×75-M12-IT 0.59 10.7 16.7 0.641 Bearing

Mean 0.636 No. 7 S.D. 0.037 C.o.V. 0.071

060-G550-B2-48×55-M12-ITc 0.59 19.3 16.5 1.168 Net section060-G550-B3-48×55-M12-ITc 0.59 18.8 17.3 1.086 Net section

Mean 1.127 No. 2 S.D. 0.058

Note: Full fu used for Pp calculation. C.o.V. -

133

Table F27 060-G550 Diagonal AISI (1996) Reliability Study Data Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-ID 0.59 4.20 5.07 0.828 End pull-out060-G550-B1-24×75-M12-ID 0.59 8.92 10.0 0.896 End pull-out060-G550-B1W-24×75-M12-ID 0.59 8.30 10.2 0.810 End pull-out

Mean 0.845 No. 3 S.D. 0.045 C.o.V. -

060-G550-B1-36×75-M12-ID 0.59 10.5 15.0 0.701 Bearing060-G550-B1-48×75-M12-ID 0.59 9.67 15.0 0.643 Bearing060-G550-B1-60×75-M12-ID 0.59 9.23 15.0 0.614 Bearing060-G550-B2-48×75-M12-IDc 0.59 22.1 30.0 0.736 Bearing060-G550-B2-48×95-M12-IDc 0.59 21.0 30.0 0.700 Bearing060-G550-B1W-36×75-M12-ID 0.59 9.76 15.0 0.650 Bearing060-G550-B1W-48×75-M12-ID 0.59 12.1 15.0 0.808 Bearing

Mean 0.693 No. 7 S.D. 0.066 C.o.V. 0.116

060-G550-B2-48×55-M12-IDc 0.59 17.4 14.9 1.172 Net section060-G550-B3-48×55-M12-IDc 0.59 17.2 15.6 1.104 Net section

Mean 1.138 No. 2 S.D. 0.048

Note: Full fu used for Pp calculation. C.o.V. -

Table F28 060-G550 Longitudinal Eurocode (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IL 0.59 3.96 4.20 0.943 End pull-out060-G550-B1-24×75-M12-IL 0.59 9.05 8.31 1.089 End pull-out060-G550-B1W-24×75-M12-IL 0.59 8.37 8.42 0.995 End pull-out

Mean 1.009 No. 3 S.D. 0.074 C.o.V. -

060-G550-B1-36×75-M12-IL 0.59 10.0 12.4 0.804 Bearing060-G550-B1-48×75-M12-IL 0.59 9.81 12.4 0.788 Bearing060-G550-B1-60×75-M12-IL 0.59 11.1 12.4 0.890 Bearing060-G550-B2-48×75-M12-ILc 0.59 20.4 24.9 0.820 Bearing060-G550-B2-48×95-M12-ILc 0.59 23.0 24.9 0.925 Bearing060-G550-B1W-36×75-M12-IL 0.59 11.5 12.4 0.928 Bearing060-G550-B1W-48×75-M12-IL 0.59 10.9 12.4 0.878 Bearing

Mean 0.862 No. 7 S.D. 0.058 C.o.V. 0.082

060-G550-B2-48×55-M12-ILc 0.59 17.2 15.9 1.085 Net section060-G550-B3-48×55-M12-ILc 0.59 17.3 16.2 1.069 Net section

Mean 1.077 No. 2 S.D. 0.012

Note: Full fu used for Pp calculation. C.o.V. -

Table F29 060-G550 Transverse Eurocode (1996) Reliability Study Data

134

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-IT 0.59 4.05 4.73 0.857 End pull-out060-G550-B1-24×75-M12-IT 0.59 8.37 9.28 0.902 End pull-out060-G550-B1W-24×75-M12-IT 0.59 8.01 9.24 0.867 End pull-out

Mean 0.875 No. 3 S.D. 0.024 C.o.V. -

060-G550-B1-36×75-M12-IT 0.59 10.1 13.9 0.727 Bearing060-G550-B1-48×75-M12-IT 0.59 11.0 13.9 0.796 Bearing060-G550-B1-60×75-M12-IT 0.59 9.51 13.9 0.684 Bearing060-G550-B2-48×75-M12-ITc 0.59 21.1 27.8 0.760 Bearing060-G550-B2-48×95-M12-ITc 0.59 22.3 27.8 0.803 Bearing060-G550-B1W-36×75-M12-IT 0.59 11.2 13.9 0.803 Bearing060-G550-B1W-48×75-M12-IT 0.59 10.7 13.9 0.769 Bearing

Mean 0.763 No. 7 S.D. 0.044 C.o.V. 0.071

060-G550-B2-48×55-M12-ITc 0.59 19.3 17.7 1.090 Net section060-G550-B3-48×55-M12-ITc 0.59 18.8 18.1 1.039 Net section

Mean 1.065 No. 2 S.D. 0.036

Note: Full fu used for Pp calculation. C.o.V. -

Table F30 060-G550 Diagonal Eurocode (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G550-B1-12×75-M12-ID 0.59 4.20 4.22 0.994 End pull-out060-G550-B1-24×75-M12-ID 0.59 8.92 8.29 1.075 End pull-out060-G550-B1W-24×75-M12-ID 0.59 8.30 8.54 0.972 End pull-out

Mean 1.014 No. 3 S.D. 0.054 C.o.V. -

060-G550-B1-36×75-M12-ID 0.59 10.5 12.5 0.842 Bearing060-G550-B1-48×75-M12-ID 0.59 9.67 12.5 0.772 Bearing060-G550-B1-60×75-M12-ID 0.59 9.23 12.5 0.737 Bearing060-G550-B2-48×75-M12-IDc 0.59 22.1 25.0 0.883 Bearing060-G550-B2-48×95-M12-IDc 0.59 21.0 25.0 0.839 Bearing060-G550-B1W-36×75-M12-ID 0.59 9.76 12.5 0.780 Bearing060-G550-B1W-48×75-M12-ID 0.59 12.1 12.5 0.970 Bearing

Mean 0.832 No. 7 S.D. 0.079 C.o.V. 0.116

060-G550-B2-48×55-M12-IDc 0.59 17.4 15.9 1.093 Net section060-G550-B3-48×55-M12-IDc 0.59 17.2 16.3 1.056 Net section

Mean 1.074 No. 2 S.D. 0.027

Note: Full fu used for Pp calculation. C.o.V. -

Table F31 060-G300 Longitudinal AS/NZS 4600 (1996) Reliability Study Data

135

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IL 0.58 2.73 3.04 0.899 End pull-out060-G300-B1-24×75-M12-IL 0.58 5.87 5.99 0.980 End pull-out060-G300-B1W-24×75-M12-IL 0.58 6.61 6.06 1.090 End pull-out

Mean 0.990 No. 3 S.D. 0.096 C.o.V. -

060-G300-B1-36×75-M12-IL 0.58 6.20 9.00 0.688 Bearing060-G300-B1-48×75-M12-IL 0.58 6.38 9.00 0.709 Bearing060-G300-B1-60×75-M12-IL 0.58 6.39 9.00 0.710 Bearing060-G300-B2-48×95-M12-ILc 0.58 15.4 18.0 0.853 Bearing060-G300-B1W-36×75-M12-IL 0.58 7.35 9.00 0.817 Bearing060-G300-B1W-48×75-M12-IL 0.58 9.08 9.00 1.009 Bearing

Mean 0.798 No. 6 S.D. 0.123 C.o.V. 0.199

060-G300-B2-48×55-M12-ILc 0.58 10.1 8.91 1.137 Net section060-G300-B2-48×75-M12-ILc 0.58 14.3 12.0 1.196 Net section060-G300-B3-48×55-M12-ILc 0.58 9.70 9.32 1.040 Net section

Mean 1.124 No. 3 S.D. 0.079

Note: Full fu used for Pp calculation. C.o.V. -

Table F32 060-G300 Transverse AS/NZS 4600 (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IT 0.58 2.71 2.99 0.908 End pull-out060-G300-B1-24×75-M12-IT 0.58 6.29 5.95 1.058 End pull-out060-G300-B1W-24×75-M12-IT 0.58 6.06 5.97 1.015 End pull-out

Mean 0.994 No. 3 S.D. 0.078 C.o.V. -

060-G300-B1-36×75-M12-IT 0.58 6.06 8.94 0.678 Bearing060-G300-B1-48×75-M12-IT 0.58 6.18 8.94 0.692 Bearing060-G300-B1-60×75-M12-IT 0.58 6.26 8.94 0.701 Bearing060-G300-B2-48×95-M12-ITc 0.58 15.4 17.9 0.864 Bearing060-G300-B1W-36×75-M12-IT 0.58 7.82 8.94 0.875 Bearing060-G300-B1W-48×75-M12-IT 0.58 9.04 8.94 1.012 Bearing

Mean 0.804 No. 6 S.D. 0.135 C.o.V. 0.217

060-G300-B2-48×55-M12-ITc 0.58 10.1 8.85 1.143 Net section060-G300-B2-48×75-M12-ITc 0.58 14.4 11.9 1.216 Net section060-G300-B3-48×55-M12-ITc 0.58 10.0 9.28 1.082 Net section

Mean 1.147 No. 3 S.D. 0.067

Note: Full fu used for Pp calculation. C.o.V. -

Table F33 060-G300 Diagonal AS/NZS 4600 (1996) Reliability Study Data

136

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-ID 0.58 2.70 2.98 0.907 End pull-out060-G300-B1-24×75-M12-ID 0.58 6.54 6.13 1.067 End pull-out060-G300-B1W-24×75-M12-ID 0.58 6.18 6.07 1.017 End pull-out

Mean 0.997 No. 3 S.D. 0.082 C.o.V. -

060-G300-B1-36×75-M12-ID 0.58 6.65 9.13 0.728 Bearing060-G300-B1-48×75-M12-ID 0.58 6.67 9.13 0.731 Bearing060-G300-B1-60×75-M12-ID 0.58 6.51 9.13 0.713 Bearing060-G300-B2-48×95-M12-IDc 0.58 16.1 18.3 0.884 Bearing060-G300-B1W-36×75-M12-ID 0.58 8.65 9.13 0.947 Bearing060-G300-B1W-48×75-M12-ID 0.58 9.61 9.13 1.052 Bearing

Mean 0.842 No. 6 S.D. 0.141 C.o.V. 0.215

060-G300-B2-48×55-M12-IDc 0.58 9.95 9.04 1.100 Net section060-G300-B2-48×75-M12-IDc 0.58 14.5 12.1 1.194 Net section060-G300-B3-48×55-M12-IDc 0.58 10.1 9.46 1.065 Net section

Mean 1.120 No. 3 S.D. 0.066

Note: Full fu used for Pp calculation. C.o.V. -

Table F34 060-G300 Longitudinal CSA-S136 (1994) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IL 0.58 2.73 1.50 1.820 End pull-out060-G300-B1-24×75-M12-IL 0.58 5.87 5.04 1.165 End pull-out060-G300-B1W-24×75-M12-IL 0.58 6.61 5.13 1.288 End pull-out

Mean 1.424 No. 3 S.D. 0.349 C.o.V. -

060-G300-B1-36×75-M12-IL 0.58 6.20 6.00 1.033 Bearing060-G300-B1-48×75-M12-IL 0.58 6.38 6.00 1.063 Bearing060-G300-B1-60×75-M12-IL 0.58 6.39 6.00 1.065 Bearing060-G300-B2-48×95-M12-ILc 0.58 15.4 12.0 1.280 Bearing060-G300-B1W-36×75-M12-IL 0.58 7.35 6.00 1.225 Bearing060-G300-B1W-48×75-M12-IL 0.58 9.08 6.00 1.514 Bearing

Mean 1.197 No. 6 S.D. 0.185 C.o.V. 0.199

060-G300-B2-48×55-M12-ILc 0.58 10.1 10.2 0.998 Net section060-G300-B2-48×75-M12-ILc 0.58 14.3 15.1 0.946 Net section060-G300-B3-48×55-M12-ILc 0.58 9.70 10.2 0.955 Net section

Mean 0.966 No. 3 S.D. 0.028

Note: Full fu used for Pp calculation. C.o.V. -

Table F35 060-G300 Transverse CSA-S136 (1994) Reliability Study Data

137

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IT 0.58 2.71 1.46 1.860 End pull-out060-G300-B1-24×75-M12-IT 0.58 6.29 5.00 1.257 End pull-out060-G300-B1W-24×75-M12-IT 0.58 6.06 5.03 1.204 End pull-out

Mean 1.440 No. 3 S.D. 0.364 C.o.V. -

060-G300-B1-36×75-M12-IT 0.58 6.06 5.96 1.017 Bearing060-G300-B1-48×75-M12-IT 0.58 6.18 5.96 1.038 Bearing060-G300-B1-60×75-M12-IT 0.58 6.26 5.96 1.051 Bearing060-G300-B2-48×95-M12-ITc 0.58 15.4 11.9 1.296 Bearing060-G300-B1W-36×75-M12-IT 0.58 7.82 5.96 1.312 Bearing060-G300-B1W-48×75-M12-IT 0.58 9.04 5.96 1.518 Bearing

Mean 1.205 No. 6 S.D. 0.202 C.o.V. 0.217

060-G300-B2-48×55-M12-ITc 0.58 10.1 10.1 1.004 Net section060-G300-B2-48×75-M12-ITc 0.58 14.4 15.0 0.961 Net section060-G300-B3-48×55-M12-ITc 0.58 10.0 10.1 0.993 Net section

Mean 0.986 No. 3 S.D. 0.022

Note: Full fu used for Pp calculation. C.o.V. -

Table F36 060-G300 Diagonal CSA-S136 (1994) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-ID 0.58 2.70 1.40 1.930 End pull-out060-G300-B1-24×75-M12-ID 0.58 6.54 5.17 1.263 End pull-out060-G300-B1W-24×75-M12-ID 0.58 6.18 5.11 1.208 End pull-out

Mean 1.467 No. 3 S.D. 0.402 C.o.V. -

060-G300-B1-36×75-M12-ID 0.58 6.65 6.09 1.093 Bearing060-G300-B1-48×75-M12-ID 0.58 6.67 6.09 1.096 Bearing060-G300-B1-60×75-M12-ID 0.58 6.51 6.09 1.069 Bearing060-G300-B2-48×95-M12-IDc 0.58 16.1 12.2 1.326 Bearing060-G300-B1W-36×75-M12-ID 0.58 8.65 6.09 1.420 Bearing060-G300-B1W-48×75-M12-ID 0.58 9.61 6.09 1.578 Bearing

Mean 1.264 No. 6 S.D. 0.211 C.o.V. 0.215

060-G300-B2-48×55-M12-IDc 0.58 9.95 10.3 0.966 Net section060-G300-B2-48×75-M12-IDc 0.58 14.5 15.3 0.944 Net section060-G300-B3-48×55-M12-IDc 0.58 10.1 10.3 0.979 Net section

Mean 0.963 No. 3 S.D. 0.018

Note: Full fu used for Pp calculation. C.o.V. -

Table F37 060-G300 Longitudinal AISI (1996) Reliability Study Data

138

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IL 0.58 2.73 3.04 0.899 End pull-out060-G300-B1-24×75-M12-IL 0.58 5.87 5.99 0.980 End pull-out060-G300-B1W-24×75-M12-IL 0.58 6.61 6.06 1.090 End pull-out

Mean 0.990 No. 3 S.D. 0.096 C.o.V. -

060-G300-B1-36×75-M12-IL 0.58 6.20 9.00 0.688 Bearing060-G300-B1-48×75-M12-IL 0.58 6.38 9.00 0.709 Bearing060-G300-B1-60×75-M12-IL 0.58 6.39 9.00 0.710 Bearing060-G300-B2-48×95-M12-ILc 0.58 15.4 18.0 0.853 Bearing060-G300-B1W-36×75-M12-IL 0.58 7.35 9.00 0.817 Bearing060-G300-B1W-48×75-M12-IL 0.58 9.08 9.00 1.009 Bearing

Mean 0.798 No. 6 S.D. 0.123 C.o.V. 0.199

060-G300-B2-48×55-M12-ILc 0.58 10.1 8.91 1.137 Net section060-G300-B2-48×75-M12-ILc 0.58 14.3 12.0 1.196 Net section060-G300-B3-48×55-M12-ILc 0.58 9.70 9.32 1.040 Net section

Mean 1.124 No. 3 S.D. 0.079

Note: Full fu used for Pp calculation. C.o.V. -

Table F38 060-G300 Transverse AISI (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IT 0.58 2.71 2.99 0.908 End pull-out060-G300-B1-24×75-M12-IT 0.58 6.29 5.95 1.058 End pull-out060-G300-B1W-24×75-M12-IT 0.58 6.06 5.97 1.015 End pull-out

Mean 0.994 No. 3 S.D. 0.078 C.o.V. -

060-G300-B1-36×75-M12-IT 0.58 6.06 8.94 0.678 Bearing060-G300-B1-48×75-M12-IT 0.58 6.18 8.94 0.692 Bearing060-G300-B1-60×75-M12-IT 0.58 6.26 8.94 0.701 Bearing060-G300-B2-48×95-M12-ITc 0.58 15.4 17.9 0.864 Bearing060-G300-B1W-36×75-M12-IT 0.58 7.82 8.94 0.875 Bearing060-G300-B1W-48×75-M12-IT 0.58 9.04 8.94 1.012 Bearing

Mean 0.804 No. 6 S.D. 0.135 C.o.V. 0.217

060-G300-B2-48×55-M12-ITc 0.58 10.1 8.85 1.143 Net section060-G300-B2-48×75-M12-ITc 0.58 14.4 11.9 1.216 Net section060-G300-B3-48×55-M12-ITc 0.58 10.0 9.28 1.082 Net section

Mean 1.147 No. 3 S.D. 0.067

Note: Full fu used for Pp calculation. C.o.V. -

Table F39 060-G300 Diagonal AISI (1996) Reliability Study Data

139

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-ID 0.58 2.70 2.98 0.907 End pull-out060-G300-B1-24×75-M12-ID 0.58 6.54 6.13 1.067 End pull-out060-G300-B1W-24×75-M12-ID 0.58 6.18 6.07 1.017 End pull-out

Mean 0.997 No. 3 S.D. 0.082 C.o.V. -

060-G300-B1-36×75-M12-ID 0.58 6.65 9.13 0.728 Bearing060-G300-B1-48×75-M12-ID 0.58 6.67 9.13 0.731 Bearing060-G300-B1-60×75-M12-ID 0.58 6.51 9.13 0.713 Bearing060-G300-B2-48×95-M12-IDc 0.58 16.1 18.3 0.884 Bearing060-G300-B1W-36×75-M12-ID 0.58 8.65 9.13 0.947 Bearing060-G300-B1W-48×75-M12-ID 0.58 9.61 9.13 1.052 Bearing

Mean 0.842 No. 6 S.D. 0.141 C.o.V. 0.215

060-G300-B2-48×55-M12-IDc 0.58 9.95 9.04 1.100 Net section060-G300-B2-48×75-M12-IDc 0.58 14.5 12.1 1.194 Net section060-G300-B3-48×55-M12-IDc 0.58 10.1 9.46 1.065 Net section

Mean 1.120 No. 3 S.D. 0.066

Note: Full fu used for Pp calculation. C.o.V. -

Table F40 060-G300 Longitudinal Eurocode (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IL 0.58 2.73 2.53 1.079 End pull-out060-G300-B1-24×75-M12-IL 0.58 5.87 4.99 1.177 End pull-out060-G300-B1W-24×75-M12-IL 0.58 6.61 5.05 1.308 End pull-out

Mean 1.188 No. 3 S.D. 0.115 C.o.V. -

060-G300-B1-36×75-M12-IL 0.58 6.20 7.50 0.826 Bearing060-G300-B1-48×75-M12-IL 0.58 6.38 7.50 0.850 Bearing060-G300-B1-60×75-M12-IL 0.58 6.39 7.50 0.852 Bearing060-G300-B2-48×95-M12-ILc 0.58 15.4 15.0 1.024 Bearing060-G300-B1W-36×75-M12-IL 0.58 7.35 7.50 0.980 Bearing060-G300-B1W-48×75-M12-IL 0.58 9.08 7.50 1.211 Bearing

Mean 0.957 No. 6 S.D. 0.148 C.o.V. 0.199

060-G300-B2-48×55-M12-ILc 0.58 10.1 9.55 1.061 Net section060-G300-B2-48×75-M12-ILc 0.58 14.3 12.7 1.130 Net section060-G300-B3-48×55-M12-ILc 0.58 9.70 9.75 0.995 Net section

Mean 1.062 No. 3 S.D. 0.068

Note: Full fu used for Pp calculation. C.o.V. -

Table F41 060-G300 Transverse Eurocode (1996) Reliability Study Data

140

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-IT 0.58 2.71 2.49 1.089 End pull-out060-G300-B1-24×75-M12-IT 0.58 6.29 4.95 1.270 End pull-out060-G300-B1W-24×75-M12-IT 0.58 6.06 4.98 1.218 End pull-out

Mean 1.192 No. 3 S.D. 0.093 C.o.V. -

060-G300-B1-36×75-M12-IT 0.58 6.06 7.45 0.814 Bearing060-G300-B1-48×75-M12-IT 0.58 6.18 7.45 0.830 Bearing060-G300-B1-60×75-M12-IT 0.58 6.26 7.45 0.841 Bearing060-G300-B2-48×95-M12-ITc 0.58 15.4 14.9 1.037 Bearing060-G300-B1W-36×75-M12-IT 0.58 7.82 7.45 1.050 Bearing060-G300-B1W-48×75-M12-IT 0.58 9.04 7.45 1.214 Bearing

Mean 0.964 No. 6 S.D. 0.162 C.o.V. 0.217

060-G300-B2-48×55-M12-ITc 0.58 10.1 9.48 1.067 Net section060-G300-B2-48×75-M12-ITc 0.58 14.4 12.6 1.149 Net section060-G300-B3-48×55-M12-ITc 0.58 10.0 9.70 1.034 Net section

Mean 1.083 No. 3 S.D. 0.059

Note: Full fu used for Pp calculation. C.o.V. -

Table F42 060-G300 Diagonal Eurocode (1996) Reliability Study Data

Specimen tb Pt Pp Pt / Pp Failure (mm) (kN) (kN) Mode

060-G300-B1-12×75-M12-ID 0.58 2.70 2.48 1.088 End pull-out060-G300-B1-24×75-M12-ID 0.58 6.54 5.10 1.281 End pull-out060-G300-B1W-24×75-M12-ID 0.58 6.18 5.06 1.220 End pull-out

Mean 1.196 No. 3 S.D. 0.099 C.o.V. -

060-G300-B1-36×75-M12-ID 0.58 6.65 7.61 0.874 Bearing060-G300-B1-48×75-M12-ID 0.58 6.67 7.61 0.877 Bearing060-G300-B1-60×75-M12-ID 0.58 6.51 7.61 0.855 Bearing060-G300-B2-48×95-M12-IDc 0.58 16.1 15.2 1.061 Bearing060-G300-B1W-36×75-M12-ID 0.58 8.65 7.61 1.136 Bearing060-G300-B1W-48×75-M12-ID 0.58 9.61 7.61 1.262 Bearing

Mean 1.011 No. 6 S.D. 0.169 C.o.V. 0.215

060-G300-B2-48×55-M12-IDc 0.58 9.95 9.69 1.027 Net section060-G300-B2-48×75-M12-IDc 0.58 14.5 12.8 1.128 Net section060-G300-B3-48×55-M12-IDc 0.58 10.1 9.89 1.019 Net section

Mean 1.058 No. 3 S.D. 0.061

Note: Full fu used for Pp calculation. C.o.V. -

APPENDIX 'G'

141

TEST LOAD VS. CONNECTION ELONGATION GRAPHS

G1 General Test load versus connection elongation graphs which describe the general behaviour of each specimen during testing are included in this Appendix. One graph for each type of connection and material is presented. The displacement values shown were calculated over an initial distance of 200mm, from the average readings recorded for the top two displacement transducers minus the average reading recorded for the bottom two displacement transducers (see Appendix 'B' for displacement transducer location). The elongation measured for each connection may contain a zone of slip of up to 4.6mm, i.e. bearing of the bolt on both top and bottom specimens occurred after initial loading due to the use of oversize holes and the placement of bolt(s).

142

0500

1000150020002500300035004000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G1 042-G550-B1-12×75-M12-IL

01000

2000300040005000

60007000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G3 042-G550-B1-36×75-M12-CL

01000

2000300040005000

60007000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G2 042-G550-B1-24×75-M12-IL

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G4 042-G550-B1-48×75-M12-ID

143

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G5 042-G550-B1-60×75-M12-CD

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G7 042-G550-B1W-36×75-M12-ID

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G6 042-G550-B1W-24×75-M12-IT

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G8 042-G550-B1W-48×75-M12-ID

144

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G9 042-G550-B2-48×55-M12-CL

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G11 042-G550-B2-48×95-M12-ID

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

Displacement(mm)

Loa

d (N

)

Figure G10 042-G550-B2-48×75-M12-CD

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G12 042-G550-B3-48×55-M12-CD

145

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G13 060-G550-B1-12×75-M12-IT

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G15 060-G550-B1-36×75-M12-IL

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G14 060-G550-B1-24×75-M12-ID

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G16 060-G550-B1-48×75-M12-ID

146

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G17 060-G550-B1-60×75-M12-ID

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G19 060-G550-B1W-36×75-M12-IL

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G18 060-G550-B1W-24×75-M12-IL

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G20 060-G550-B1W-48×75-M12-ID

147

0250050007500

10000125001500017500200002250025000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G21 060-G550-B2-48×55-M12-IT

0250050007500

10000125001500017500200002250025000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G23 060-G550-B2-48×95-M12-ID

0250050007500

10000125001500017500200002250025000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G22 060-G550-B2-48×75-M12-ID

0250050007500

10000125001500017500200002250025000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G24 060-G550-B3-48×55-M12-ID

148

0500

1000150020002500300035004000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G25 060-G300-B1-12×75-M12-ID

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G27 060-G300-B1-36×75-M12-IL

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G26 060-G300-B1-24×75-M12-IT

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G28 060-G300-B1-48×75-M12-ID

149

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G29 060-G300-B1-60×75-M12-ID

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G31 060-G300-B1W-36×75-M12-IL

010002000300040005000600070008000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G30 060-G300-B1W-24×75-M12-IL

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G32 060-G300-B1W-48×75-M12-IT

150

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G33 060-G300-B2-48×55-M12-ID

02000400060008000

10000120001400016000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G35 060-G300-B2-48×95-M12-IL

02000400060008000

10000120001400016000

0 5 10 15 20 25 30

Displacement (mm)

Loa

d (N

)

Figure G34 060-G300-B2-48×75-M12-IL

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Displacement (mm)L

oad

(N)

Figure G36 060-G300-B3-48×55-M12-IT

151

APPENDIX 'H' PHOTOGRAPHS OF BOLTED CONNECTION SPECIMENS

Figure H1 060-G550 and G300 12mm Edge Distance End Pull-Out Failure

Figure H2 060-G550 and G300 24mm Edge Distance End Pull-Out Failure

152

Figure H3 060-G550 95mm and 75mm Wide Double Bolt Bearing Failure

Figure H4 060-G550 and G300 55mm Wide Double Bolt Net Section Fracture

153

Figure H5 042-G550 48mm Edge Distance Bearing Failure

Figure H6 042-G550 Single Bolt Winged End Pull-Out and Bearing Failure

154

APPENDIX 'I' BOLTED CONNECTION EXAMPLE CALCULATIONS

I1 General Included with the example calculations are the clause, section, equation or table number from the respective design standards. Equation and table numbers from Appendix 'A' are shown in italics. Test specimen 042-G550-B2-48×55-M12-CT

Top Bottomtb 0.41mm 0.41mm w 55.0mm 55.0mm e1 47.9mm 47.7mm e2 36.3mm 36.4mm d 14.3mm 14.3mm fy 816.7MPa 816.7MPa fu 816.7MPa 816.7MPa fuBolt 800MPa 800MPa dBolt 12.0mm 12.0mm pBolt 1.5mm 1.5mm Pt 13.2kN

155

I2 Australia / New Zealand (SA/SNZ, 1996) Yielding of the Gross Section N* ≤ φtNt Sec. 3.2.1 (A1) Nt = Ag fy Eq. 3.2.1(1) (A2) Ag = 55.0 ⋅ 0.41 = 22.6 mm2 Nt = 22.6 ⋅ 816.7 = 18.4 kN Fracture of the Net Section Nf

* ≤ φtNf Sec. 5.3.3 (A11)

N r r ds

f A f Af ff f

fu n u n= − +

⎝⎜

⎠⎟ ≤1 0 0 9 3. . Eq. 5.3.3(1) (A14)

An = 22.6 - 14.3 ⋅ 0.41 = 16.7mm2

Nf kN= − ⋅ +⋅ ⋅⎛

⎝⎜⎞⎠⎟

⋅ =1 0 0 9 0 5 3 0 5 12 055 0

816 7 16 7 12 0. . . . ..

. . .

Nf ≤ 816.7 ⋅ 16.7 = 13.6 kN End Pull-Out Vf

* ≤ φVf Sec. 5.3.2 (A7) Vf = tefu Eq. 5.3.2 (A8)

Vf kN= + −⎛⎝⎜

⎞⎠⎟ =0 47 7 36 14 3

2816 7 25 8.41 . .4 . . .

Note: e is the sum of the distance from the centre of each bolt hole to the nearest hole edge or specimen edge in the line of load. Bearing Vb

* ≤ φVb Sec. 5.3.4 (A17) Vf = 3.00 fudft Table 5.3.4.1 (Table A1) Vb = 2 (3.00 ⋅ 816.7 ⋅ 12.0 ⋅ 0.41) = 24.1 kN Bolt Shear Vfv

* ≤ φVfv Sec. 5.3.5.1 (A18) Vfv = 0.62 fuf (nnAc + nxAo) Eq. 5.3.5.1 (A19) Ac = π (dBolt - 1.0825 pBolt)2 / 4 Ac = π (12.0 - 1.0825 ⋅ 1.5)2 / 4 = 84.6 mm2 Vfv = 2 (0.62 ⋅800 (1 ⋅ 84.6)) = 83.9 kN Predicted Mode of Failure = Fracture of the net section (12.0 kN)

156

I3 Canada (CSA, 1994) Nominal resistance values calculated (φ = φu = φc = 1.0). Yielding of the Gross Section Tr = φ Ag Fy Cl. 6.3.1 (A23) Ag = 55.0 ⋅ 0.41 = 22.6 mm2 Tr = 1.0 ⋅ 22.6 ⋅ 816.7 = 18.4 kN Fracture of the Net Section Tr = φu An Fu Cl. 6.3.1 (A24) An = 22.6 - 14.3 ⋅ 0.41 = 16.7 mm2

Tr = 1.0 ⋅ 16.7 ⋅ 816.7 = 13.6 kN End Pull-Out Tr = φu An Fu Cl. 6.3.1 (A24) An = 2 ⋅ 0.6 (47.7 + 36.4 - 1.5 ⋅ 14.3) 0.41 = 30.8 mm2

Tr = 1.0 ⋅ 30.8 ⋅ 816.7 = 25.2 kN Note: An is calculated using the distance from centre of furthest bolt hole to the end of the specimen in the direction of load minus the diameter of all of the bolt holes included (see S136 Commentary (CSA, 1995). Bearing Br = φu C d t Fu Cl. 7.3.5.1 (A37) d / t = 12.0 / 0.41 = 29.3 ∴ C = 2 Table 12 (Table A3) Br = 1.0 ⋅ 2 (2 ⋅ 12.0 ⋅ 0.41 ⋅ 816.7) = 16.1 kN Bolt Shear Vr = φc 0.6 Ab Fu* Cl. 7.3.2 (A34) Vr = 0.7 Vr (if bolt threads are in the shear plane) Ab = π 12.02 / 4 = 113 mm2

Vr = 1.0 ⋅ 2 (0.6 ⋅ 113 ⋅ 800) = 76.0 kN Predicted Mode of Failure = Fracture of the net section (13.6 kN)

157

I4 USA (AISI, 1996) Yielding of the Gross Section Sec. C2 Tn = Ag Fy Eq. C2-1 (A40) Ag = 55.0 ⋅ 0.41 = 22.6 mm2 Tn = 22.6 ⋅ 816.7 = 18.4 kN Fracture of the Net Section Sec. E3.2

P r rds

F A F An n= − +⎛⎝⎜

⎞⎠⎟ ≤1 0 0 9 3. . u u n Eq. E3.2-1 (A45, A46)

An = 22.6 - 14.3 ⋅ 0.41 = 16.7mm2

Pn = − ⋅ +⋅ ⋅⎛

⎝⎜⎞⎠⎟

⋅ =1 0 0 9 0 5 3 0 5 12 055 0

816 7 16 7 12 0. . . . ..

. . . kN

Pn ≤ 816.7 ⋅ 16.7 = 13.6 kN End Pull-Out Sec. E3.1 Pn = teFu Eq. E3.1-1 (A44)

Pn = + −⎛⎝⎜

⎞⎠⎟ =0 47 7 36 14 3

2816 7 25 8.41 . .4 . . . kN

Note: e is the sum of the distance from the centre of each bolt hole to the nearest hole edge or specimen edge in the line of load. Bearing Sec. E3.3 Pn = 3.00 Fudt Table E3.3-1 (Table A4) Pn = 2 (3.00 ⋅ 816.7 ⋅ 12.0 ⋅ 0.41) = 24.1 kN Bolt Shear (A490 bolts threads in the shear plane) Sec. E3.4 Pn = F Ab Eq. E3.4-1 (A48) F = Fnv = 465 MPa Table E3.4-1 (Table A6) Ab = π 12.02 / 4 = 113 mm2 Pn = 2 (113 ⋅ 465) = 105 kN Predicted Mode of Failure = Fracture of the net section (12.0 kN)

158

I5 Europe (Eurocode, 1996) Nominal resistance values calculated (γMO = γM2 = 1.0). Yielding of the Gross Section Sec. 5.2 Nt,Rd = fya Ag / γMO Eq. 5.1 (A51) Ag = 55.0 ⋅ 0.41 = 22.6 mm2 Nt,Rd = 22.6 ⋅ 816.7 / 1.0 = 18.4 kN Fracture of the Net Section Sec. 8.4 ( )( )F r d u A f A fn,Rd o net u M2 net u M2= + − ≤1 3 0 3. . γ γ Table 8.4 (A56)

Anet = 22.6 - 14.3 ⋅ 0.41 = 16.7mm2 ( )( )Fn,Rd / 1.0 kN= + ⋅ − ⋅ =1 3 0 5 14 3 55 0 0 3 16 7 816 7 12 8. . . . . . . . Fn,Rd ≤ 816.7 ⋅ 16.7 / 1.0 = 13.6 kN End Pull-Out Sec. 8.4 Fb,Rd = fue1t / 1.2 / γM2 Table 8.4 (A55)

Fb,Rd / 1.0 kN= + −⎛⎝⎜

⎞⎠⎟ =816 7 47 7 36 4 14 3

20 41 12 215. . . . . / . .

Note: e1 is the sum of the distance from the centre of each bolt hole to the nearest hole edge or specimen edge in the line of load. Bearing Sec. 8.4 Fb,Rd = 2.5 fudt / γM2 Table 8.4 (A54) Fb,Rd = 2 (2.5 ⋅ 816.7 ⋅ 12.0 ⋅ 0.41) / 1.0 = 20.1 kN Bolt Shear Sec. 8.4 Fv,Rd = 0.6 fub As / γM2 Table 8.4 (A57) As = π (12.0 - 0.9382 ⋅ 1.5)2 / 4 = 88.1 mm2 Pn = 2 (0.6 ⋅ 800 ⋅ 88.1) / 1.0 = 84.6 kN Predicted Mode of Failure = Fracture of the net section (12.8 kN)