Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona

37
Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona Structure and magnetism in the premartensitic and martensitic states in Heusler shape-memory alloys Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007 Antoni Planes Collaborators: E. Bonnot, T. Castán, Ll. Mañosa, X. Moya, M. Porta, E. Vives (UB), A. Saxena, T. Lookman, J. Lashley (Los Alamos), M. Acet, T. Krenke, E.F. Wassermann, S. Aksoy (Duisburg), M. Morin (INSA). T.A. Lograsso, J.L. Zarestky (Ames)

description

Structure and magnetism in the premartensitic and martensitic states in Heusler shape-memory alloys. Antoni Planes. Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona. - PowerPoint PPT Presentation

Transcript of Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona

Page 1: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona

Structure and magnetism in the premartensitic and martensitic states

in Heusler shape-memory alloys

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Antoni Planes

Collaborators: E. Bonnot, T. Castán, Ll. Mañosa, X. Moya, M. Porta, E. Vives (UB), A. Saxena, T. Lookman, J. Lashley (Los Alamos), M. Acet, T. Krenke, E.F. Wassermann, S. Aksoy (Duisburg), M. Morin (INSA). T.A. Lograsso, J.L. Zarestky (Ames)

Page 2: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Introduction

Magnetic shape-memory effect refers to the change of shape (deformation) of a magnetic material undergoing a martensitic transition caused by either:

inducing the transition or

rearranging the martensitic variantsby means of an applied magnetic field

Prototypical shape-memory alloy: Ni-Mn-Ga

Maximum induced deformation ~ 10% with an applied field ~ 10 kOe two orders of magnitude larger than in magnetosrictive Terfenol-D (Tb0.27Dy0.73Fe2)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 3: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Shape-memory properties

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Superelasticity Shape-memory effect

Ela

stic

Sup

erel

astic

Ela

stic

Page 4: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Magnetic shape-memory properties

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Magnetic superelasticity Magnetic shape-memory effect

H

H

Ela

stic

Sup

erel

astic

Ela

stic

Page 5: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

La2-xSrxCuO4 Lavrov et al., Nature, 418, 385 (2002) (antiferro)

Magnetic shape-memory materialsHEUSLER

IRON-BASED

OTHER

Ni-Mn-X Ullakko et al., APL, 69, 1966 (1996) (Ga)

(X= Ga, Al, In, Sn, …) Fujita et al., APL, 77, 3054 (2000) (Al)

Sutou et al., APL, 85, 4358 (2004); Krenke et al., PRB, 72, 014412 (2005); 73, 174413 (2006) (In,Sn)

Co-Ni-Al Oikawa et al., APL, 79, 2472 (2001)

Ni-Fe-Ga Morito et al., APL, 81, 5201 (2002); 83, 4993 (2003)

Fe-Pd James & Wuttig, PMA, 77, 1273 (1998)

Fe-Pt Kakeshita et al., APL, 77, 1502, (2000)

Co-Ni Zhou et al., APL, 82, 760 (2003)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 6: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

InterplayStructural degrees of freedom

Magnetic degrees of freedom

Unique pretransitional behaviour

Mesoscopic scaleElastic

domains(variants)

Magnetic domains

Microscopic scale

(spin-phonon interplay)

Magnetic shape-memory Magnetic superelasticity Magnetocaloric effect

Magnetostructural interplay

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 7: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Outline

Phase diagram and general properties Pretransitional effects: Phonon anomalies and the intermediate transition

Conclusions

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 8: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Magnetic properties

Heusler, L21 (Fm3m)

Ni

Mn

Ga

Ni2MnGa

• Ferromagnetic order (Tc~ 370 K)

• Total magnetic moment: µtotal 4.1 µB per f.u.

Non-stoichiometric Ni2Mn1+xGa1-x (µNi 0.3 µB per f.u.)• Weak magnetic anisotropy

BNitotal 3.5μx12μμ

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 9: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Phase diagram

Ni2+xMn1-xGaIntermediate

Martensite

L21-ferro

L21-para

From: Vasil’ev et al., Physics-Uspekhi, 46, 559 (2003)

Phase diagram at constant Ga concentration

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 10: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Phase diagram

7.0 7.2 7.4 7.6 7.8 8.0 8.20

300

600

900

1200

1500

L21

ferro

T (K

)

e/a

B2

martensitepara

L

L21

para

martensiteferrointermediate

ferro

Relative phase stability controlled (to a large extent) by the average number of valence electrons per atom, e/a

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 11: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Other effects

From: Khan et al., J. Phys. Condens. Matter, 16, 5259 (2004)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 12: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Cubic

Martensitic transition mechanism

Transformation mechanism: Shear + Shuffle on {110} planes along <1-10> directions

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

10M ([32]2)

14M ([52])

Page 13: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Martensitic structure

From: Lanska et al., J. Appl. Phys., 95, 8074 (2004)

7,0 7,2 7,4 7,6 7,8 8,0 8,20

300

600

900

1200

1500

L 21ferro

T (K

)

e/ a

B 2

martensitepara

L

L 21para

martensiteferro

intermediate

ferro

7,5 7,6 7,7 7,8

200

300

400

500

T (K

)e/ a

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

By increasing e/a the following structures occur:

10M 14M NM (L10 )

Page 14: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Entropy change

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Ni-Mn-SnNi-Mn-InNi-Mn-Ga

paraferro paraferr

o

paraferro

Page 15: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Magnetic properties

e/a

From: Enkovaara et al., PRB, 67, 212405 (2003).

From: Albertini et al., APL, 81, 4032 (2002).

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 16: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Ni49.5Mn24.5Ga25.1Ni56.2Mn18.2Ga25.5

Ni50Mn35Sn15 Ni50Mn34In16

ΔSΔM

dHdTM

0ΔS independent of H

Effect of a magnetic field

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

0 1 2 3 4 5-60

-40

-20

0

20

Ni2MnGa

Ni53.5

Mn19.5

Ga27

Ni50

Mn35

Sn15

Ni50.3

Mn33.8

In15.9

T (K

)

0H (T)

Page 17: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Precursors in phase transitions• Nanoscale structures which occur above phase transitions. They announce that a system is preparing for the phase transition before it actually takes place.

• Often observed in ferroic and multiferroic materials.

• Revealed by high-resolution imaging techniques well above the (expected) phase transition.

• Detected as anomalies in diffraction experiments (intense diffuse scattering) and in the response to certain exitations.

• Not expected in systems undergoing first-order transions (which are expected to occur abruptly).

• In martensites, related to low restoring forces in specific lattice directions (transition path).

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 18: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Structural precursors in Ni-Al (similar phenomenology in Fe-Pd, ….., shape-memory alloys)

TEM Neutron Diffraction

From, S.M. Shapiro et al., PRL, 57, 3199 (1986)

Cross-hatched striations (tweed) parallel to {110} planes observed above TM.

(020

)

Example: tweed

(60 nm)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 19: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Phonons in Ni-Mn-Ga

L21 5M L21 7M

Acoustic-phonon dispersion curves for the cubic phase of Ni2MnGa. From: Zheludev et al., 54, 15045 (1996).

TA2 branch at selected temperatures.

The position of the dip depends on the selected martensite structure.

From: Mañosa et al. PRB, 64, 024305 (2001)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 20: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

• The softening is enhanced at the Curie point.

• For systems transforming to the 5M structure, the softening is nearly complete at TI > TM. Upon further cooling the frequency increases.

• At TI the system undergoes the intermediate transition.

TML21 → 5M (low e/a)

TI (higher e/a)

Ni-Al (from Shapiro et al., PRL, 62, 1298 (1989); PRB, 44, 9301 (1991)

Slopes in the two phases

Phonon softening

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 21: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Elastic constants

L21 5M L21 7M

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 22: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Diffraction experiments(100)

J. Pons, private communication

T > TI T < TI (111)T < TI

TEM

Neutrons

From A. Zheludev et al., PRB, 54, 15045 (1996)

Elastic scattering along the (ξξ0) direction The transition at TI is associated with the lock-in of the pseudoperiodic tweed phase into a commensurate phase due to the freezing of the anomalous phonon.

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Modulation of {110} planes with wave number 1/3 along <1-10> direction.

Preserve cubic symmetry.

Page 23: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Magnetic and thermal anomalies

Further results which prove the existance of the premartensitic transition.

A.c. magnetic susceptibility Calorimetry

Latent heat= 9 J/mol(Martensitic transition:~ 100 J/mol)A. Planes et al., PRL 79, 3926 (1997)

TI

200 220 240 260 280

-80

-70

-60

-50

Latent heat

[Differential] heat capacity (MDSC)

DSC thermal curve

dQ/d

T (m

J/g K

)

T (K)

The intermediate transition is first-order

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 24: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Effect of external fields

210 220 230 240 250 260

-0.16

-0.12

-0.08

-0.04

0.00

C

44/C

44

T (K) 0 2 4 6 8 10

230

232

234

236

238

240

(b)

T I (K

)

Stress (MPa)0 1 2 3 4 5

226

228

230

232

234

236

(a)

T I (K

)

Stress (MPa)

Elastic constantTransition temperatures:

STR

ES

SM

AG

NE

TIC

FIE

LD

From: W.H. Wang et al., J. Phys. Condens. Matter, 13, 2607 (2001)

From: Gozàlez-Comas et al., PRB , 60, 7085 (1999)

[001] direction

[1-10] direction

[1-10] direction

0 MPa1 MPa

4.5 MPa

TI ~ M2

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 25: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Comparison with non-magnetic SMA

High temperature phase (cubic)

Ttw ?

Tweed

TI

Modulated (or intermediate) phase

TM

Martensite

Ni-Mn-Ga Ni-Al

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 26: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Amplitude of the relevant phonon mode

Order parameters:

Magnetization M

Free energy:

Expansions:

Landau model

ηMFF(M)F(ηF )

...BM41AM

21F(M) 42

22ηM Mη

21F 1χ

6422* cη61bη

41ηωm

21)F(

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Page 27: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Minimization with respect to M gives the following effective free-energy:

where:

M0 is the magnetization of the high temperature phase ( = 0):

20

6422*eff AM

41ηc

61ηb

41ηωm

21F ~~~

ccAMbb

)T(TaMωmωm20

u20

2*2*

~

~

~~~

21

1

χ

χ

c

20

cc

TT for 0 M

TT for T)μ(TBA

Tc is the Curie temperature

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Landau model

Page 28: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

• If 12/B is large, can be negative, and a first-order transition is

possible. The transition temperature is:

• The temperature dependence of the anomalous phonon frequency:

1 > 0 softening is enhanced.

• Clausius-Clapeyron equation:

Results in agreement with the experiments if 1 > 0

b~

u

2

I Tca16

b3T ~~~

0BMaΔS

ΔMdHdT

0

I ~1χ

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Landau model: results

Page 29: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

0.5 1.0 1.5 2.0 2.5

200

240

280

320

360

400

TI

Tc

T (K

)

x (at. Fe %)

Ni50.85

Mn23.88-x

Ga25.27

Fex

Ms

When an intermediate transition occurs?

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Results for Ni-Mn-Ga(Fe)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

200

240

280

320

360

400

Ms

Tc

Ni51.7

Mn22.9

Ga25.23-x

Fex

T (K

)

x (at. Fe %)0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

80120160200240280320360400

TIMs

Tc

Ni52.21-x

Mn22.56

Ga25.23

Fex

T (K

)

x (at. Fe %)

120 160 200 240 280 320

0.0

0.4

0.8

1.2

(a.

u.)

T (K)

' ''

x=1.93

80 120 160 200 240

0.0

0.4

0.8

(a.

u.)

T (K)

' ''

x=3.91

270 300 330 360 390 420

-1000

0

1000

dQ/d

T (J

/K k

g)

T (K)

x=2.06 Tc

Ms

Page 30: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

In Heusler alloys the relative phase stability is (to a large extent)

controlled by e/a.

Compared to other shape-memory alloys, Ni-Mn-Ga shows unique pretransitional behaviour which is a consequence of spin-phonon coupling.

Strong softening of the 1/3[110]TA2 phonon and large magnetisation is required for a first-order intermediate transition to occur.

The intermediate phase almost preserves cubic symmetry and results from the freezing of 1/3[110]TA2 phonon.

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Conclusions

Page 31: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

• Transition at zero-field: Formation of twin related variant.

• The magnetic easy axis changes from one twin to the other

Cubic → Martensite (twinned)

• Effect of a magnetic field

Twin related variants and magnetic stripe domains inside

From: Ge et al., JAP, 96, 2159 (2004).

Weak anisitropy Strong anisitropy

In systems with strong anisotropy and highly mobile boundaries, field induced rearrangement of martensitic variants is possible Magnetic Shape-Memory

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Magnetic shape-memory effect

Page 32: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Field induced deformation in a Ni-Mn-Ga alloy

The residual deformation remaining when the field is removed can be removed by:

1. Heating up through the transition

2. Application of a magnetic field perpendicular to the original

3. Application of a stress that opposes the applied field

From: Likhachev et al., Proc SPIE, 4333, 197 (2001)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Example

Page 33: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

0 1 2 3 4 5-60

-40

-20

0

20

Ni2MnGa

Ni50.3

Mn33.8

In15.9

T (K

)0H (T)

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Magnetic superelasticity

From: Krenke et al., PRB, (2007)

Magnetic superelasticity in Ni-Mn-In alloy

ΔSΔM

dHdTM

0

Page 34: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Adiabatic Temperature change, Tadi

Isothermal Entropy change, Siso

when a magnetic field H is applied/removed

H ΔM

ΔM(H)dHΔS(H)e

H

e

H

H TTdH

TM

00

1It is given by:

∆Te is the range over which the transition extends.

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Magnetocaloric effect

Controlled by the change of magnetization at the transition

ΔM = MM – MP > 0, Conventional magnetocaloric effect

ΔM = MM – MP < 0, Inverse magnetocaloric effect

Page 35: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

170 175 180 1850123456

M (1

03 e

mu/

mol

)

T (K)

0 100 200 300 400 500 700 1 kOe 2 kOe 4 kOe 6 kOe 10 kOe 20 kOe 40 kOe

0 10 20 30 40

-1.5

-1.0

-0.5

0.0

M (1

03 e

mu/

mol

)

H (kOe)

Ni49.5Mn25.4Ga25.1

∆M = MM - MP

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Magnetocaloric effect in Ni2MnGa

0 10 20 30 40 500

0.1

<S

> (J

/K m

ol)

H (kOe)

170 175 180 185

0

0.2

0.4

0.6 H=10 kOe

T

S (J

/K m

ol)

T (K)

Inverse magnetocaloric effect

Page 36: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

0 10 20 30 40

-1.5

-1.0

-0.5

0

¢M

(103 e

mu/

mol

)

H (kOe)

(a) (b) (c)Cubic Tetragonal

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007

Physical picture

Page 37: Departament  d’Estructura i Constituents de la Matèria Universitat de Barcelona

Historical

• Magnetostructural characterization, Ziebeck’s group [Philos.Mag. B, 49, 295 (1984)]

• Martensitic Transformation and Shape-Memory Properties (Martynov, Kokorin, …)

• Phonon anom. & Intermediate trans., Shapiro’s group PRB, 51, 11310 (1995)

• Magnetic Shape-Memory Effect, O´Handley’s group at MIT, APL, 69, 1966 (1996)

• Magnetoelastic coupling. Vordervisch, Trivisono, UB group (phonons/elas. cnts, 1997)

• Modelling: O’Handley (JAP, 1998), James & Wuttig (PMB, 1998), …..

• First.Principles Calculations: Helsinski group, Duisburg group, …

• Further developments, MIT group, Helsinki group, …..

• Development of other M-SMA: Ishida’s group, Kakeshita’s group, ….

• Magnetic superelasticity: Duisburg & Barcelona, PRB, 2007

Fundamentals of the Magnetic Shape-Memory Effect: Material properties and atomistic simulations, Ringberg Castle (Germany), February 14-16, 2007