Delamination Under High Cycle Fatigue Composite

download Delamination Under High Cycle Fatigue Composite

of 23

Transcript of Delamination Under High Cycle Fatigue Composite

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    1/23

    Albert Turon, Josep Costa

    AMADE. Universitat de Girona

    Pedro P. CamanhoDEMEGI. Universidade do Porto

    Carlos G. Dvila

    NASA Langley Research Center

    Simulation of delamination under high cycle

    fatigue in composite materials

    COMPTEST200610th-12th April. Universidade do Porto

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    2/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Girona

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    3/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Introduction

    Delamination: Interlaminar crack formation and/or propagation

    Approaches to the study of delamination:

    (1) Direct application of Fracture Mechanics Delamination propagation

    Virtual Crack Closure Technique (VCCT), J integral

    (2) Damage Mechanics Initiation and propagation of delamination

    Cohesive Zone Model approach, based on the Dugdale-Barenblatt concept:Acohesive damage zone -or softening plasticity- is developed ahead of the

    crack tip

    There are numerical tools to analyze initiation or propagation of delamination

    under quasi-static loading, but not under cycling load.

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    4/23

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    5/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Quasi static model

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    6/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Damage Mechanics models

    Constitutive equations model the constitutive behaviour of the cohesive

    zone.

    Initiation criteria

    Propagation criteria21 3 4 5

    P

    P

    0 F

    1

    2

    4 5

    3K

    (1-d)K

    0

    0

    Gc

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    7/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    =

    =

    t.tt.. Gr

    r,Frd

    ( )

    ( ) ( )( )0ft

    0tft

    tt

    ss

    0t

    r

    rrG

    rGd

    ts0max,rmaxr

    =

    =

    =

    ( ) ( ) 0,;0,; .. = tttt rFrrFr 0

    Kuhn-Tucker conditions forloading/unloading/neutral load conditions

    Evolution of internal variables

    Initiation

    Propagation

    d = 0.9d = 0.5

    d = 0.1

    3

    shear

    Damage evolution under quasi-static loading

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    8/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Implemented using Decohesion Elements

    Zero-thickness elements placed at

    the interfaces of Solid Elements

    Simulate the cohesive forces of the interface

    In different element technologies such as

    Elements with Embedded Interfaces

    Finite element implementation

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    9/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 2 4 6 8 10 12

    Displacement [mm]

    Load[N]

    ENF

    MMB (GII/GT=50%)

    MMB (GII/GT=20%)

    Experimental

    Numerical

    MMB (GII/GT=80%)

    DCB

    Simulation results

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    10/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Simulation results (II)

    x

    25

    25-25

    -25

    9090

    25 mm

    0.7

    92mm

    z

    yF

    F

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    11/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    High cycle fatigue

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    12/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Fatigue loading

    max

    min

    (1-d )k0

    1

    2

    t

    u

    1

    2

    1

    2

    t

    u

    Low cycle fatigue Cycle by cycle analyses

    High cycle fatigue

    Damage evolution with the number of cycles

    Cycle jump strategy

    cyclicstatic ddd +=

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    13/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    a damage evolution law as a function of the number of cycles is

    established a priori, Peerlings law, for example:

    The parameters of the law (C, , ) have to be adjusted

    calibrating the whole numerical model with experimental results.

    In this presentation: The evolution of the damage variable was

    derived by linking Fracture Mechanics and Damage Mechanics torelate damage evolution to crack growth rates.

    Damage evolution with the number of cycles

    =

    a

    CeN

    dd

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    14/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    The evolution of the damage variable is related with the evolution of

    the crack surface:

    Different approaches:

    (1) Damage Mechanics

    (2) Fracture Mechanics

    Damage evolution with the number of cycles (II)

    N

    A

    AN

    =

    d

    d

    dd

    A

    Ad

    d=A

    1

    A=

    d

    d

    cGA

    A =d

    =

    dd

    d A

    G

    Ac

    (1-d)K

    0

    f

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    15/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    the crack growth rate equals to the sum of the damaged surface

    growth rate in the cohesive zone:

    the area of the cohesive zone can be computed using Rices model:

    Damage evolution with the number of cycles (III)

    N

    A

    AN

    =

    d

    d

    dd

    NA

    AA

    NA

    NA CZ

    Ae

    e

    CZ

    =

    dd

    NA

    AA

    NA

    CZ =

    d

    ( )23

    32

    9

    oCZ

    GEbA

    =

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    16/23

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    17/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    G is computed from the constitutive equation

    Crack growth rate (II)

    G

    max

    min

    0

    f

    Gmax

    max

    Gmin

    min

    m

    cG

    GC

    N

    A

    =

    1

    2

    t

    u

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    18/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Different approaches:

    (1) Damage Mechanics

    (2) Fracture Mechanics

    Summary of damage evolution under cyclic loading

    N

    A

    AN

    =

    d

    d

    dd

    A

    Ad

    d=

    cGA

    A =d

    N

    A

    AN CZ

    =

    1d

    N

    A

    A

    G

    N CZ

    c

    =

    dd

    cyclicstatic ddd +=

    Experimental

    Constitutive model

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    19/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Determination of cycle jump Ni

    Fixed

    Variable

    Integration of the constitutive equation

    Cycle jump strategy

    i

    i

    i1i NN

    +=+

    ddd

    maxd

    d

    i

    i

    N

    N

    t

    u Ni-1 Ni Ni+1

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    20/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Two elements connected by only one decohesion element:

    Results

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    21/23

    COMPTEST2006 10th-12th April. Universidade do Porto

    Crack growth velocity under mode I loading:

    Results (II)

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    22/23

  • 8/10/2019 Delamination Under High Cycle Fatigue Composite

    23/23