Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple...

6
Anllals oJ G'lacioLog), 23 1996 © Int ernational Gl ae iolog ica l Soc iety Defortnation rates in cotnbined cotnpression and shear for ice which is initially isotropic and after the developtnent of strong anisotropy LI JCN , T. H. ]:\ C: I-\. ,\ Antarrtic eR c, Bo \ 252(;, Hobart, Tasmania 7001. Aus tratia. and .,J ustratiall Alltarrtir Dh'isioll W.F. BU DD A ntarrtic eR e, B o\ 252G, H obart. Ta smania 7001, Australia A BSTRA CT. Laborato ry- pre pared fin e-g rained. initia ll y isot rop ic po l),c r ys ta lline ice samples were defo r me d un der co nditi ons of' sim p le sh ea r "'ith simultan eo us uniaxial co mpr ession at a consta nt te mp er at ur e o f 2,0 C, Th e a im ,,'as to ilwes ti ga te the e!fects of s tr ess co nfi g ur a ti on on the 0 01" rate of initia ll y isot rop ic ice a nd on ice with s ub se qu en t s tr ess a n d s tr a in-indu ced a ni sot ropy. Expe rim e nt s 1 ,'C re carr ied out fo r va rious co mbin a ti ons o f' shear a nd co mp ress io n II' ith shear s tr ess ra nging fr om 0 to 0.49 MP a a nd co m p ress il 'C s tr ess ranging from 0 to 0 ,98 J\IP a, but such that for el'Cry expe rim e nt th e oc tah edr al sh ea r s tr ess was OA l\[Pa, Th e s tr ain c ur ves r es ultin g from th e expe rim e nt s clea rl y ex hibit minimum s tr a in ra tes whil e th e ice is still iso tr opic, a nd st ea dy-state tertiary s tr a in ra t es along w ith the develo pm e nt of st ea d y-sta te a ni so tropi c fab ri c pa ttern s. With co nsta nt oc tah ed ral s tr ess ( roo t-m ea n-squarc of th e prin cip al s tr ess del'iato rs), the minimum octahedr al sh ea r-s tr ain rate has no depe nd ence on s tr ess co nfi g ur a ti on. Thi s result s upp orts the hypothesis that the Do\\' of isotropic ice is d epe n de nt only on the second il1\ 'a ri a nt o f' the stress tenso r. T his fund ame nt al ass umpti on has been used to pr Ol 'ide a ge neral des cri ption of ice -O ow beha,'io ur ind epen den t of the s tr ess co nfi g u ra ti on (e,g, I\, 'e. 1953; Glen , 1958; Bud d, 1969), f or the tertiary O ow of aniso tr opic ice, the octahedral s tr ain ra te is s tr eSS -Sla te depe nd e nt as a conseq uence or the developed crysta l- o ri e nt a ti o n fa bri c, lI' hi c h is a lso s tr ess-state depe nd ent, a nd which del' cl ops with s tr a in a nd rota ti on, Th e pr ese nt t es ts indi ca te that the e nh anceme nt f ac tor for st ea dy-state tertiary oc tahedr al sh ea r-s tr a in ra te depe nd s on the sh ea r o r co mpr ess io n fi 'act ion a nd l'Cu ies from abo ut 10 fo r sim p le sh ea r (lI'i I h ze ro eom pr ess io n ) to a bo u t 3 fo r un iax ial com pr ess io n (lI'i th zero sh ea r), BACKGROUND For iso tr opic ice, a co mm on ass umpti on, that the 0 011' is gOl'erned by a rela ti on between the seco nd in n 1l'i a nt s of th e s tr ess - and s tr a in-r a te de l'iator tensors, is ado pt ed as pr opose d by Nye ( 1953 ) to a ll ol\' the expe rim e nt al r es ult s f or comp ress ion, sh ea r and other more co mpl ex s tr ess co nfi gu ra ti ons to be u se d for the spec ifi ca ti o n o f th e Oo \\' pr ope rti es of' ice i nd epe nd en t of s tr ess co nfi g ur a ti on. Th e po wer Oo\\' lall' in te rm s o rth e octahedr al l'a lLl es o f s tr ess, TO a nd st rain rate, Eo is ta ke n in the f or m and Co le, 1982; J ac ka. 1984; Bu c lcl a nd J ac ka , 1989 ) . l\ [ost of these labor ato ry t es ts were pe rf o rm ed in unia xi al compression or tension. or in s imple sh ea r. Th ese s tr ess co nfi g ur a ti ons are co mm only u se d as special ex tr eme cases, b eca use th ey are relat il'ely simpl e to esta blish in the laboratory a nd halT relel 'a nce to the def o rm a ti on of na tur a l ice masses, It is imp ortant, hO Il 'el'er, also to exa mine more com plex s tr ess system s. b eca use th ese a re th e ge neral cases to be expected in the fi eld, (1) when' A is d epe nd ent on te mp era tur e a nd possibly other properti es of the ice, A lar ge numb er of laboratory ice- de fo rm a ti on tests on polycr ys talline ice has suggested a I'alue 01'3 for the expone nt '(I (e.g . Gl en, 1958; Lil e, 19 78, 1984; Ru ssell-H ea d a nd Buc lcl , 1979; H oo ke, 1981 ; l\1 e ll or Th e nO Il '-l aw depen de nce on the seco nd il1\'a ri a nt has been proposed to ge nera li ze the 00 11' rates meas ur ed in d i fferen t s tr ess co nfi g u ra li ons to a co mm on rcla ti onsh ip. Th e second il1\ 'a ri a nt hyp ot h es is has been tested by a co mp a ri so n o f s tr a in ra t es fo r co mpression a nd sh ea r t es ts ind epe nd e nt ly a lo ng wi t h co m parisons in te rm s of octahedr al stress a nd s tr ain rates. Steinema nn ( 1958 ) co mp ared effectil'e I'alu es of minimum s tr ain rat es in sh ea r (torsion of ho ll ow cy lind ers) a nd co mpr ess io n a t - 1. 9 C in the s tr ess ran ge 0. 1- 1. 0 l\ l P a . H e ro und 247

Transcript of Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple...

Page 1: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Anllals oJ G'lacioLog), 23 1996

© Intern a tio na l Glaeiologica l Soc ie ty

Defortnation rates in cotnbined cotnpression and shear for ice which is initially isotropic and after the developtnent of

strong anisotropy

LI JCN, T. H. ]:\C: I-\.,\

Antarrtic eRc, Bo \ 252(;, Hobart, Tasmania 7001. Austratia. and .,Justratiall Alltarrtir Dh'isioll

W.F. B U DD

Antarrtic eRe, B o\ 252G, H obart. Tasmania 7001, Australia

ABSTRACT. Laborato ry-prepa red fin e-grai ned. initi a ll y iso t ropic po l),c rys ta lline ice samples were defo rmed under conditi ons of' sim ple shea r " 'it h sim ult a neo us uni ax ia l compression a t a consta nt temperat ure o f 2,0 C , The a im ,,'as to ilwes tiga te the e!fec ts of stress confi g ura ti on on th e 001" ra te of initi a ll y iso trop ic ice a nd on ice with subsequen t stress a nd stra in-induced a ni so tropy. Ex periments 1,'Cre carried o ut for vario us combin a ti ons o f' shea r a nd comp ression II'ith shea r stress ra nging fro m 0 to 0.49 MPa a nd comp ress il 'C stress ra nging from 0 to 0,98 J\IPa, but such th a t fo r el'C ry ex periment th e oc tah edra l shea r stress was OA l\[Pa ,

Th e stra in curves res ulting from th e expe riments clea rl y ex hibit minimum stra in ra tes whil e th e ice is still iso tro pic, a nd stead y-sta te terti a ry stra in ra tes a long with th e d eve lo pm ent o f stead y-sta te a ni so tropi c fab ri c pa tt e rns. With consta nt oc ta hed ra l stress (roo t-m ean-sq ua rc of th e principal stress d el'iato rs), th e minimum oc ta hedra l shea r-stra in ra te has no d ependence on stress config ura ti on . This res ult supports th e hypoth esis th a t th e Do\\' o f iso t ro pic ice is d epende n t onl y o n th e second il1\ 'a ri a nt o f' th e stress te nso r. T his fund amental ass umption has been used to p rOl 'ide a genera l descrip ti on of ice-Oow beha , 'io ur independen t of the stress config u ra ti on (e,g , I\,'e. 1953; Glen , 1958; Budd, 1969 ) ,

f or th e terti a ry Oow o f a niso tropic ice, th e oc ta hed ral stra in ra te is streSS-Sla te d epend ent as a conseq uence or th e d eve loped crys ta l-ori enta ti o n fa bri c, lI'hi ch is a lso stress-sta te d ependent , a nd whi ch d el'clops with stra in a nd ro ta ti on , Th e present tes ts indica te th a t th e enh a nce ment fac to r for stead y-sta te te rti a ry oc ta hedra l shea r-stra in ra te d epend s o n the shea r o r compressio n fi'action a nd l'Cuies fro m a bo ut 10 fo r sim ple shea r (lI'i I h zero eom press ion ) to a bo u t 3 for un iax i a l com press ion (lI'i th ze ro shea r) ,

BACKGROUND

Fo r iso tropi c ice, a comm on ass umpti on , th a t the 0011' is gOl'e rn ed by a rela ti on betw een th e second in n 1l'i a nts of th e stress- a nd stra in-ra te del'i a tor tenso rs, is ad opted as

p roposed by Nye ( 1953 ) to a ll o l\' th e ex perim enta l res ults for comp ress ion, shea r a nd o th er more complex stress confi g u ra ti ons to be used for th e spec ifi ca ti on of th e Oo\\' p rope rti es of' ice ind epend en t of stress confi g ura ti on . The power Oo\\' la ll' in terms o rthe oc ta hedra l l 'a lLl es of stress, TO a nd stra in ra te, Eo is ta ken in th e form

a nd Cole, 1982; J ac ka . 1984; Buclcl a nd J ac ka , 1989 ) . l\ [os t o f th ese la bo rato ry tes ts we re perfo rmed in uni axi a l com press io n or tension. o r in simple shea r. These stress config ura ti ons a re comm onl y used as specia l ex treme cases, because they a re relat il 'e ly simple to es ta blish in th e

la bo ra tory a nd ha lT re lel 'a nce to th e deforma ti on of na tura l ice masses , It is import a nt , hOIl'el'er , a lso to exami ne more com plex stress sys tems. beca use th ese a re th e ge nera l cases to be ex pec ted in the fi eld,

(1)

when' A is d epend ent on tempera ture a nd possibl y o th er pro perti es o f th e ice , A la rge number of la bora tory ice­de form a ti on tes ts on polycrys ta lline ice has sugges ted a

I'a lue 01'3 for th e ex ponent '(I (e.g. Glen , 1958; Lile, 1978,

1984; Russe ll-H ead a nd Buclcl , 1979; H ooke, 1981 ; l\1e ll or

Th e nOIl'-l a w d ependence o n th e second il1\'a ri a nt has been pro posed to ge nera li ze th e 0011' ra tes meas ured in

d i fferen t stress config u ra li ons to a common rcl a ti onsh i p .

The second il1\ 'a ri a nt hypot hes is has been tes ted by a compa ri so n of stra in ra tes for com press ion a nd shea r tes ts ind e pend e nt ly a lo ng wi t h co m pa ri sons in te rms o f oc ta hedra l stress a nd stra in ra tes. S tein ema nn ( 1958 )

compa red effec til'e I'a lues o f minimum stra in ra tes in

shea r (torsion of holl ow cy linders) a nd compressio n a t - 1. 9 C in th e stress ra nge 0. 1- 1.0 l\ l Pa . H e ro und

247

Page 2: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Li ]1111 alld others: Dejor/lla/ioll rates ill call/billed compressioll alld shear

a p prox ima te agreem ent o r th e minimum stra in ra tes but th ose in co m pression tended to be si ig h tI y hi g her. LJ si ng th e da ta fi 'om S tein em a nn 's tes ts unde r simple shea r a nd combin ed shea r a nd compress ion , G len (19.58 ) a lso m ad e

a n eq ui "a lent compa ri so n by plo tting " a lues o r th e second

il1\ 'a ri a nt 0 [' th e stra in-ra te tenso r aga inst th e second

il1\ 'a ri a nt o r th e stress d ev iato r. H e fo und th a t, a lth o ug h

th e res ul ts prO\ 'id ed so m c support fo r th e h ypo th es is, so m e ma rk ed di sc repa ncies clea rl y ex isted . Ba ke r (1987 ) m ade mo re sys tem a ti c il1\ 'es ti ga ti o ns by cl do rming sa mpl es o f

iso tro pi c g lac ie r ice under co nd itions o f simpl e shear with

simulta neo us uni axia l compress ion a t a co nsta nt tem­

pera ture of - 9. 1 C . H e conclud ecl th a t his ex pe rim enta l res ults did no t SUppOrL th t' second in \"<lri a nt h ypo th esis a nd suggested th a t :; t1Tss eo n ~gura ti o n m ay a ffec t th e d d c) rm <l ti on of icc much m ore th a n sugges ted by th e fl ow

law. Budd a nd .J a c~a ( 1989) have summa rized th e res ults

from a number of icompress ion la nd shea r ex p eriments to

show th a t a t a n octahedra l f hea r stress o f 0 .1 J\IPa, milllmum (iso tro pic ice ) st ra in ra tes fo r compress ion a nd frH' shea r agree to \\'ithin a f~lnor or 2 . A subsequ ent re­

a na lys is of th ose d a ta re, 'Ca led a n e rro r whi ch m ad e th ese

shca r ra tes too hi gh by a [acto r of 2. Consequentl y, with

th e co rrec ti o n , th e re is agreem ent in th e oc ta h cdra l ra tes

(o r shea r a nd compression fi'om th ose tes ts to within abo ut ± 20% . For a n ax ia l stress o r 0.2 ~ fPa compa red wi th th e sam e simple shea r stress th e minimum stra in ra tes diffe red b y a bo ut a n o rd er o r m ag nitude. S imila r res ults we re a lso

fo und b y Ga o ( 1992) in tw o se ts o[ co mpa ri so n

ex perim ents in uni axi a l compression a nd simple sh ea r with oe ta hed m l shear stress ra ng ing rrom 0. 1 to a bo ut 0.4 \1 Pa a t a co nstant tempera ture 0 (' - 2.0 C . His res ult s showed th a t fo r th e sam e oc ta hedra l shea r stress, th e

minimum oc ta h edral shea r-st ra in ra tes for th e shea r tes ts

we re sli g htl y hi g h e r ( 10- 20% ) th a n th ose [o r th e

compressio n tes ts. The pro jec t d esc ribed in thi s pa pe r a im s aga in to tes t

th e va lidit y o f th e second inva ri a nt ass umption. This is d o ne b y carrying out sys tem a ti c tes ts in simultan eo us

compressio n a nd shea r , using a new d efo rmati on a ppa ­

rat us whi ch has bee n spec ia ll y d es igned fo r this stress

confi g ura ti on , a nd ,,·hi ch a ll o \\"s d efo rm a ti ons to be ta ken to la rge stra ins.

Pre\" io us res ults (c f. Budd a ndJ ae ka, 1989) sho\\" th a t th e initi a ll y iso tro pi c ice rema ins iso tropic throug h to

minimum stra in ra te a t a bo ut 1- 2% stra in but th erea ft er

g rad ua ll y d e" e lops clea rl y d efin ed crys ta l a ni sotrop y

induced b y the deform a ti o n . By a bo ut 30% strain , th e fo rm o f a ni so trop y is clea rl y d e\"C lo ped a nd a pproaches a steady-sta te pa ll ern direc tl y rel a ted to th e stress co nfi g­urati o n a lld th e m O\"C m ent picture, including th e ro ta ­

ti on . Th e simple ex trem e fo rms o r (-a xi s ra bri c pa tterns

i ncl ud e th e ro ll owing . l.j nconfin ed compressio n g iYes a

g ird le aro und th e compression ax is, co ncentra ted a t a bo ut 25 30- to it. S imilarl y. fo r uni a xi a l tension , but th e a ng le is a bo ut 65" U aeka and \laccagnan , 198+; Li , 1995). F o r co nfin ed comprcss io n th e delo rm a ti o n is

esse nti a ll y p la ne stra in a nd two m ax im a in that pla ne

occ ur a t a simil a r a ngle to th e compress ion axis (Budd

a nd l\ Ja tsuda, 1974). For simple shear, initi a ll y t,,·o m ax im a occur norm a l

to th e shea r pl a ncs but as th e d efo rm a ti on cont inues th e m ax Imum no rm a l to th e shea r pl a ne, " 'hi ch d oes no t

248

ro ta te , becom es d o min a nt a nd th e o th e r g ra dua lh­d isa ppea rs.

Th ese fa bri cs ha \'e a lso bee n c lea rl \' identifi ed in th e fi e ld in loca ti ons " 'he re th e stra in hi story is " 'e ll kn o\\" n. Fo r m o re gen era l, o r intermedi a te st ress sta tes , th e I~ll)r i cs

show a co rres po nding inte rm ed ia te pa tt e rn. i

F o r all com bined st ress tes ts, th e deforma ti ons we lle continued to hig h stra ins until stead y-sta te terti a ry fl o\\' " 'as es ta bli shed a nd th e co rres ponding a ni so tropi c crys ta l fa bri cs we re d e\·e loped . Th ese fa bri cs sho" -ed a clea r

tra nsili on fro m pred o mina nt co m p ress ion to pred omin a nt

shea r in direc t re la ti o n to th e combin a ti on of compression

a nd shea r stresses . Th e second aim of th e pro ject " 'as to d e termine th e

s tead y-sta te te rti a r y stra in ra te, fe) r thi s ice . w ith d efo rm a ti o n-indu ced <l ni so tro p y, in re la ti o n to t he

compatibl e combined stress situ a ti on. It shou ld be no ted

th a t thi s com pa ti bl e ddo rm a ti o n-ind Ll ced a ni so t rop y

occ urs in n a tura l ice m asses a nd a m ong th e commo nes t ro rm s a rc simp le shea r , ,,·ith \'ar io us a m o unt s o f" com pression norm a l to th e shea r pla ne , as s tudi ed he re.

EXPERIMENTAL TECHNIQUE

Fo r combined shea r a nd compress ion m eas urem ents th ere is a problem o f sample sha pe. Fo r un co nflned a xia l compressio n , a cy lindri cal sha pe with leng th severa l times

th e di a m e ter is d esira ble but nOl esse nti a l U acka , 1994). For simple shea r , a sample se,"C ra l tim es longe r in the

direc ti on or shea r th a n ac ross th e shea r is d esira ble to minimize free-end e ffec ts. For th e ex perim ents d escribed he re, rec ta ng ul a r o blong sa mples with leng th (L ) 60 m m,

wi d th (W ) 15 mm a nd heig ht (H ) 32 mm were used w ith

th e long dimension in th e direc ti on of shea r. Sa mples were

cut from cylindrica l sampl es oC iso tropi c ice, la bo ra to ry prepa red by th e techniqu e d esc ribed b y J ae ka a nd Lilc ( 1984).

Fo r th ese samples, th e d irec t compressio n perpendi­

cul a r to th e long dimension witho ut shear has sh own th a t

th e ice deforms ou t ,,'a rd s pri m a ri I)" in th e short dim ension

a na logo us to th e case oC compress ion co nfin ed to two dimensions, i.e. [o r th e long dimcnsio n (in th e direc ti o n o f" th e shea r ) E.r;::::: O. Therefo re, th e co nfin ed compress ion a na lys is fo r oc ta hedra l s tress a nd stra in rates has bec n

used fo ll owing Budd ( 1969, p. 17) ra th er than th a t 1'0 1'

un co nfin ed compress ion. Th e d e ta il s oC th ese a na lyses fo r

a " a ri e ty oC combina tions o r compression and shea r direc ti o ns wi ll be publi shed elsew here . It suni ces to say here th a t th e d efo rm a ti on ra tes oC th e ob long sa mpl es in com pressio n , \\·hen trea ted as co n fI ned compression , agree in oc ta hedra llerms with d efo rm a ti on rat es fo r un co nfin ed

com pressIOn .

Fo r th e x axis in th e direc ti o n of th e ho ri zo nta l shea r

a nd th e long dimensio n o r th e sa mple, and z in th e \T rti ca l with th e directi o n o f" th e compress ion , th e fo ll owing stress component s a ppl y. Fo r the case or ze ro

shea r th e co nfin ed compress ion stress , rJ (confin ed in th e x d irec ti on ) is equi" a lent to a combin a tion of p lane stress in

pure shea r d erorm a tion in th e cry p la ne with principa l

s tresses (0 , rJ /2, - rJ/2) plus a hydrosta tic s tress o f - rJ /2. This g i\'es princ ipal stresses, eTi = (- rJ/ 2, 0 , - rJ) .

The additi o n o r a ho ri zo llta l shea r stress T in th e .1'

Page 3: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Li ] /111 ([nd others: DeJomwtion rates ill Call/bi ll ed (om/Hessian and shear

pneumatic air cylinder

tension load cell

wire

pulley

sample support box

thermal insulator

guide rail

Ftj; , I, Diagram oJ the a/l/Hlrallls Jar combilled simll/­tall fO llS lIleaSlIrement of ice.f70w ill comjJressioll alld shear ,

dircc ti on g i\TS th e stress tensor

o o o

(2)

F o r sma ll T th e g rea tes t a nd leas t p rin c ipa l s tresses a rc in

th e ,Ty p la ne but fo r la rge T th ey switch to th e xz pl a ne,

This stress situ a tio n is a lso a pproached b y th e combincd

ax ia l s trcss a nd tors io n o f ho ll O\v cy li nd e rs (c L e,g , K a m b , 1972 ),

Th e samples tes ted fo r this p ro.jec t \\' e re po lyc rys tal­line , \\' ith initi a ll y iso tro pi c crysta l o r ic nta ti o n a nd m l'a n

crys ta l a rea, 1,2 mm2, T es t tempe ra ture \\'as -2 ,ODC, co nt ro ll ed b y im m ersion in a sili co n o il ba th , to ± O,I : C by a me th od simil ar to th a t d escribed b y ~rorga n ( 1979 ) ,

To ap pl y co mpress io n a n d simple sh ea r simul­tanco usly, th e appa ra tu s show n in Fig u re I \\'as d esig ned

a nd fa bri ca ted, A full e r d esc rip tio n o r th e a ppa ratus \\'ill

be p ubli shed else\\'here, Th e ice-t es t sample is fl'ozen

be twee n t\\'o su p po rt boxes, The lo \\'e r box is fi xed to th e

base or the a ppa ra tus so th a t it is sta ti o na ry, Th e upper

box is a tt ac hed to a pl a te \\' hi ch supports the load a ppl \' ing th e compressio n fo rce , T o cnsure t ha t th e upper box is compresscd pe rpend ic ul a r to th e base , i,e , \\'itho llt

tilting la tera ll y, th e compress io n is a ppli ed throug h a

la rge-d ia m e te r p isto n g uid ed b y a pi sto n ho using, Th e

p isto n ho. usin g is linked to t\\ 'O ho ri zo nta l g uid e ra il s th ro ug h linca r bearin gs whi ch a llo \\' th e ho usin g (a nd \\'ith it. th e p is to n a nd upper hox ) to m O\'e ho ri zo nta ll y

a nd indepe nde nt o f th e \ 'ertica l co m p ress io n, S hea r s tress

is c rea ted b y a fo rce a ppli ed thro ug h a w ire, tensio ned

(\' ia a p ull ey a nd a load ce ll ) b y a fi xed 50 mm dia m eter

p ne um a ti c a ir cy linde r w hi c h ca n be a dj usted to m a inta in

a co. nsta nt fo rce (m eas u red b y th e load cc ll ) of Lip to 2000 J\' , Th e tcnsio ned \\' ire is connected to a n a rm fi xed

to t he uppe r box , The \'e ni ca l pos iti o n 0.1' th e pull ey ca n

be adjusted to ensure th a t the shear fo rce is a l\Va ~ ' s

a ppli ed ho ri zo n ta ll y thro ug h th e middle o f th e ice-t es t

sa mple durin g d efo rm a ti o n , ;\ di a l indi ca to r m eas ures th e ho ri zo ntal (shea r ) displ acem ent o f th e pi sto ll ho. using \\ 'ith res pec t to th e basc , An o th e r di a l indi ca to r m eas ures

th c \'C rti ca l (co. m pressio n ) d isplaccm e n t o f t he pisto. n \\' ith

respec t to th e pi sto. n ho using , T\\'o bake lit e ( incompres-

sible , res in-impregna ted ca l1\'as m a tc rial l plates a rc a ttac hed a bO\'C a nd be lo.\\' th e sa mple suppo rt bo xes to.

prO\' ide th e rm a l insul a ti o. n ,

Fo r ice subj ec t to a combined stress co nfl g ura li o n \I'ith

co nfin ed no. rm a l stress (J' a nd compressi\'e s tra in ra te f, and with shear s tress T a nd s tra in ra te -y, th e oc ta hedra l rel a ti o ns a rc g i\ 'e n by

TO = (J' ,) A~ '3 4+ T

- (3)

EO = jiffh2 - f - + "Y ' 3

(4)

It sho uld be no ted th a t Equa ti o ns (3 ) a nd (4) a rc

a ppro pri a te fo r a n y co. mbin a ti o n o f th e m agnitudes o f

stress fo r combin ed co nfin ed compressio n a nd shea r , Fo r

exa mpl e, in th e case o f uni ax ia l compressio n a lo.ne

(T = 0) o r simple shea r a lo ne ( (J' = 0), Equatio.ns (3) a nd (4,) redu ce to th e simpl e fo rms o.foc ta hedra l re la ti o ns used fo r uni ax ia l co. nfin ed compress io. n a nd simpl e shea r ,

res pec ti\ 'Cly (Budd , 1969 ) ,

As a n as ide , it is use ful a lso to no te th e oc ta h edra l

rel a ti o ns fo r th e case o f unco nfin ed compress io n :

V2 V ,) ? TO = - (J'- + 3T-

3 (5)

, AIfiH") ' ? EO = - - E- + r- ' 3 4

(6)

f o r th e la bo ra tory tes ts, tot a l comprcss i\'c s tra in E a t tim e t; is es tim a ted b y th e rela ti o n

(0'1) ~ oh , - 017; - 1

Ei IC = 6 100 o ho - bhi- l

(7)

\\' here fi h ; is th e a bso lute \ 'a lu e o r \ 'C nica l ice displace­m e nt (m eas ured b y a \'lT ti ca l di a l indi ca to r ) since th c

ex pe rim e nt comme nced and ha is tli e initial sample

heig h l.

The to ta l shea r slra in "'I a l lime tj is es tim a ted by th e

rc la ti o.n

(0'1) 1 ~ oZ; - 01,._ 1 "Y; ~ =-~ 100

2 0 ho-Oh ,- 1 (8)

\\' h e re bl i is th e a bso lute ",du c o f' h o ri zo nt a l icc

di spl ace m c nt (m eas ured b y a ho ri zo. nt a l dial indi cat o. r ) si nce th e ex p eri m e n ( co m m c necd , Fo r si m pi e s lwa r oh; = 0 is ensured ,

Th e stra in ra te o. \'C r th e co nsec uti n' tim e inten 'a l t; to

f i+1 (h ) is es tim a ted fo. r compress io n , by

'( - 1) EOiTl - EOi 1 f S = X ---:-------,-

100 3600 (t ,+1 - t , ) (9)

a nd [0.1' shear. by

' ( - 1) "YOi+ l -"'IlIi 1 "Y s = x ---:-------,-100 3600(ti+1 -ti ) '

(10)

Th e onaliedral shea r-s tra in rat e , EO IS th en calculated f" o m Equ a ti o n (-1- ),

Expe rim ents \\'e re ca rri ed o ut fo r \ 'a ri o us combin a ­

ti o ns o f' compress io n a nd shea r \\ ' ith shea r stress ra ng ing

fro m 0 to 0, -1-9 \[Pa a nd co.m p ress i\ 'C s tress ra ng ing fro m 0

Page 4: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Li ]un and others: Difonnation rates in combined compression and shear

~ 1O-5+-__ ~_~----~---~~-~-~--"-'i-

ai co er c

.~

U5 +0 6 ,6

(ij 10-6 • t> .", .!,. o· r--:::;--~-f

Q) A.,.,p+ 06 . .. cr T tiJ °t "b ' 0 + 0.00 0.49 Cii ~.., cid'. • • • . 0 .16 0.48 -0 ~ D 0.34 0.46

1! : ~ . ~~ ~j~ en • 0 .90 0 19 2 1O-7-1--____ ~ __ --_---~~----'...::o-'0"". 9:;:8-0~. o;:;:0_l_

0.0 1 0.1 10 Octahedral Shear Strain, %

Fig. 2. Creep curves (log- log plots of octahedral strain rate as a function oJ octahedral strain) Jor ice-deformation tests in variolls combinations oJ compression and shear. The combined octahedral stressJor all tests was 0.4 Ll!IPa. The test temjJerature was - 2.0°C.

100

to 0.98 MPa but such tha t, based on Equation (3), th e co rresponding octahedral shear stress was in all cases 0.4 MPa . All experim ents were run to terti a ry creep, typicall y a t 20- 40% strain .

RESULTS

Creep curves for each tes t a re shown in Figure 2. R esults a re summ a ri zed in T able I. The creep curves a re plots of octahedral stra in ra te as a fun ction of octahedral strain a nd d emonstra te that, under these tes t conditions, the iso tropic octahedral stra in rates (i. e. the stra in rates up to

minimum ) a re very simi lar. This findin g supports th e hypo thesis (Nye, 1953) that the flow in combined stress situa tions can be represented by a power rcl a tion between the octahedral shear-stra in ra te a nd the oc ta hedral shea r stress, which implies d ependence on the second inva ri a nts a lone.

Howeve r, Table I a lso shows th a t fo r consta nt octahedral shea r stress TO (in spi te of some sca tter) th e minimum compressive stra in rat e Em does no t appear to increase linea rl y with the compressive stress (J as impli ed

by the Nye (1953 ) re la tion. By contrast, th e minimum

shea r-stra in rate 1111 appears to increase much more than linearly with the appli ed shear stress T for consta nt octahedral shear stress . T his indicates that even for isotropic ice the G len- Nye type of flow relation needs some modifi ca tion for combined stress situations.

Beyond the minimum strain ra te (i.e. as polyc rys ta l

anisotropy d eve lops ), each of the curves exh ibits strain rates increasing to nea r constant tertia ry va lues . The "shea r on ly" curve (i.e. (J = 0) in creases to a g rea ter tertiary slra in rate th an the other samples (tertiary stra in rate a fac tor of cv I 0 g reate r than the min imum iso trop ic ice strain ra te) and th e greater the amo unt of compression (i.e. the less the amount of shear), the lower the terti a ry strain rate .

The pa tterns of crys ta l-orien tation fa brics d eve loped in te rti a ry flow d epe nd very mu ch on th e st ress configuration and the rotation . Th e stress configuration refl ec ts the relative magnitudes of the principa l stress

d eviators and is independ ent of rotat ion. Using th e stress­

configura tion parameter, A of Li le ( 1984) in terms of the three principal shear stresses, T) , T2 a nd T3, the stress configura tion for confined compress ion and simple shea r is the same with

T3 - T1 A =--= O.

T2 (ll )

Th ese two deform a tion sys tems (confined compression and simple shear) differ on ly in th eir boundary con­stra ints and the materi a l rotation. The tertiary f~l bri cs

which develop for the confined compression are two maxim a primari ly in th e plane of d efo rma tion a t about 25-30° to the compression axis. For simple shear after the ini tia l formation of two maxima, th e max im um perpen­d icul a r to the applied shea r plane becomes dominant a nd eventuall y includ es mos t of th e crysta ls. Simple shea r becomes th e "easies t glide" form for polycrysta ll ine ice, short of being a compa tibl e combination of single crystals. For combined stress tes ts, it is consid ered that the important pa rameters a re the relati ve frac tions of the octahedral shear stress, of shear or compression.

For th e stress configuration used in these combined stress tes ts with hori zonta l shea r T a nd vertica l compres­sion (J confined in the direction of th e horizonta l shea r,

Tab le I. Compressive stress (J and shear stress T in various combinations required to deliver a combined octahedral shear stress oJ 0.4 M Pa ( Equatioll (3)) are tabulated ([long with As ( Equa tion (12)) and Ac ( Equation ( 13)), the strain rates measured in comjmssion (E), in shear h) and calculated (Equatioll (8)) JOT the octohedral case (Eo), at minimum (subscrijJt 111) and tertial) (subscrijJt t )

(J T Ac As fm 'Y1Il EO Il I El 'Yt EO I

~VrPa ~[Pa

0.00 0.49 0.00 1.00 5.3 x 10- 7 4 .3 x 10 7 4.9 x 10 6 4.0 x 10 6

0 .16 0.48 0.17 0.99 4 .0 x 10 7 1. 2 x 10 7 3.4 x 10 7 1.0 x 10 (i 3.9 x 10 (j 3.3 x lOG 0.34 0.46 0.34 0.94 2. 1 x 10 7 3.9 x 10 7 3.6 x 10 7 1.4 x 10 (i 3.7 x 10 (j 3.2 x 10 G

0.49 0.42 0.50 0.86 2.1 x 10- 7 3.5 x 10 7 3.3 x 10 7 1.5 x 10 6 2.4 x 10 6 2.3 x 10 6

0.73 0.32 0.75 0.66 4.2 x 10 7 3.2 X 10 8 3.4 x 10 9.0 x 10 7 1.2 x 10 G 1. 2 x 10 6

0 .90 0 . 19 0.92 0 .39 4.1 x 10 7 1. 2 x 10 8 3.3 x 10 7.8 x 10 7 4.4 x 10 7 7.2 x 10 0.98 0.00 1.00 0.00 3.9 x 10 7 3.2 x 10 7 1. 2 x 10 6 9.5 x 10

250

Page 5: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Li JUIl alld otliers: J) eformalioll ra les ill cOll1billed {o1II/Hession alld sliear

(/)

ai Cil er: c:: .§

CiJ Co Cl>

.s:: Cl)

(ij

u Cl>

.s:: <1l U 0

As 1.0 0.95 0.9 0.8 0.6 0.4 0.0

10 ·5 +-__________ _L ____ ~ ____ ~ ______ _L ____ L_~

tertiary anisotropic

10 ·6

minimum isotropic

~--~n------D----~~------~n_----~--~

10 ·7 +---~--.---~--_r--~--_r--~--_,--~--_+

0.0 0.2 04 0.6 0.8

Fig . 3. Plo Is 0/ combined octahedral .l/raill rale al minilllum ( isolro/lir ) strain rale alld al INlim)' ( alliso­Iro/Jic ) strain rate (log jwle ) as alullctioll of Ae ( linear

scale ) . Cones/Jondillg vallles of As are also shown. T he minilllulI/ ortahedral straill rates (/01' isotra/lic ice ) (Ire re/a lil'e[JI (o ils/a lii , u.'hereas lhe lertim), rales (wi lh slrollg[J' deve/o/Jed /abrics ) give enhancelllenls re /alil'e to millimlllll ~f aboul a/actor 0/3 /or [Olll/Hessioll 10 aboll l a f(lrtor ~I IO for shear. T he combined octahedral slreH for alltest.1 was 0.4 ,liPa. T he lest temperatll re was _2.0°C.

1.0

a nd with tra nS\'erse extension, th e oc ta hedra l shea r stress

is g i\ 'en by Equ at ion (3). \Ve d efin e th e "shea r frac ti on" and th e "compression

frac ti o n" o r th e oc ta hedra l shea r stress, respec ti ve ly, as

27 As = -..;ra=;2;=+=4.:=7~2 (1 2)

a nd a

(13)

Th ese frac ti ons n H y ri"o m 0 to I a nd 1 to 0,

respec ti\ 'C' ly, as th e stress situ a ti on \'a ri es fro m pure ly

co nfin ed sim ple compress ion (7 = 0) to pure ly simple

shear (a = 0) . T he oc ta hedra l shea r-s tra in ra tes [o r

mini m u m (scco nda ry 00 \1' w ith still iso tro pi c icc ) a nd fo r te rti a ry 0011' (\I'ith 1I'c1I-d e\'(~ l oped fa bri cs ) a re 5ho \\'n in Fig ure 3 as a fun c ti on of th e shea r a nd com pression

frac ti o ns.

This fi g ure again sh o\I's th a t minimum octahedra l

shca r-stra in ra te rem a ins un cha nged fo r a ll combinatio ns of th e 1c\'(' 1 of shea r ve rsus th c le\'e l o r compress io n (10 1' th e fi xed oc tah edra l stress of O. L~ l\[Pa ) . F or th e terti a ry

(a ni so tro pi c ice ) s tra in ra tes, th e fi g ure pro \'id es a

m eas ure oC enh a ncem ent fac to r, \'a rying from ",3 fo r

compress ion a lone to '" I 0 fo r shea r a lone. Whil e a

st ra ig ht line (on this log- linea r plo t) is th e bes t es tim a te th a t ca n be m ad e hetwee n th ese two \'a lu es a t this s tage,

furth er ex pe rim ents a r e und er \\'ay to confirm th e d e ta il s

o f thi s relat ionship o\ 'C r a la rge ra nge o f tem pera ture a nd

oc ta hedra l shea r stress .

CONCLUSIONS AND DISCUSSION

Th e compa riso n o utlin ed a bO\'C indi ca tes for iso tropic ice th a t th e oc ta hedra l express io ns d o bring th e 0011' ra tes em a na tin g fro m different stress co nfi g ura ti ons IOge th e r. H OII'C' \ 'C' r, this d oes no t necessa ril y a ppl y 10 th e se pa ra te compressi\'e a nd shear-stra in ra tes under combined stress

situa ti ons.

T e rti a ry stra in ra tes a rc strong ly stress-co nfi g ura tion­d epe nd ent as a co nsequence of th c fa bri c th a t d e\ 'C' lops lI'ith strain as a pro pe rt y o r the stress co nfi g ura ti o n a nd th e d efo rm a tion pattern. The enh a ncem ent [ac lOr [o r

terti a ry oc ta hedra l sh ea r-stra in ra te is a bout 10 for simple

shea r a nd d ec reases to a bo ut 3 \I'ith increas ing co nfin ed

('o m press i\ 'C-stress com ponen t. Th e stead y-sta te te rti a ry OO\\' rate fo r a ni so tropic

po lycrysta llin c ice has bce n co nside red as a n enh a nce­m ent o f' st ra in ra te 0\'(' 1' th e minimum iso tro pi c 00\\' ra te .

Ea rli er la bo ra to rv experimenta l res ults ha \'e indica ted

th a t thi s enh a ncem ent fac to r is d epend ent o n stn'ss

co nfi g ura ti o n a nd th e d eg ree of c! e\ 'e loped a ni so tro py rel a tcd 10 to ta l stra in. O ve r a lI'id e range o f stress a nd tcmpera turc th e enh a ncem ent was fo und 10 ha \'e a \ 'a lue of a bout 3 Uac ka a nd ~l accagn a n , 1984) ro r un co nfin ed

uni ax ia l compression in "eas)' g lid e" (i.e. th e a ni so tro py is

compa tibl e w ith th e stress co nfig ura ti on ) a nd 5- 10 fo r

sim p le shear in " eas y g lid e" d e pending o n th e strcng th of th c sing le m aximum ra bri c (Russe ll-H ead a nd Budd , 1979; Russell-Head , 1985 ) . A 00 \\' la 1-1' in terms o r octa hedra l \'a lu es ro r a ni so tro pi c ice m ay nOli' be

represe nt ed by inco rpora tin g a \ 'a ri a ble enh a ncem ent

fac to r E d ependent on th e d egree of shea r o r compression.

Thus

(14)

lI'here ftll IS th e oc ta hedra l shea r-stra in ra te fo r a ni so­

tro pic ice. Fo r tead y-sta te te rti a ry 0 0\1' in \\'hi ch th e

a ni so trop y has been d e\'C' loped b y a compa tibl e stress co nfi g ura ti on . E has a \'a luc o f ", I 0 10 1' simple shea r a nd 3 10 1' co mpress io n (jac ka a nd Bu clcl , 1989 ) . R es ults obta ined in thi s stud y prO\' id c a dditi o na l support 10 this

co nce pt. In additi on, Fig ure 3 pro \'ides an indica ti o n of

th e \'a lu es of E fo r th e combined stress situa ti ons \I'ith

\ 'erti ca l co nfi ned co m press ion su pe rim posed on ho ri zo n ta l shea r. Alth o ug h th ese d e ta iled combin ed st ress d ata a rc o n'" <l\,<1 il a ble fo r a limit ed ra nge o f s tresses a nd tcmpera lUres a t this s tage. th e terti a ry 001\' ra tes fo r

simp le shea r a nd compression ha \'e bee n slLIdied O\ 'er a

lI'id er range of stresses a nd tempera tures . Based on Fig ure

3, II'C' pro pose th e ro llowing ge nera l rel a ti onship fo r th e oc ta heclra l shea r rrac ti o n As o r compress ion rrac ti on Ac. If f, . is th e oc ta hedral te rti a ry stra in ra te 10 1' co mpress ion

a lone (A,. = 1) a nd Es is th e oc ta heclra l te rti a ry stra in rate

fo r simple shea r a lone (,\ . = 0 ) , th en th e ex perim enta l

d a ta g i\ 'C a log-lin ea r re la ti on of th e fo rm

log EO = 10gEc + (1 - Ac){ logE, - logEe } . (15)

25 1

Page 6: Defortnation rates in cotnbined cotnpression and shear for ... · and l\ Jatsuda, 1974). For simple shear, initiall y t,,·o maxima occur normal to the shear plancs but as the deforma

Li JUIl alld olhm: Deformation rales ill combilled compressioll alld shear

or more simply

Eo = Eo $: .(16) (. )"'. EH

Although the shear and compressIOn f'raction s a re simpl y symm e trically relatcd by

(17)

thc experimental data suggest the corres ponding relation

111 terms of' the shear fraction follows approximately

(18)

These relation s may be expressed 111 terms of'

en hancement factors relati\'C to th e minimum strain rate for isotrop ic ice EIlI fo r \\'hi ch the fl ow rates are well estab li shed (Bude! and J acka, 1989 ) . IC E" and E, a re th e respective enhancement factors for compress ion and shear

a lone, then th e en hancemcnt [actor [or th e combincd

stress situatio n , E A, with compression fraction Ac IS gJ\'en

by

(E )'" E -E ---..::. ",. - , Es

with E" = ",,3 and EH =",, 10.

(19)

In octahedra l tcrms therc a re relativel y little differ­ences between confined and unconfined compression so we expect Equation ( 16) to hold reasonably \Veil O\'e r a wide range of'stress situations. Other st ress situations will

be exam ined further in the future. For the prese nt, the

stress situation with compression app rox imate ly normal to th e direction of shear is perhaps th e commonest combined sys tem found in deforming ice masses and the resu lts present ed here can bc used ge nerall y for inter­

pretation o[ field data and for ice-shect modelling .

REFERENCES

HakeI'. R . \\' . 1987. Is the ('I'('ep or ict' real" illdepe ndt ' lll o r th(' third de \'ialorir s tr(,ss in\'ariant? 11l/l'fllaliol/al .I u()(ialioll ~/ / ( )'rir%gical SCifll(, f., I'lIiJlica/ioll 170 r Symposium al \ 'a ncouI'C' r 198 7 PIi )'.,ical Ba,i, ~f ler SIi,'p/ .I[odellillg . 7 16.

252

Buclc!, \\ '. 1969. Thc d yna mics or ict' ma"e, . . I.\ ·. IRI' Sci. Re/) .. SI'I' . . 1 ( 11 ') (;Iaciolo,!!.!' 108.

Budd . \\'. F. alld T . ]-1. J acb. 1989. A rn'ie\\, Or ice I'heo log;y fi)1' ice sh('el l1 ",d e ll in,!!;. C()ld RI',~. Sei. 7 ,.1'111101 .. 16 :2 , 107 I -t.,).,

BlIclc!. \\'. 1'. ,,,,d :\1. :\Ialwda. 197+. Nijikll-kuripu asshub ni o kl' l'u

lakr"ho hyo no se llla kuho ise i ni IsuilC lOn preferred o riC ntali on or

poll (l'\'sla lJine ice by biaxial l'lTep]' 1.00t' T /'I/I/). S('i .. Se! . . 1. 32, 26 1

265. Gan. X . Q 1992. Labora lor\' s tudi es or lhl' dCITlopmenl oJ' anisolJ'()pic

('\'\'slal "rut·turc a nd lh (' flol\' propcrties or ict'. Ph .D . lhes is. li nil'Crsil ) o r l\lelbo u\'t1 ('. '

Glen, J . \\ '. 1958. Tlw /lo\\' lall o r icc: a discussion o r th" assumptions

m ade in g lacier lheory. lh eir ex per im c nl al foundalion and

consequ ences. III/mwliollal . I.IIocia/ioll I!l Seifll/i/ic H)'drolog)' Pllbliea/ioll 17 ,Symposium ,11 Chamonix 1958 PIi )'.,il'.l of /lte .Ilol'fllll'lIl 0/ lite la . 17 1 183.

Il ooke. R. LeB. 1981. 1'1011 la\\' 1'01' pO" Tl'y"" lIinc ice in glaciers: comparison of tlH'urt.: ticat pJ'ediction~ . laboratory c\tll<l , and lirlcl tneasuremen ts. ReI'. (;I'o/)!~)'\. .~j)are P/~) ', ,, 19 1),66+ 672.

Jacka . T . H . 198+. Th(' lime and slrain req uired fill' c1n'ciopmen l o r

minimum strain ral es in ice. Cold Reg. Sei . Tnlillol., 81:1" 26 1 268.

jacka. T. H . 199+. It1\'CSligaliom of discrepancies belll'cen laborato ry

sludies o r lhe n Oli' of' ice: ckmily. sample shape a nd size. a nd g rai n­SIze .. 11111. (;I(Iriol .. 19. 1+6 I.H.

J ack:.. '1'.11. and \\'. F. B"dd . 1989 . lso lropi c ancl a ni solropil' /l o\\' r(' l aliol1~ If)r iet" dYllamic-s . . 11111. (;/a riol. . 12.8 1 81.

.l ack<! , T. H. ancl R. C. Lil e. 198·/. Samplc preparalion lechniques a nd

compress ion apparalus for ice noli' sludies. Gold Reg. Sri. 7 erilllol .. 8 31, 235 2+0.

J ac ka , T. H . and :\1. :\laccagnrIn . 198+. Ice c rys lallog r" phic and slra in ralt" chan gL's willl st rain in compre,",s i()1l alld eXlcllsion. Cold Re,!? Sr;, ·l rell/lO/ .. 8 1:11. 269 286.

K a tnb. B. 1972. Experimental recrys la lli za lion or in: unciel' sire". III H ca rd. H. C., I. Y. Btll'g, i'\. L. Ca neI' and C. B. Raleig h. "d, . HIIll'

{(lid Fac/llrl' lif rock,. \ \ 'ashing lon , DC, . \merican Geophysical C nion.

21 1 2+1. Geophysical fllon ograph 16.

Li , J. 1995.It1lcrrelalion bel\\'ccn flow propcrties '\\ld c ryslal Slructure of SilO\\' and icL'. Ph .D. thesis. L' ni\T rs il~ ' of l\f elboLlrnc. )

Lile. R . C. 1978. The ell t'c t o r a ni so tropy nn th e ('I'('('p of polycrys talline icc. J. (;!ario!., 21 ,85), 17 .1 ·183.

Lil t', R. C. 198 L The n O\\' lal\' 10 1' iso lro pic and anisotropic ice at lo\\'

slrai n rates . . I.\ ·. IRE Rep. 132. .'Ij e llor. 1\1. a nd D. ,\1. Coil'. 1982. Ddol'malion a nd failure of' ice undcl'

conslanl slress or conqatll slrain-rale. Cold Reg. Sri. Tfe/lllol .. 5 3 . 201 2 19.

~I o rga ll , \ ', I. 1979 .. \ sys tc:"1ll Ic)1' ;\l'curale le mpe rature cOll lrol o l'small

Il"ici balhs. J. (; Iario/', 22187 ), 389 39 1. :\ yc. J. F. 19.'>3. The 110\\' lal\' or ire rrom measuremcnl s in glacier

lunnels. la bo ralol'Y experimcnls a nd th c Jungfraufirn boreho ic

experimClll. Proc . R. So .. . !.olllloll, SI'I' .. I, 219 ( 11 39 ), +77 +89.

Russcl l-H eacl, D. S. I 98.'i. Shear defo rmalio n of ice to large s tra ins . . 1. \ '. 1 RIo' RI'\. . \ '01" 28. I 18 12·1.

R",,(' II-Heacl , I). S. and \\ '. F. Budcl . 19 79 . Ice-sheel fI(JII properties cl('ri\Tci from bo re-hnk shea r 111{,~ I :;u rcnll'nls combined \\ ilh ice-core"

studies. J. Glario/., 24 'la , I 17 130. Slci ll l' l11allll , S. 1958. Expcrilll c lll cllc L' llll'rSuchullge Il z ur Plasl iz il;i t

l 'O Il Eis. Bei/r. (;1'01. SrllI('ei~. (; I'II/ech. SI'I., I j )'drol. 10.