Deformation Twinning – Mechanisms and Modeling in FCC...

57
University of Illinois at Urbana Champaign 1 Deformation Twinning – Mechanisms and Modeling in FCC, BCC Metals and SMAs Huseyin Sehitoglu Mechanical Science and Engineering August 26, 2015 Grad. Students and Collaborators: K.Gall, I.Karaman, D. Canadinc, J. Wang, T. Ezaz, A. Ohja, L. Patriarcha, P.Chowdhury, S. Kibey, W.Abuzaid, M.Sangid, H.J. Maier , Y. Chumlyakov http://html.mechse.illinois.edu

Transcript of Deformation Twinning – Mechanisms and Modeling in FCC...

  • University of Illinois at Urbana Champaign

    1

    Deformation Twinning – Mechanisms and Modeling in FCC,

    BCC Metals and SMAs Huseyin Sehitoglu

    Mechanical Science and Engineering August 26, 2015

    Grad. Students and Collaborators: K.Gall, I.Karaman, D. Canadinc, J. Wang, T. Ezaz, A. Ohja, L. Patriarcha,

    P.Chowdhury, S. Kibey, W.Abuzaid, M.Sangid, H.J. Maier , Y. Chumlyakov

    http://html.mechse.illinois.edu

  • University of Illinois at Urbana Champaign

    Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

    Twinning stress in SMAs-Twin nucleation model- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

    2

    Outline  

  • University of Illinois at Urbana Champaign

    3

    Plas%c  flow  in  fcc  materials:  slip  and  cross-‐slip  

    Polycrystalline  material  

    Single  crystal/grain  

    twinning  

    slip  low  SFE  metal  e.g.:  pure  Ag  

    stacking  fault  ribbons  

    TEM  image  from:    Whelan,  Hirsch,  Horne  and  Bollmann,  Proc.  Roy.  Soc.  London  (1957).   Karaman-‐Sehitoglu,  Acta  Mater  (2001).  

    dislocaNon  arrays  Fuji  et  al.,  Mater.  Sci.  Engg.  A  319  (2001)  415-‐461.  

    DislocaNon  cells  

    low  SFE  alloys  e.g.:  nitrogen  steels    

    strain  

    stress  

    Stage  I

    Stage  I

    twinning  starts  

    Stage  III

    medium/high  SFE  metal  e.g.:  pure  Al  

    cross-‐slip  

  • University of Illinois at Urbana Champaign

    Deformation by Twin (fcc)

    Deformation twin in Fe-Mn-C steel [001] orientation 3% strain

    I. Karaman- Sehitoglu et al, Acta Mater.(2000).

    fcc  

    fcc  

    twin  

    B  

    C  

    C

    A

    B

    A

    C

     

     

    fcc  

    fcc  

    twin  

    Mirror symmetry is seen across the twin boundary.

    Twin  boundary  

    Twinning : mechanism of plastic deformation at crystal level.

    twin  boundary  

    twinning shear

    a a

  • University of Illinois at Urbana Champaign

  • University of Illinois at Urbana Champaign

    6

    Deformation by Slip Slip due to a perfect dislocation

    Polycrystalline alloy

    slip

    Single crystal/grain

    Karaman, Canadinc, Sehitoglu et al. Acta Mater (2001-2006).

    dislocation

    arrays

  • University of Illinois at Urbana Champaign

    7  

    Plas%c  deforma%on  due  to  slip  

    Slip  due  to  a  perfect  

    dislocaNon  

    Callister  (2000)  

    slipped  state  Intrinsic  stacking  fault  

    t2 t1 l

    b1

    b2

    extended  dislocaNon  A  perfect  dislocaNon  may  split  into  parNal  dislocaNons…  

    Lee  et  al.,  Acta  Mater  (2001)  

    Intrinsic  stacking  fault  

  • University of Illinois at Urbana Champaign

    8

    fcc  uz fcc  

    0.5  

    usγu  

    unstable  

    1.0   1.5   2.0   2.5   3.0  

    [ ]111

    112⎡ ⎤⎣ ⎦

    A  

    A  

    B  C  

    B  C  

    A  

    fcc  

    primiNve  cell  

    p  q  

    r  s  

    (111)  

    Energy  pathway  for  a  stacking  fault    

    hcp  

    isfγs  

    isf  

    ABC

    AC

    A

    intrinsic  stacking  fault  (isf)  

    B

    Generalized  stacking  fault  energy  (GSFE)  

    (Vitek,  1968)  

    12bp bp

    maximum  

    maxγ

    m  

    AB

    AA

    C

    BC

    12bp

  • University of Illinois at Urbana Champaign

    9

    Energy  landscape  for  a  stacking  fault  (g-‐surface)  

    xu12

    zu16

    isfγ

    maxγ

    S.  Kibey,  J.B.  Liu,  M.  W.  CurNs,  D.  D.  Johnson  and  H.  Sehitoglu,  Acta  Mater.  54  (2006)  2991-‐3001  

    usγunstable  stacking  fault  energy  (Rice,1992)  

    A

    C

    s

    B u

    m Energy  for  SF  formaNon  during  passage  of  a  Shockley  parNal=  area  under  this  surface  

  • University of Illinois at Urbana Champaign

    10  

    Classical  twin  nuclea%on  model  

    Venables,  DeformaNon  Twinning,  Eds.  Reed-‐Hill,Hirth  and  Rogers  (1964)  

    crit crit2 isf

    p

    1 22 b

    K⎡ ⎤⎛ ⎞ γ− + =⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

    θ θ τ τβ

    1= =θ β

    fiNng  parameters:    K,  q    and  b

    Classical  twinning  stress  equa%on:

    Calibra%on  of  fiNng  parameters  for  different  alloys  is  required.  

    need  a  more  fundamental  approach  to  predict  twinning  stress.  

    Cu-‐based  alloys  

  • University of Illinois at Urbana Champaign

    11  

    Energy  required  to  twin  the  laNce  

    top  view  2Τ

    B  C  

    B  

    C  B  A  

    A  

    A  

    B  C  

    B  C  

    B  C  

    A  

    A  

    A  

    Intrinsic  stacking  fault  

    A  C  

    A  

    32

    a

    B  C  

    B  

    C  

    A  

    A  

    A  

    two  layer  fault  

    A  

    B  A  

    3a

    3Τ 3Τ3Τ

    p2bpb

    B  C  

    B  

    C  

    A  

    three  layer  twin  

    A  C  

    B  

    p3b

    A  

    A  

    next  periodic  supercell  

    [ ]111

    112⎡ ⎤⎣ ⎦

    B   C  B  B  

    C   A   B  A  

    fcc  

    B   C  C  

    A  

    Area  under  this  curve  is  the  required  energy  to  twin  the  laNce  by  successive  shear    

    usγutγ utγ utγ utγ

    isfγ tsf2γ tsf2γ tsf2γ tsf2γ

  • University of Illinois at Urbana Champaign

    12

    Energy  pathway  for  twinning  :  pure  Cu  

    usγutγ utγ utγ utγ

    isfγ

    tsf2γtsf2γ tsf2γ tsf2γ

    •   VASP-‐PAW-‐GGA  •   8  x  8  x  4  k-‐point  mesh    

    •   273.2  eV  energy  cutoff.  

    S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Appl.  Phys.  Lec.  89  (2006)  191911.    

    Fault  energies  converge  aYer  third  layer  sliding  indica%ng  the  comple%on  of  twin  nuclea%on.  

    TBMγ

    TBF2= γ

  • University of Illinois at Urbana Champaign

    13  

    Energy  pathway  for  twinning  :  pure  Pb  

    usγ utγ utγ utγ

    isfγtsf2γ tsf2γ tsf

    2γ tsf2γ

    utγ

    twin  nuclea%on   twin  growth  

    •   VASP-‐PAW-‐GGA  •   8  x  8  x  4  k-‐point  mesh    

    •   237.8  eV  energy  cutoff.  

    Convergence  occurs  aYer  the  third  layer  sliding  for  Pb  as  well.  Hence,  a  three-‐layer  twin  is  considered  as  the  basic  nucleus  in  fcc  metals.  

    S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Acta  Materialia  55  (2007)  6843-‐6851  

     

  • University of Illinois at Urbana Champaign

    14  

    Computed  fault  energies  for  fcc  metals  

    The  above  table  represents  the  most  complete  set  of  DFT-‐based  theoreNcal  calculaNons  of  fault  energies  for  fcc  metals.  

    a fault  energies  from  individual  Refs.  in  Table  A-‐1,  Hirth  and  Lothe  (1982).  b fault  energies  computed  using  SP-‐PAW-‐GGA.  Siegel,  Appl.  Phys.  Lec.  (2005)  c pair  potenNal.  RauNoaho,  Phys.  Status  Sol.  (1982).    

    H.  Sehitoglu  et  al.,  Acta  Materialia  55  (2007)  6843-‐6851  

     

    (all  energies  in  mJ/m2  )  

  • University of Illinois at Urbana Champaign

    15

    Mesoscale  model  for  fcc  twins  

    Total  energy  of  the  twin  nucleus:  

    Etotal = Eedgeenergy contribution of edge components

    + Escrew

    energy contribution of screw components

    − Wτwork done byapplied stress

    + EGPFEenergy associated with twin-energy pathway

    Mahajan  and  Chin,  Acta  Metallurgica  (1973)    

    DislocaNon  configuraNon  of  the  nucleus  

    ( )( ) { } ( )

    22

    2

    0

    2

    2 11 1

    4 1 2 26 9

    tw

    s

    i

    e

    n GPFE

    totalGb d d d

    N ln N ln ln

    N d

    Gb ddN ln

    NN

    N r

    b

    E d

    E

    ,N −+ +

    +

    −−

    ⎡ ⎛ ⎞ ⎤⎜ ⎟⎢ ⎥

    ⎡ ⎛ ⎞ ⎤⎛ ⎞⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎦ ⎣

    =⎠ ⎝ ⎠

    τ

    π υ π

    Bδ−

    [ ]111

    ⎡ ⎤⎣ ⎦211

    ⎡ ⎤⎣ ⎦011

    A  

    C  d

    Total  energy:  

    H.  Sehitoglu  et  al.,Acta  Materialia  55  (2007)  6843-‐6851  

     

  • University of Illinois at Urbana Champaign

    16  

    Total  energy  of  the  twin  nucleus  

    { { {γ-energy required to

    energy associat twin the latti

    γ-

    energy requiredto cross-slip

    ed with twin-energy pathway c e

    GPFE Stwin FE EE = −

    usγ utγ utγ utγ

    isfγtsf2γ tsf2γ tsf

    2γ tsf2γ

    utγ

    twin  nuclea%on  

    twin  growth  cross-‐slip  

    ( ) ( ) ( )

    ( )

    22

    0 0

    0

    2

    2

    21 19

    1

    21

    4 1 2 6dd

    tw

    total

    twin F i

    e

    n

    s

    S

    Gb d d dN ln N l

    d dx

    Gb ddN lnE n ln NN r

    N

    d ,N

    N dd d

    N

    bx

    ⎡ ⎤⎛ ⎞⎧ ⎫⎛ ⎞+ − −⎢ ⎥⎨ ⎬ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎢ ⎥⎩ ⎭ ⎝ ⎠⎣= +

    +

    ⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥

    ⎝ ⎠⎦ ⎦

    − −

    ∫∫ τγυ

    γ

    π π

    Total  energy:  

    ( )- 01d

    twin twinE N d dxγ γ= − ∫

    - 0

    d

    SF SFE d dxγ γ= ∫

    EGPFEenergy associated with twin-energy pathway

    = Eγ -twinenergy required to twin the lattice

    − Eγ -SF

    energy requiredto cross-slip

    Energy  contribuNon  of  GPFE:  

  • University of Illinois at Urbana Champaign

    17

    Twinning  stress  equa%on  

    H.  Sehitoglu  et  al.,Acta  Materialia  55  (2007)  6843-‐6851  

    For  a  stable  twin  configuraNon:  

  • University of Illinois at Urbana Champaign

    18

    Predicted  twinning  stresses  for  fcc  metals  

    Twinning  stress  depends  non-‐monotonically  on  stacking  fault  energy.

    τcrit ∼ K

    γ isfbtwin

    does  not  hold  !  

  • University of Illinois at Urbana Champaign

    19  

    Predicted  twinning  stresses  for  fcc  metals  (contd.)  

    Twinning  stress  depends  monotonically  on  unstable  twin  SFE  .  

    UnstableTwin Energy governs  the  physics  of  twin  nucleaNon.

  • University of Illinois at Urbana Champaign

    20  

    Predicted  twinning  stresses  for  fcc  metals  (contd.)  

    S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Acta  Materialia  55  (2007)  6843-‐6851  

     

    b Bolling,  Casey  and  Richman,  Phil.  Mag.  (1965).  c Suzuki  and  Barrec,  Acta  Metall.  (1958).  d Narita  et  al.,  J.  Japan  Inst.  Metals  (1978).  e Yamamato  et  al.,  J.  Japan  Inst.  Metals  (1983).  

  • University of Illinois at Urbana Champaign

    21  

    Part  1-‐Summary  

    •  Presented  a  hierarchical,  mulNscale,  adjustable  parameter-‐free  approach  for  twin  nucleaNon  in  fcc  metals  and  alloys.  

    •  Predicted  twinning  stresses  are  in  excellent  agreement  with  available  experimental  data.  

    •  Our  theory  inherently  accounts  for  direcNonal  nature  of  twinning.  

  • University of Illinois at Urbana Champaign

    Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

    Twinning stress in SMAs-Twin nucleation model- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

    22

    Outline  

  • University of Illinois at Urbana Champaign

    A theoretical model to predict the twinning stress has not been established.

    Theoretical model is needed

    23

    Deformation by Twinning (bcc)

  • University of Illinois at Urbana Champaign

    DIC measurements: An example

    24

    σAfter =180 MPa σAfter = 220 MPa σAfter = 260 MPa

    180 MPa

    220 MPa

    260 MPa

    FeCr [010] compression High resolution DIC images (5X) allow to capture the residual strain field after each loading stage allowing to pinpoint the slip or twinning stress precisely.

    (%)ε

  • University of Illinois at Urbana Champaign

    Generalized planar fault energy (GPFE) (MD calculations) for FeCr

    We are concerned with the twin nucleation region of the GPFE.

    25

  • University of Illinois at Urbana Champaign

    Other theoretical model

    Too high!

    A better model to predict the experimentally measured twinning stress is lacking.

    html.mechse.illinois.edu 26

  • University of Illinois at Urbana Champaign Twinning mechanisms in bcc

    Mechanism  

    Pole  mechanism1  

    Disloca%on  core  dissocia%on2  

    Slip  disloca%on  interac%on3  

    → ×a a[111] 3 [111]2 6screw

    Co`rell,  A.H.,  Bilby,  B.A.,  1951.      Priestner,  R.,  Leslie,  W.C.,  1965.        Sleeswyk,  A.W.,1963.  .      Lagerlof,  K.P.D.,  1993.   27

  • University of Illinois at Urbana Champaign

    Experimental observations validate that three slip systems of symmetric configuration may be activated.

    Why dislocation dissociation mechanism?

    28

  • University of Illinois at Urbana Champaign

    Incorporate

    Area under the GPFE gives the energy barrier to nucleate a twin. We consider a three layer twin nucleus.

    Model development

    29

  • University of Illinois at Urbana Champaign Prediction of twinning stress

    Total energy of dislocation configuration is written as:

    0 0

    - ( [ ] [ ] [ ]) - ( ) - ( ) ( d dα τ τ γ γπ

    = + + + + ∫ ∫2ln ln ln - )2 2A Ar r2

    B A B Atotal rss A o rss B o GPFE SF

    o o o

    r - r r rGbE n Gb b r - r b r - 2r x xr r r

    '1 γ ) τπ

    ⎧ ⎫⎪ ⎪= −⎨ ⎬⎪ ⎪⎩ ⎭

    critical twinGb

    b d

    2 3 -2 3(2 ( 3 -1)

    ' ( ) [ ] ) [ ]twinγ γγ γ π γ γ π+− += −1sin 2 2.5 1.21 (2 2 sin 2 1.22 where N = 3

    2 4UT SF

    UT UT TSF- N -

    G is calculated from MD d is the distance b/w dislocations A and B and can be calculated from above equation

    Interaction energy

    No empiricism in the model

    Line energies Work done GPFE

    30

  • University of Illinois at Urbana Champaign

    35 40 45 50 550

    200

    400

    600

    Modeling (Present study)

    γ TBM 2mJ ( )m

    Experiments (including present study on Fe50Cr)

    Fe-25Ni (Nilles et.al.)

    Fe (Harding) Fe-50Cr

    Fe-3V (Suzuki et. al.)

    Application to other bcc alloys

    31  

  • University of Illinois at Urbana Champaign

    Close agreement!

    Comparison with experiments

    html.mechse.illinois.edu

    a  Harding  (1967,1968)  b  Calcula%ons  based  on  Ogata  et  al.  (2005)  c  Nilles  and  Owen  (1972)  d  Suzuki  et  al.  (1966)  

    32

  • University of Illinois at Urbana Champaign Current Results

    100 200 300 400 500 6005

    6

    7

    8

    9

    10+

    +

    Modeling (Present study)

    Experiments

    Fe-3at.%V

    V

    Fe-25at.%Ni

    Fe

    Nb

    30 γ ut − 2γ tsf( ) d1 + d2( )d{112} γ ut + γ sf( )

    Ta Fe-3at.%Si

    Mo

    W

    10#

    10#

    10#

    10#

    10#

    10#

    33

    Harding , Proc.R. Soc.1967, 1968 Meyers et al.Acta Materialia, 2001 Narita and Takamura, Disloc. Solids, 1992 Nilles and Owen,The Soc. of Metals, 1972

    Sehitoglu et al., Phil Mag Letters, 2014

  • University of Illinois at Urbana Champaign

    Twin system-I

    Twin-system-II

    Twin Migration Stress

    Twin migration stress is the stress required to move the twinning dislocation along the twin boundary, thus translating it by one layer.

    39  

  • University of Illinois at Urbana Champaign

    Prediction of twin migration stress

    Theoretical prediction is needed!

    html.mechse.illinois.edu 35

  • University of Illinois at Urbana Champaign Twinning partial

    y[010]

    a (121)[111]6

    Incident  disloca%on  a3× [111](121)6

    a (121)[111]6

    Twin

    x[100]

    = 1.0arbResidual dislocation plays an important role

    What is twin migration?

    r 1 2b = b - b36

  • University of Illinois at Urbana Champaign

    An incident twin is blocked because of the higher magnitude of residual dislocation at the twin boundary.

    rb =1.0a

    37

  • University of Illinois at Urbana Champaign

    Slip-slip interaction

    Slip-slip interaction

    Twin-twin interaction

    Twin-twin interaction Twin migration stresses

    We try to predict these stresses

    html.mechse.illinois.edu 38

  • University of Illinois at Urbana Champaign

    Twin systems analyzed in present work

    39

    Christian and Mahajan, Progress in Materials Science,1995

    Line of intersection of twins Example: Intersection type

    Cross product of n1 X n2

    n1

    n2

    121( )× 112( )

  • University of Illinois at Urbana Champaign

    τ 2τ1

    = τM

    τ T=

    4b2(Gbr2 +

    Gb22

    4πln(

    r2w

    )+ γ modifiedGPFEbN2

    b( N2+1)

    ∫ )

    2πb2Gb1

    2

    4πln(

    r2w

    )

    Minimization

    ∂Utotal∂ς1

    =∂Utotal∂ς 2

    = 0

    Utotal = Einteraction/incident +Eline/incident +Eline/outgoing +Eresidual +EincidentGPFE +EmodifiedGPFE -Wincident -Woutgoing

    = -Gb1

    2

    2πln[

    rB - rAro

    ] + ln[rB2ro

    ]+ ln[rAro

    ]⎧⎨⎩⎪

    ⎫⎬⎭⎪ζ1 +

    Gb12

    4πln(

    Rw

    ) 2d +ζ1{ }+ Gb22

    4πln(

    Rw

    ) l2 -ζ 2{ }+

    Gbr

    2

    4πln(

    Rw

    )ζ 2 + A1 γ incidentGPFE0

    N1

    ∫ dλ + A2 γ modifiedGPFEN2

    N2+1

    ∫ dλ - τ1b1A1 - τ 2b2A2

    40

  • University of Illinois at Urbana Champaign

    Residual dislocation

    41

    +Blockage

    Incorporation+ Blockage

    Incorporation+ Blockage

  • University of Illinois at Urbana Champaign

    br =1.0a br = 0.8a

    mτ =167 MPa mτ =144 MPaTheory

    Theory Experiment

    [101] Compression [111] Compression

    interesection

    intersection

    42

    τ M

    τ T= 0.83

    τ M

    τ T= 0.74

  • University of Illinois at Urbana Champaign

    Results-Extended

    43

    τ M

    τ T⎛⎝⎜

    ⎞⎠⎟

    Harding , Proc. R. Soc.1967, 1968 Suzuki, J. Phys. Soc. Jpn, 1962

  • University of Illinois at Urbana Champaign

    Conclusions-Part 2

    ü  Twin migration stress is lower than the twin nucleation stress.

    ü Residual dislocation affects twin migration stress. Higher the magnitude of residual dislocation, higher is the twin migration stress.

    ü  Intersection types of interacting twins is an important parameter to predict the outcome of twin-twin interaction. Higher magnitude of residual dislocation in , and cases causes the incident twin to be completely blocked.

    44

  • University of Illinois at Urbana Champaign

    Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

    Twinning stress in SMAs-Twin nucleation model (Part 3)- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

    45

    Outline  

  • University of Illinois at Urbana Champaign

    Shape Memory Alloys (SMAs)-Part 3

    Darren Hartl, Aerospace applications of shape memory alloys 46

    Applications of SMA including medical and aerospace.

    Reduction of engine noise

    SMA beams

    Chevron

    • Thermal Shape Recovery ü Shape Memory

    • Elastic Shape Recovery ü Pseudoelasticity

  • University of Illinois at Urbana Champaign

    47  

    Detwinning  and  Twinning  of  NiTi  Martensite  

  • University of Illinois at Urbana Champaign

    48

    Compressive stress-strain response of Ni54Fe19Ga27 at temperature of -190 °C.

  • University of Illinois at Urbana Champaign

    49  

    Energy  Barrier  of  (100)  Twin  

    2

    mJm

    γ ⎛ ⎞⎜ ⎟⎝ ⎠

    xuc

    241TMEmJm

    γ =

    [ ]00113.5

    =M

    cc

    Generalized planar fault energy (GPFE)

    [ ]100

    [ ]001

    [ ]010Ti   Ni   0.46  A  Shuffle  in  

    Ti  0.23  A  Shuffle  in  Ni  

    3. [001]9a

    B19’  3  layer  twin  aYer    only  shear   3  layer  twin  aYer  shuffle  

    following  shear  

    Shear  DirecNon  

  • University of Illinois at Urbana Champaign

    50

    uA: atom displacement above slip plane (plane A) uB: atom displacement below slip plane (plane B) f(x): disregistry or slip distribution, uA-uB Solve f(x) using Force balance

  • University of Illinois at Urbana Champaign

    51

    Hall,  Bacon  

    Narrow  disloca%ons  are  more  difficult  to  move  than  wide  ones.      Disloca%ons  with  larger  b  are  more  difficult  to  move.    As  unstable  fault  energy  increases,  the  disloca%on  width  narrows.    Disregistery  becomes  complex  for  SMAs  (for  slip  and  twinning)  

    Review of Peierls-Nabarro (P-N) model

  • University of Illinois at Urbana Champaign

    52

    ( )1 1 1 1 x N 1 db b x x d x 2df (x) tan + tan + tan +...+ tan2 N

    − − − − − −⎡ ⎤⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟π ζ ζ ζ ζ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

    Due to the interaction of multiple twin dislocations, the disregistry function f(x) is:

    -40 -20 0 20 40 600.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Twin nucleation Dislocation slip

    f (x)b

  • University of Illinois at Urbana Champaign

    53

    Lenticular twin

    Twins nucleate from1-2 grain boundary and then grow toward 2-3 grain boundary.  

    Wang L et al, Metallurgical and Materials Transactions A, 2010.

    Twin configuration

  • University of Illinois at Urbana Champaign

    54

    GPFEETwin boundary energy (GPFE)

    GPFE of L10 Ni2FeGa

  • University of Illinois at Urbana Champaign

    55

    ( )( ) ( ) ( )

    ( )( )( )

    2 2

    2

    1 12 22 2

    1 cos 21

    4 1 2

    12sin tan +...+ tan +...+ 2

    tsf isfus isf ut

    m

    m

    b N b Nshd N sh

    Nmb d mb NdN mb d mb Nd

    µ ν θ γ γτ γ γ γ

    π ν

    ζζζ ζ ζ ζ

    =∞− −

    =−∞

    − ⎧ ⎫⎡ ⎤+⎛ ⎞⎪ ⎪= + − + − − ×⎨ ⎬⎢ ⎥⎜ ⎟− ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭⎧ ⎫⎧ ⎫⎡ ⎤ − −⎛ ⎞ ⎛ ⎞− − −⎪ ⎪ ⎪ ⎪×⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ + − + −⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭

    Critical stress required to nucleate a twin:

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    int

    2 i=N-1

    to GPFE

    + +

    SF twinm=- m=-

    lital ne

    2

    22

    2

    i=2

    E = E

    γ (f(mb - d)

    E

    µb L1- νcos θ N ln - ln N - 2 !+ ln N - i !+ ln i -1 !4π 1- ν

    )b + N -1 γ (f(mb - d)

    + + -E

    Nµb 1- νco

    d

    W

    Nτ)b

    = +

    + s θ4π 1- ν

    h- ds∞ ∞

    ∞ ∞

    ⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

    ∑ ∑

  • University of Illinois at Urbana Champaign

    56

    Predicted and Experimental twinning stress versus unstable twin nucleation energy for SMAs

  • University of Illinois at Urbana Champaign

    57

    ü  Twinning stress calculated based on P-N formulation and GPFE curves

    provides an excellent basis for a theoretical study of the twin nucleation in

    SMAs.

    ü  The proposed twin nucleation model reveals that twinning stress has an

    overall monotonic dependence on the unstable twin nucleation energy. To

    achieve smaller twinning stress in SMAs, shorter Burgers vectors, lower

    unstable twin energies and larger interplanar distances are desirable.

    Part 3- Summary