Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of...

57
University of Illinois at Urbana Champaign 1 Deformation Twinning – Mechanisms and Modeling in FCC, BCC Metals and SMAs Huseyin Sehitoglu Mechanical Science and Engineering August 26, 2015 Grad. Students and Collaborators: K.Gall, I.Karaman, D. Canadinc, J. Wang, T. Ezaz, A. Ohja, L. Patriarcha, P.Chowdhury, S. Kibey, W.Abuzaid, M.Sangid, H.J. Maier , Y. Chumlyakov http://html.mechse.illinois.edu

Transcript of Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of...

Page 1: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

1

Deformation Twinning – Mechanisms and Modeling in FCC,

BCC Metals and SMAs Huseyin Sehitoglu

Mechanical Science and Engineering August 26, 2015

Grad. Students and Collaborators: K.Gall, I.Karaman, D. Canadinc, J. Wang, T. Ezaz, A. Ohja, L. Patriarcha,

P.Chowdhury, S. Kibey, W.Abuzaid, M.Sangid, H.J. Maier , Y. Chumlyakov

http://html.mechse.illinois.edu

Page 2: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

Twinning stress in SMAs-Twin nucleation model- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

2

Outline  

Page 3: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

3

Plas%c  flow  in  fcc  materials:  slip  and  cross-­‐slip  

Polycrystalline  material  

Single  crystal/grain  

twinning  

slip  low  SFE  metal  e.g.:  pure  Ag  

stacking  fault  ribbons  

TEM  image  from:    Whelan,  Hirsch,  Horne  and  Bollmann,  Proc.  Roy.  Soc.  London  (1957).   Karaman-­‐Sehitoglu,  Acta  Mater  (2001).  

dislocaNon  arrays  Fuji  et  al.,  Mater.  Sci.  Engg.  A  319  (2001)  415-­‐461.  

DislocaNon  cells  

low  SFE  alloys  e.g.:  nitrogen  steels    

strain  

stress  

Stage  I

Stage  I

twinning  starts  

Stage  III

medium/high  SFE  metal  e.g.:  pure  Al  

cross-­‐slip  

Page 4: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Deformation by Twin (fcc)

Deformation twin in Fe-Mn-C steel [001] orientation 3% strain

I. Karaman- Sehitoglu et al, Acta Mater.(2000).

fcc  

fcc  

twin  

B  

C  

C

A

B

A

C

<112>  

<111>  

fcc  

fcc  

twin  

Mirror symmetry is seen across the twin boundary.

Twin  boundary  

Twinning : mechanism of plastic deformation at crystal level.

twin  boundary  

twinning shear

a a

Page 5: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Page 6: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

6

Deformation by Slip Slip due to a perfect dislocation

Polycrystalline alloy

slip

Single crystal/grain

Karaman, Canadinc, Sehitoglu et al. Acta Mater (2001-2006).

dislocation

arrays

Page 7: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

7  

Plas%c  deforma%on  due  to  slip  

Slip  due  to  a  perfect  

dislocaNon  

Callister  (2000)  

slipped  state  Intrinsic  stacking  fault  

t2

t1 l

b1

b2

extended  dislocaNon  A  perfect  dislocaNon  may  split  into  parNal  dislocaNons…  

Lee  et  al.,  Acta  Mater  (2001)  

Intrinsic  stacking  fault  

Page 8: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

8

fcc  uz fcc  

0.5  

usγu  

unstable  

1.0   1.5   2.0   2.5   3.0  

[ ]111

112⎡ ⎤⎣ ⎦

A  

A  

B  C  

B  C  

A  

fcc  

primiNve  cell  

p  q  

r  s  

(111)  

Energy  pathway  for  a  stacking  fault    

hcp  

isfγs  

isf  

ABC

AC

A

intrinsic  stacking  fault  (isf)  

B

Generalized  stacking  fault  energy  (GSFE)  

(Vitek,  1968)  

12bp bp

maximum  

maxγ

m  

AB

AA

C

BC

12bp

Page 9: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

9

Energy  landscape  for  a  stacking  fault  (g-­‐surface)  

xu1<110>2

zu1<112>6

isfγ

maxγ

S.  Kibey,  J.B.  Liu,  M.  W.  CurNs,  D.  D.  Johnson  and  H.  Sehitoglu,  Acta  Mater.  54  (2006)  2991-­‐3001  

usγunstable  stacking  fault  energy  (Rice,1992)  

A

C

s

B <112> u

m Energy  for  SF  formaNon  during  passage  of  a  Shockley  parNal=  area  under  this  surface  

Page 10: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

10  

Classical  twin  nuclea%on  model  

Venables,  DeformaNon  Twinning,  Eds.  Reed-­‐Hill,Hirth  and  Rogers  (1964)  

crit crit2 isf

p

1 22 b

K⎡ ⎤⎛ ⎞ γ− + =⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

θ θ τ τβ

1= =θ β

fiNng  parameters:    K,  q    and  b

Classical  twinning  stress  equa%on:

Calibra%on  of  fiNng  parameters  for  different  alloys  is  required.  

need  a  more  fundamental  approach  to  predict  twinning  stress.  

Cu-­‐based  alloys  

Page 11: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

11  

Energy  required  to  twin  the  laNce  

top  view  2Τ

B  C  

B  

C  B  A  

A  

A  

B  C  

B  C  

B  C  

A  

A  

A  

Intrinsic  stacking  fault  

A  C  

A  

32

a

B  C  

B  

C  

A  

A  

A  

two  layer  fault  

A  

B  A  

3a

3Τ 3Τ3Τ

p2bpb

B  C  

B  

C  

A  

three  layer  twin  

A  C  

B  

p3b

A  

A  

next  periodic  supercell  

[ ]111

112⎡ ⎤⎣ ⎦

B   C  B  B  

C   A   B  A  

fcc  

B   C  C  

A  

Area  under  this  curve  is  the  required  energy  to  twin  the  laNce  by  successive  shear    

usγutγ utγ

utγ utγ

isfγtsf2γ tsf2γ

tsf2γ tsf2γ

Page 12: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

12

Energy  pathway  for  twinning  :  pure  Cu  

usγutγ

utγutγ utγ

isfγ

tsf2γtsf2γ tsf2γ tsf2γ

•   VASP-­‐PAW-­‐GGA  

•   8  x  8  x  4  k-­‐point  mesh    

•   273.2  eV  energy  cutoff.  

S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Appl.  Phys.  Lec.  89  (2006)  191911.    

Fault  energies  converge  aYer  third  layer  sliding  indica%ng  the  comple%on  of  twin  nuclea%on.  

TBMγ

TBF2= γ

Page 13: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

13  

Energy  pathway  for  twinning  :  pure  Pb  

usγ utγ utγ utγ

isfγtsf2γ tsf2γ tsf2γ tsf2γ

utγ

twin  nuclea%on   twin  growth  

•   VASP-­‐PAW-­‐GGA  

•   8  x  8  x  4  k-­‐point  mesh    

•   237.8  eV  energy  cutoff.  

Convergence  occurs  aYer  the  third  layer  sliding  for  Pb  as  well.  Hence,  a  three-­‐layer  twin  is  considered  as  the  basic  nucleus  in  fcc  metals.  

S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Acta  Materialia  55  (2007)  6843-­‐6851  

 

Page 14: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

14  

Computed  fault  energies  for  fcc  metals  

The  above  table  represents  the  most  complete  set  of  DFT-­‐based  theoreNcal  calculaNons  of  fault  energies  for  fcc  metals.  

a fault  energies  from  individual  Refs.  in  Table  A-­‐1,  Hirth  and  Lothe  (1982).  b fault  energies  computed  using  SP-­‐PAW-­‐GGA.  Siegel,  Appl.  Phys.  Lec.  (2005)  c pair  potenNal.  RauNoaho,  Phys.  Status  Sol.  (1982).    

H.  Sehitoglu  et  al.,  Acta  Materialia  55  (2007)  6843-­‐6851  

 

(all  energies  in  mJ/m2  )  

Page 15: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

15

Mesoscale  model  for  fcc  twins  

Total  energy  of  the  twin  nucleus:  

Etotal = Eedge

energy contribution of edge components

+ Escrew

energy contribution of screw components

− Wτ

work done byapplied stress

+ EGPFE

energy associated with twin-energy pathway

Mahajan  and  Chin,  Acta  Metallurgica  (1973)    

DislocaNon  configuraNon  of  the  nucleus  

( )( ) { } ( )

22

2

0

2

2 11 1

4 1 2 26 9

tw

s

i

e

n GPFE

totalGb d d d

N ln N ln ln

N d

Gb ddN ln

NN

N r

b

E d

E

,N −+ +

+

−−

⎡ ⎛ ⎞ ⎤⎜ ⎟⎢ ⎥

⎡ ⎛ ⎞ ⎤⎛ ⎞⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎦ ⎣

=⎠ ⎝ ⎠

τ

π υ π

Bδ−

[ ]111

⎡ ⎤⎣ ⎦211

⎡ ⎤⎣ ⎦011

A  

C  d

Total  energy:  

H.  Sehitoglu  et  al.,Acta  Materialia  55  (2007)  6843-­‐6851  

 

Page 16: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

16  

Total  energy  of  the  twin  nucleus  

{ { {γ-

energy required to

energy associat twin the latti

γ-

energy requiredto cross-slip

ed with twin-energy pathway c e

GPFE Stwin FE EE = −

usγ utγ utγ utγ

isfγtsf2γ tsf2γ tsf2γ tsf2γ

utγ

twin  nuclea%on  

twin  growth  cross-­‐slip  

( ) ( ) ( )

( )

22

0 0

0

2

2

21 19

1

21

4 1 2 6dd

tw

total

twin F i

e

n

s

S

Gb d d dN ln N l

d dx

Gb ddN lnE n ln NN r

N

d ,N

N dd d

N

bx

⎡ ⎤⎛ ⎞⎧ ⎫⎛ ⎞+ − −⎢ ⎥⎨ ⎬ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎢ ⎥⎩ ⎭ ⎝ ⎠⎣= +

+

⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥

⎝ ⎠⎦ ⎦

− −

∫∫ τγ

υ

γ

π π

Total  energy:  

( )- 01

d

twin twinE N d dxγ γ= − ∫

- 0

d

SF SFE d dxγ γ= ∫

EGPFE

energy associated with twin-energy pathway

= Eγ -twin

energy required to twin the lattice

− Eγ -SF

energy requiredto cross-slip

Energy  contribuNon  of  GPFE:  

Page 17: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

17

Twinning  stress  equa%on  

H.  Sehitoglu  et  al.,Acta  Materialia  55  (2007)  6843-­‐6851  

For  a  stable  twin  configuraNon:  

Page 18: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

18

Predicted  twinning  stresses  for  fcc  metals  

Twinning  stress  depends  non-­‐monotonically  on  stacking  fault  energy.

τcrit ∼ K

γ isf

btwin

does  not  hold  !  

Page 19: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

19  

Predicted  twinning  stresses  for  fcc  metals  (contd.)  

Twinning  stress  depends  monotonically  on  unstable  twin  SFE  .  

UnstableTwin Energy governs  the  physics  of  twin  nucleaNon.

Page 20: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

20  

Predicted  twinning  stresses  for  fcc  metals  (contd.)  

S.  Kibey,  J.B.  Liu,  D.D.  Johnson  and  H.  Sehitoglu,  Acta  Materialia  55  (2007)  6843-­‐6851  

 

b Bolling,  Casey  and  Richman,  Phil.  Mag.  (1965).  c Suzuki  and  Barrec,  Acta  Metall.  (1958).  d Narita  et  al.,  J.  Japan  Inst.  Metals  (1978).  e Yamamato  et  al.,  J.  Japan  Inst.  Metals  (1983).  

Page 21: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

21  

Part  1-­‐Summary  

•  Presented  a  hierarchical,  mulNscale,  adjustable  parameter-­‐free  approach  for  twin  nucleaNon  in  fcc  metals  and  alloys.  

•  Predicted  twinning  stresses  are  in  excellent  agreement  with  available  experimental  data.  

•  Our  theory  inherently  accounts  for  direcNonal  nature  of  twinning.  

Page 22: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

Twinning stress in SMAs-Twin nucleation model- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

22

Outline  

Page 23: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

A theoretical model to predict the twinning stress has not been established.

Theoretical model is needed

23

Deformation by Twinning (bcc)

Page 24: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

DIC measurements: An example

24

σAfter =180 MPa σAfter = 220 MPa σAfter = 260 MPa

180 MPa

220 MPa

260 MPa

FeCr [010] compression High resolution DIC images (5X) allow to capture the residual strain field after each loading stage allowing to pinpoint the slip or twinning stress precisely.

(%)ε

Page 25: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Generalized planar fault energy (GPFE) (MD calculations) for FeCr

We are concerned with the twin nucleation region of the GPFE.

25

Page 26: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Other theoretical model

Too high!

A better model to predict the experimentally measured twinning stress is lacking.

html.mechse.illinois.edu 26

Page 27: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign Twinning mechanisms in bcc

Mechanism  

Pole  mechanism1  

Disloca%on  core  dissocia%on2  

Slip  disloca%on  interac%on3  

→ ×a a[111] 3 [111]2 6screw

Co`rell,  A.H.,  Bilby,  B.A.,  1951.      Priestner,  R.,  Leslie,  W.C.,  1965.        Sleeswyk,  A.W.,1963.  .      Lagerlof,  K.P.D.,  1993.   27

Page 28: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Experimental observations validate that three slip systems of symmetric configuration may be activated.

Why dislocation dissociation mechanism?

28

Page 29: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Incorporate

Area under the GPFE gives the energy barrier to nucleate a twin. We consider a three layer twin nucleus.

Model development

29

Page 30: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign Prediction of twinning stress

Total energy of dislocation configuration is written as:

0 0

- ( [ ] [ ] [ ]) - ( ) - ( ) ( d dα τ τ γ γπ

= + + + + ∫ ∫2ln ln ln - )2 2

A Ar r2B A B A

total rss A o rss B o GPFE SFo o o

r - r r rGbE n Gb b r - r b r - 2r x xr r r

'1 γ ) τπ

⎧ ⎫⎪ ⎪= −⎨ ⎬⎪ ⎪⎩ ⎭

critical twinGb

b d

2 3 -2 3(2 ( 3 -1)

' ( ) [ ] ) [ ]twinγ γγ γ π γ γ π+− += −1sin 2 2.5 1.21 (2 2 sin 2 1.22 where N = 3

2 4UT SF

UT UT TSF- N -

G is calculated from MD d is the distance b/w dislocations A and B and can be calculated from above equation

Interaction energy

No empiricism in the model

Line energies Work done GPFE

30

Page 31: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

35 40 45 50 550

200

400

600

Modeling (Present study)

γ TBM 2

mJ ( )m

Experiments (including present study on Fe50Cr)

Fe-25Ni (Nilles et.al.)

Fe (Harding) Fe-50Cr

Fe-3V (Suzuki et. al.)

Application to other bcc alloys

31  

Page 32: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Close agreement!

Comparison with experiments

html.mechse.illinois.edu

a  Harding  (1967,1968)  b  Calcula%ons  based  on  Ogata  et  al.  (2005)  c  Nilles  and  Owen  (1972)  d  Suzuki  et  al.  (1966)  

32

Page 33: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign Current Results

100 200 300 400 500 6005

6

7

8

9

10+

+

Modeling (Present study)

Experiments

Fe-3at.%V

V

Fe-25at.%Ni

Fe

Nb

30 γ ut − 2γ tsf( ) d1 + d2( )d{112} γ ut + γ sf( )

Ta Fe-3at.%Si

Mo

W

10#

10#

10#

10#

10#

10#

33

Harding , Proc.R. Soc.1967, 1968 Meyers et al.Acta Materialia, 2001 Narita and Takamura, Disloc. Solids, 1992 Nilles and Owen,The Soc. of Metals, 1972

Sehitoglu et al., Phil Mag Letters, 2014

Page 34: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Twin system-I

Twin-system-II

Twin Migration Stress

Twin migration stress is the stress required to move the twinning dislocation along the twin boundary, thus translating it by one layer.

39  

Page 35: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Prediction of twin migration stress

Theoretical prediction is needed!

html.mechse.illinois.edu 35

Page 36: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign Twinning partial

y[010]

a (121)[111]6

Incident  disloca%on  a3× [111](121)6

a (121)[111]6

Twin

x[100]

= 1.0arbResidual dislocation plays an important role

What is twin migration?

r 1 2b = b - b36

Page 37: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

An incident twin is blocked because of the higher magnitude of residual dislocation at the twin boundary.

rb =1.0a

37

Page 38: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Slip-slip interaction

Slip-slip interaction

Twin-twin interaction

Twin-twin interaction Twin migration stresses

We try to predict these stresses

html.mechse.illinois.edu 38

Page 39: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Twin systems analyzed in present work

39

Christian and Mahajan, Progress in Materials Science,1995

Line of intersection of twins Example: <113> Intersection type

Cross product of n1 X n2

n1

n2

121( )× 112( )

Page 40: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

τ 2

τ1

= τ M

τ T =

4b2(Gbr2 +

Gb22

4πln(

r2

w)+ γ modifiedGPFE

bN2

b( N2+1)

∫ )

2πb2

Gb12

4πln(

r2

w)

Minimization

∂Utotal

∂ς1

=∂Utotal

∂ς 2

= 0

Utotal = Einteraction/incident +Eline/incident +Eline/outgoing +Eresidual +EincidentGPFE +EmodifiedGPFE -Wincident -Woutgoing

= -Gb1

2

2πln[

rB - rA

ro

] + ln[rB

2ro

]+ ln[rA

ro

]⎧⎨⎩⎪

⎫⎬⎭⎪ζ1 +

Gb12

4πln(

Rw

) 2d +ζ1{ }+Gb2

2

4πln(

Rw

) l2 -ζ 2{ }+

Gbr

2

4πln(

Rw

)ζ 2 + A1 γ incidentGPFE0

N1

∫ dλ + A2 γ modifiedGPFEN2

N2+1

∫ dλ - τ1b1A1 - τ 2b2A2

40

Page 41: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Residual dislocation

41

+Blockage

Incorporation+ Blockage

Incorporation+ Blockage

Page 42: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

br =1.0a br = 0.8a

mτ =167 MPa mτ =144 MPaTheory

Theory Experiment

[101] Compression [111] Compression

<110> interesection

<210> intersection

42

τ M

τ T = 0.83 τ M

τ T = 0.74

Page 43: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Results-Extended

43

τ M

τ T

⎛⎝⎜

⎞⎠⎟

Harding , Proc. R. Soc.1967, 1968 Suzuki, J. Phys. Soc. Jpn, 1962

Page 44: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Conclusions-Part 2

ü  Twin migration stress is lower than the twin nucleation stress.

ü Residual dislocation affects twin migration stress. Higher the magnitude of residual dislocation, higher is the twin migration stress.

ü  Intersection types of interacting twins is an important parameter to predict the outcome of twin-twin interaction. Higher magnitude of residual dislocation in <110>,<210> and <113> cases causes the incident twin to be completely blocked.

44

Page 45: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Background §  Deformation modes in metals and alloys §  Twinning in fcc metals (Part 1) §  Twinning in bcc metals (Part 2)

Twinning stress in SMAs-Twin nucleation model (Part 3)- §  Peierls-Nabarro (P-N) formulation §  Energy landscape (GPFE) in Ni2FeGa §  Twin nucleation model based on P-N formulation

45

Outline  

Page 46: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

Shape Memory Alloys (SMAs)-Part 3

Darren Hartl, Aerospace applications of shape memory alloys 46

Applications of SMA including medical and aerospace.

Reduction of engine noise

SMA beams

Chevron

• Thermal Shape Recovery

ü Shape Memory

• Elastic Shape Recovery

ü Pseudoelasticity

Page 47: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

47  

Detwinning  and  Twinning  of  NiTi  Martensite  

Page 48: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

48

Compressive stress-strain response of Ni54Fe19Ga27 at temperature of -190 °C.

Page 49: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

49  

Energy  Barrier  of  (100)  Twin  

2

mJm

γ ⎛ ⎞⎜ ⎟⎝ ⎠

xuc

241TMEmJm

γ =

[ ]00113.5

=M

cc

Generalized planar fault energy (GPFE)

[ ]100

[ ]001

[ ]010

Ti   Ni   0.46  A  Shuffle  in  Ti  

0.23  A  Shuffle  in  Ni  

3. [001]9a

B19’  3  layer  twin  aYer    only  shear   3  layer  twin  aYer  shuffle  

following  shear  

Shear  DirecNon  

Page 50: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

50

uA: atom displacement above slip plane (plane A)

uB: atom displacement below slip plane (plane B) f(x): disregistry or slip distribution, uA-uB

Solve f(x) using Force balance

Page 51: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

51

Hall,  Bacon  

Narrow  disloca%ons  are  more  difficult  to  move  than  wide  ones.      Disloca%ons  with  larger  b  are  more  difficult  to  move.    As  unstable  fault  energy  increases,  the  disloca%on  width  narrows.    Disregistery  becomes  complex  for  SMAs  (for  slip  and  twinning)  

Review of Peierls-Nabarro (P-N) model

Page 52: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

52

( )1 1 1 1 x N 1 db b x x d x 2df (x) tan + tan + tan +...+ tan2 N

− − − − − −⎡ ⎤⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟π ζ ζ ζ ζ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

Due to the interaction of multiple twin dislocations, the disregistry function f(x) is:

-40 -20 0 20 40 600.0

0.2

0.4

0.6

0.8

1.0

Twin nucleation Dislocation slip

f (x)b

Page 53: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

53

Lenticular twin

Twins nucleate from1-2 grain boundary and then grow toward 2-3 grain boundary.  

Wang L et al, Metallurgical and Materials Transactions A, 2010.

Twin configuration

Page 54: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

54

GPFEETwin boundary energy (GPFE)

GPFE of L10 Ni2FeGa

Page 55: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

55

( )( ) ( ) ( )

( )( )( )

2 2

2

1 12 22 2

1 cos 21

4 1 2

12sin tan +...+ tan +...+ 2

tsf isfus isf ut

m

m

b N b Nshd N sh

Nmb d mb NdN mb d mb Nd

µ ν θ γ γτ γ γ γ

π ν

ζζζ ζ ζ ζ

=∞− −

=−∞

− ⎧ ⎫⎡ ⎤+⎛ ⎞⎪ ⎪= + − + − − ×⎨ ⎬⎢ ⎥⎜ ⎟− ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭⎧ ⎫⎧ ⎫⎡ ⎤ − −⎛ ⎞ ⎛ ⎞− − −⎪ ⎪ ⎪ ⎪×⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ + − + −⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭

Critical stress required to nucleate a twin:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

int

2 i=N-1

to GPFE

+ +

SF twinm=- m=-

lital ne

2

22

2

i=2

E = E

γ (f(mb - d)

E

µb L1- νcos θ N ln - ln N - 2 !+ ln N - i !+ ln i -1 !4π 1- ν

)b + N -1 γ (f(mb - d)

+ + -E

Nµb 1- νco

d

W

Nτ)b

= +

+ s θ4π 1- ν

h- ds∞ ∞

∞ ∞

⎧ ⎫⎡ ⎤⎨ ⎬⎣ ⎦⎩ ⎭

∑ ∑

Page 56: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

56

Predicted and Experimental twinning stress versus unstable twin nucleation energy for SMAs

Page 57: Deformation Twinning – Mechanisms and Modeling in FCC, …E total =E edge energy contribution of edge components +E screw energy contribution of screw components −W τ work done

University of Illinois at Urbana Champaign

57

ü  Twinning stress calculated based on P-N formulation and GPFE curves

provides an excellent basis for a theoretical study of the twin nucleation in

SMAs.

ü  The proposed twin nucleation model reveals that twinning stress has an

overall monotonic dependence on the unstable twin nucleation energy. To

achieve smaller twinning stress in SMAs, shorter Burgers vectors, lower

unstable twin energies and larger interplanar distances are desirable.

Part 3- Summary