DEFINITION AND TESTING OF AN ARCHITECTURAL...

27
D EFINITION AND T ESTING OF AN A RCHITECTURAL T RADESPACE FOR O N-ORBIT A SSEMBLERS AND S ERVICERS 1 October 2014 Christopher Jewison David Sternberg, Bryan McCarthy, David Miller, Alvar Saenz-Otero IAC-14- D1-4.1x23285 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by Massachusetts Institute of Technology (MIT). Published by the IAF, with permission and released to the IAF to publish in all forms.

Transcript of DEFINITION AND TESTING OF AN ARCHITECTURAL...

DEFINITION AND TESTING OF AN

ARCHITECTURAL TRADESPACE FOR

ON-ORBIT ASSEMBLERS AND SERVICERS

1 October 2014

Christopher Jewison

David Sternberg, Bryan McCarthy, David Miller, Alvar Saenz-Otero

IAC-14- D1-4.1x23285

65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by Massachusetts Institute of Technology (MIT).

Published by the IAF, with permission and released to the IAF to publish in all forms.

Motivation • On-orbit assembly, servicing,

and spacecraft reconfiguration

• Mission-specific designs stem from principal architectural decisions

• Currently no comprehensive study of full tradespace of on-orbit assemblers and servicers

IAC-14- D1-4.1x23285 1 of 20 1-October-2014

[DA

RP

A]

• Goal: select the correct architecture • Definition of tradespace

• Qualitative analysis of chosen architectures

• Discusses current and future experiments in support of analysis quantification

NASA

DARPA

On-Orbit Assembly Architectures • Three continuous axes

• Integrated vs. External • Integrated – servicing/assembly

functions are inherent to satellite itself

• External – servicing/assembly functions are performed by external spacecraft

• Centralized vs. Distributed • Centralized – servicing/assembly

function contained in single, central entity

• Distributed – servicing/assembly function distributed amongst multiple entities

• Prox Ops vs. Captured • Proximity Operations – some or all

components of the system are not captured at all times and must fly independently

• Captured – all components of the system are fully captured at all times

Note: initial rendezvous and final separation are not considered proximity operations in this nomenclature

Eight architecture extremes

help define the tradespace

IAC-14- D1-4.1x23285 2 of 20

Prox Ops Captured

Integrated

External

Centralized

Distributed

1 2

3 4

5 6

7 8

1-October-2014

On-Orbit Assembly Architectures

Architecture

Number 1 2 3 4

Description

Integrated

Distributed

Prox Ops

Integrated

Distributed

Captured

Integrated

Centralized

Prox Ops

Integrated

Centralized

Captured

Nickname “Beehive”

“Integrated

Construction

Crew”

“Integrated

Tug” “Spider”

Architecture

Number 5 6 7 8

Description

External

Distributed

Prox Ops

External

Distributed

Captured

External

Centralized

Prox Ops

External

Centralized

Captured

Nickname “Carrier”

“External

Construction

Crew”

“External

Tug” “Shuttle”

IAC-14- D1-4.1x23285 3 of 20 1-October-2014

Sample CONOPS

IAC-14- D1-4.1x23285 4 of 20 1-October-2014

1

4

3 2

5 6

5 7

4

3 2 1

6 5 7

4

3 2 1

6

5 7

4

3 2 1

6

5 7

4 3

2 1

6 5 7

4 3 2 1

6

5

7

4 3 2 1

6

Active module

Passive module

Robotic arm

Architecture 1: “Beehive”

Integrated, Distributed, Prox Ops

Sample CONOPS

IAC-14- D1-4.1x23285 5 of 20 1-October-2014

1

4

3 2

5 6

5 7

4

3 2 1

6 5 7

4

3 2 1

6

5 7

4

3 2 1

6

5 7

4 3

2 1

6 5 7

4 3 2 1

6

5

7

4 3 2 1

6

Active module

Passive module

Robotic arm

Architecture 2: “Integrated Crew”

Integrated, Distributed, Captured

1

4

3 2

5 6

5 7

4

3 2 1

6 5

7

4

3 2 1

6

5

7

4

3

2 1

6

5 7

4 3

2 1

6

5

7

4 3 2 1

6

4 3 2 1 5

7

6

Sample CONOPS

IAC-14- D1-4.1x23285 6 of 20 1-October-2014

1

4

3 2

5 6

5 7

4

3 2 1

6 5 7

4

3 2 1

6

5 7

4

3 2 1

6

5 7

4 3

2 1

6 5 7

4 3 2 1

6

5

7

4 3 2 1

6

Active module

Passive module

Robotic arm

Architecture 3: “Integrated Tug”

Integrated, Centralized, Prox Ops

1

4

3 2

5 6

5 7

4

3 2 1

6 5

7

4

3 2 1

6

5

7

4

3

2 1

6

5 7

4 3

2 1

6

5

7

4 3 2 1

6

4 3 2 1 5

7

6

1 3 2

4 5 6

5

4

3 2 1

4

3 2 1

5 4

3 2 1

5

5

4 3

2

5

4 3 2

1

4 3 2 1

5

1

Sample CONOPS

IAC-14- D1-4.1x23285 7 of 20 1-October-2014

1

4

3 2

5 6

5 7

4

3 2 1

6 5 7

4

3 2 1

6

5 7

4

3 2 1

6

5 7

4 3

2 1

6 5 7

4 3 2 1

6

5

7

4 3 2 1

6

Active module

Passive module

Robotic arm

Architecture 4: “Spider”

Integrated, Centralized, Captured

1

4

3 2

5 6

5 7

4

3 2 1

6 5

7

4

3 2 1

6

5

7

4

3

2 1

6

5 7

4 3

2 1

6

5

7

4 3 2 1

6

4 3 2 1 5

7

6

1 3 2

4 5 6

5

4

3 2 1

4

3 2 1

5 4

3 2 1

5

5

4 3

2

5

4 3 2

1

4 3 2 1

5

1

1 3 2

4 5 6

4

3 2 1

5 5

4

3 2 1

3

5

5

4 3

2

1

5

4 3 2 1

4 3 2 1

5

4

2 1

Sample CONOPS

IAC-14- D1-4.1x23285 8 of 20 1-October-2014

Architecture 5: “Carrier”

External, Distributed, Prox Ops

Active module

Passive module

External module

Robotic arm

1 3 2

4 5 6

5

7

4

3 2 1

6

4

3 2 1

5 6

4

3

2 1

7

5

4 3

2 1

7 5 6

4 3 2 1

7

4 3 2 1

6

5

7

6

5

7

6

9 8

9 8 9 8

9 8 9 8 9 8

Sample CONOPS

IAC-14- D1-4.1x23285 9 of 20 1-October-2014

Architecture 6: “External Crew”

External, Distributed, Captured

1 3 2

4 5 6

5

7

4

3 2 1

6

4

3 2 1

5 6

4

3

2 1

7

5

4 3

2 1

7 5 6

4 3 2 1

7

4 3 2 1

6

5

7

6

5

7

6

9 8

9 8 9 8

9 8 9 8 9 8

1 3 2

4 5 6

5

6

3 1

7

5 6

4 3

2 1

7

5

6

4 3 2 1

7

5

7

6

5

7

6

5 7

6

4

3 2 1

4

2

4

3 2 1

4 3 2 1 9 8

9 8

9 8 9 8

9 8 9 8

Active module

Passive module

External module

Robotic arm

Sample CONOPS

IAC-14- D1-4.1x23285 10 of 20 1-October-2014

Architecture 7: “External Tug”

External, Centralized, Prox Ops

1 3 2

4 5 6

5

7

4

3 2 1

6

4

3 2 1

5 6

4

3

2 1

7

5

4 3

2 1

7 5 6

4 3 2 1

7

4 3 2 1

6

5

7

6

5

7

6

9 8

9 8 9 8

9 8 9 8 9 8

1 3 2

4 5 6

5

6

3 1

7

5 6

4 3

2 1

7

5

6

4 3 2 1

7

5

7

6

5

7

6

5 7

6

4

3 2 1

4

2

4

3 2 1

4 3 2 1 9 8

9 8

9 8 9 8

9 8 9 8

1 3 2

4 5 6

5

5

4 3

2

1

5

4 3 2

1

5

5 5

3

2 1

4

3 2 1

4

3 2 1

4

4 3 2 1 9 8

9 8

9 8

9 8 9 8

9 8

Active module

Passive module

External module

Robotic arm

Sample CONOPS

IAC-14- D1-4.1x23285 11 of 20 1-October-2014

Architecture 8: “Shuttle”

External, Centralized, Captured

1 3 2

4 5 6

5

7

4

3 2 1

6

4

3 2 1

5 6

4

3

2 1

7

5

4 3

2 1

7 5 6

4 3 2 1

7

4 3 2 1

6

5

7

6

5

7

6

9 8

9 8 9 8

9 8 9 8 9 8

1 3 2

4 5 6

5

6

3 1

7

5 6

4 3

2 1

7

5

6

4 3 2 1

7

5

7

6

5

7

6

5 7

6

4

3 2 1

4

2

4

3 2 1

4 3 2 1 9 8

9 8

9 8 9 8

9 8 9 8

1 3 2

4 5 6

5

5

4 3

2

1

5

4 3 2

1

5

5 5

3

2 1

4

3 2 1

4

3 2 1

4

4 3 2 1 9 8

9 8

9 8

9 8 9 8

9 8

1 3 2

4 5 6

4

2 1 2 1

5

4 3

2

1

5

4 3 2 1

5

3

5

3

5

5

4

3 2 1 4

4 3 2 1 9 8

9 8

9 8 9 8

9 8 9 8

Active module

Passive module

External module

Robotic arm

Cost

Architecture

1 Integrated Distributed

Prox Ops Beehive

2

Integrated

Distributed

Captured

Integrated Crew

3

Integrated

Centralized

Prox Ops

Integrated Tug

4

Integrated

Centralized

Captured

Spider

5

External

Distributed

Prox Ops

Carrier

6

External

Distributed

Captured

External Crew

7

External

Centralized

Prox Ops

External Tug

8

External

Centralized

Captured

Shuttle

Mobility

Rendezvous

Propellant

Decisions

Complexity of

Control

Time Efficiency

Actions

Proximity

Operations

Robotic Arm

Manipulation

Risk

Low Cost Medium Cost High Cost

IAC-14- D1-4.1x23285 12 of 20 1-October-2014

Iterative and Incremental

Testing with SPHERES

Diameter 0.22 m

Mass (w/tank & batteries) 4.3 kg

Max linear acceleration 0.17 m/s2

Max angular acceleration 3.5 rad/s2

Power consumption 13 W

Battery lifetime (replaceable) 2 hours

IAC-14- D1-4.1x23285 13 of 20 1-October-2014

Risk

Tolerance

Dynamic

Authenticity

Testing

Duration

ISS

Orbit

RGA Ground

• Testbed for the development of

multi-spacecraft GN&C algorithms

• Repeatable test conditions

• Incrementally validate algorithms

from ground testbed in 3DOF to

the ISS in 6DOF

CO2 Tank

Pressure

Regulator

Knob

Thruster

Battery Door

Ultrasound

Metrology

Receiver

Control

Panel NASA

SPHERES Ground Testing • 1DOF Rotational Control

• Benchmark data for fuel

consumption and response

time for Architecture 1 and 5

• Assess controllability of

released spacecraft from

Architectures 4 through 8

IAC-14- D1-4.1x23285 14 of 20 1-October-2014

• 3DOF Proximity Operations

• Quantify proximity operations

metrics for Architecture 3 and 7

• Assess feasibility of control

algorithms for performance of

larger systems across CONOPS

1DOF Rotational Control Ground Testing

IAC-14- D1-4.1x23285 15 of 20 1-October-2014

3DOF Proximity Operations Ground Testing

IAC-14- D1-4.1x23285 16 of 20 1-October-2014

Hardware Extensions to SPHERES • Halo

• Six electromechanical expansion ports

• Linux computer and power available to all peripherals

IAC-14- D1-4.1x23285 17 of 20 1-October-2014

• Universal Docking Port (UDP)

• Rigidly interconnect two satellites

• Color camera for relative navigation

ISS Testing Progression • Even small hardware gains can significantly expand testable

architecture space

• Exploit versatility of the SPHERES facility on the ISS as a testbed with traceability to many flight CONOPS

IAC-14- D1-4.1x23285 18 of 20 1-October-2014

SPHERES: 3

UDPs: 0

Halos: 0

Arms: 0

Proof Masses: 0

SPHERES: 3

UDPs: +3

Halos: 0

Arms: 0

Proof Masses: 0

SPHERES: 3

UDPs: 3+3

Halos: +1

Arms: 0

Proof Masses: 0

SPHERES: 3

UDPs: 6

Halos: 1+2

Arms: 0

Proof Masses: 0

SPHERES: 3

UDPs: 6

Halos: 3

Arms: 0

Proof Masses: +2

SPHERES: 3

UDPs: 6

Halos: 3

Arms: +2

Proof Masses: 2

SPHERES: 3

UDPs: 6

Halos: 3

Arms: 2+2

Proof Masses: 2

Prox Ops Architectures

(Tug Based)

Captured Architectures

(Robotic Arm Based)

CONOPS Implementation

IAC-14- D1-4.1x23285 19 of 20 1-October-2014

1

4

3 2

5 6

1

4

3 2

5 6

1

4

3 2

5 6

Architecture 1: “Beehive”

Integrated, Distributed, Prox Ops

Architecture 3: “Integrated Tug”

Integrated, Centralized, Prox Ops

Architecture 7: “External Tug”

External, Centralized, Prox Ops

QUESTIONS?

IAC-14- D1-4.1x23285 20 of 20 1-October-2014

BACKUPS

IAC-14- D1-4.1x23285 21 of 20 1-October-2014

Architecture Literature Review (1/2)

Architecture Author (Year) Concept

1 - “Beehive”

Integrated

Distributed

Prox Ops

Gralla, de Weck (2007)

Toglia (2011)

Barnhart (2012)

Self-assembly through module rendezvous and docking; MIT

Cooperative control of docked, modular, robotic spacecraft; MIT

Changing satellite morphology through cellularization; DARPA

2 - “Integrated Crew”

Integrated

Distributed

Captured

Ukegawa (2003) Control of modular, hinged, hexagon modules; Japan

3 - “Integrated Tug”

Integrated

Centralized

Prox Ops

Rodgers (2005) On-orbit assembly of segmented telescope using single EMFF tug

4 - “Spider”

Internal

Centralized

Captured

Lillie (2006) OTV w/ one arm on the s/c bus manipulates, resupply and servicing

at the ISS; Northrop-Grumman

IAC-14- D1-4.1x23285 22 of 20 1-October-2014

Architecture Literature Review (2/2)

Architecture Author (Year) Concept

5 - “Carrier”

External

Distributed

Prox Ops

Stroupe (2005)

Gralla, de Weck (2007)

Barnhart (2012)

Robotic Construction Crew, terrestrial; JPL

Multiple tugs perform individual tasks; MIT

Changing satellite morphology through cellularization; DARPA

6 - “External Crew”

External

Distributed

Captured

7 - “External Tug”

External

Centralized

Prox Ops

Backes (1990)

Colombina (1994)

etc.

Kawano (1999)

Rumford (2003)

Galabova (2003)

Gralla, de Weck (2007)

Rembala (2009)

Prox ops with robotic arms, control; JPL

Prox ops with robotic arms, control; Italy

ETS-VII mission for robotic prox ops; Japan

DART project, proximity operations technology; Orbital

Space-tug design; MIT

Single tug performs everything and can be refueled; MIT

Future robotic assembly based on ISS experience; MDA

8 - “Shuttle”

External

Centralized

Captured

Lillie (2006)

Rembala (2009)

Akin (2002)

Dornehim (2006)

Zimpfer (2007)

OTV w/ one arm docks, manipulates, resupplies, retrieval and

servicing at the ISS; Northrop-Grumman

Future robotic assembly based on ISS experience; MDA

Hybrid free-flying teleoperator concept; Maryland

Orbital Express mission; DARPA

Shuttle operations description among others; Draper

IAC-14- D1-4.1x23285 23 of 20 1-October-2014

Architecture Literature Review

• Human vs. robotic assembly

• Erickson (1991), Stephens (2002), Purves (2002), Muller (2002), Akin

(2002)

• Robotic assembly architectures - Gralla & de Weck (2007)

• Self-assembly or passive, single-use or reusable, refuelable or not

• Based on mass & ΔV, a refuelable, reusable single tug is dominant

• Intelligent building blocks concept - Weise (2012)

• Metrics for assembly techniques - Stephens (2002)

• ISS assembly and servicing

• Brand (1990), Covault (1997), Goetz (2003)

• MIT Theses

• Rodgers SM (2005) – Tech. development for on-orbit assembly, UDP

• Baldesarra SM (2007) – Space telescope on-orbit servicing

• Mohan PhD (2010) – On-orbit assembly using SPHERES

IAC-14- D1-4.1x23285 24 of 20 1-October-2014

Architecture Works Cited (1/2) Akin, D.L., M.L. Bowden, “EVA, robotic, and cooperative assembly of large space structures”, 2002 IEEE Aerospace

Conference Proceedings, 7, Big Sky, Montana, March 2002.

Backes, P.G., K.S. Tso, "Autonomous single arm ORU changeout strategies, control issues, and implementation”, North-

Holland Robotics and Autonomous Systems, 1990.

Baldesarra, M. “A Decision-Making Framework to Determine the Value of On-Orbit Servicing Compared to Replacement

of Space Telescopes.” S.M. Thesis, Department Of Aeronautics and Astronautics, Massachusetts Institute of

Technology, Cambridge, MA, 2007.

Barnhart, D. Hill, L., Turnbull, M., & Will, P. “Changing Satellite Morphology through Cellularization”, AIAA 2012

Conference and Exposition. Pasadena, CA, September 2012.

Brand, V., “The Challenge of Assembling a Space Station in Orbit,” AGARD, Space Vehicle Flight Mechanics, 8, 1990.

Colombina, G.; Didot, F.; Magnani, G.; Rusconi, A., "Automation and robotics technology testbed for external servicing,"

Intelligent Robots and Systems '94. 'Advanced Robotic Systems and the Real World', IROS '94. Proceedings of the

IEEE/RSJ/GI International Conference on , vol.3, no., pp.1954,1963 vol.3, 12-16 Sep 1994

Covault, C., “Station Faces Difficult Assembly in Orbit”, Aviation Week & Space Technology, 147, p.47, 8 December 1997.

Dornheim, M.A., “Orbital Express to Test Full Autonomy for On-Orbit Service”, Aviation Week & Space Technology, 4

Jun 2006.

Erickson, J.D., Charles R.P., and Cooke, D. "Future needs for space robots for SEI", Proc. SPIE 1612, Cooperative

Intelligent Robotics in Space II, 2, March 1, 1992.

Galabova, K., G. Bounova, O. de Weck, and D. Hastings, “Architecting a Family of Space Tugs Based on Orbital Transfer

Mission Scenarios”, AIAA 2003-6368. AIAA Space 2003 Conference, Long Beach, CA, 23- 25 September 2003.

Goetz, T., T. Dark-Fox, and J. Mayer, “Building the International Space Station: Some Assembly Required”, AIAA-2005-

2599, AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Year, Dayton, Ohio, July

2003.

Gralla, E., and De Weck, O., “Strategies for On-Orbit Assembly of Modular Spacecraft”. JBIS, Vol 60, 2007. pp. 219-227.

Kawano, I., M. Mokuno, T. Kasai, and T. Suzuki, “Result and Evaluation of Autonomous Rendezvous Docking

Experiments of ETS-VII”, AIAA- 99-4073, AIAA Guidance, Navigation, and Control Conference, Portland, Oregon,

August 1999.

IAC-14- D1-4.1x23285 25 of 20 1-October-2014

Architecture Works Cited (2/2) Lillie, C.F. "On-orbit assembly and servicing of future space observatories", Proc. SPIE 6265, Space Telescopes and

Instrumentation I: Optical, Infrared, and Millimeter, 62652D, June 14, 2006.

Mohan, Swati. “Quantitative Selection and Design of Model Generation Architectures for On- Orbit Autonomous

Assembly.” PhD Thesis. Massachusetts Institute of Technology. 2010.

Muller, R.M., “Assembly and servicing of a large telescope at the International Space Station”, 2002 IEEE Aerospace

Conference Proceedings, 7, Big Sky, Montana, March 2002.

Purves, L.R., “A method for estimating costs and benefits of space assembly and servicing by astronauts and robots”,

2002 IEEE Aerospace Conference Proceedings, 7, Big Sky, Montana, March 2002.

Rembala, Richard, Cameron Ower, Robotic assembly and maintenance of future space stations based on the ISS

mission operations experience, Acta Astronautica, Volume 65, Issues 7–8, pp. 912-920, Oct-Nov 2009

Rodgers, et al. “Concepts and Technology Development for the Autonomous Assembly and Reconfiguration of Modular

Space Systems.” MIT, Space Systems Laboratory #14-05, December 2005.

Rumford, T., “Demonstration of Autonomous Rendezvous Technology (DART) Project Summary”, in Space Systems

Technology and Operations, ed. P. Tchoryk, Jr., and J. Shoemaker, Proceedings of SPIE Vol. 5088, 2003.

Stephens, S.K.; Willenberg, H.J., "Metrics for in-space telescope assembly techniques," Aerospace Conference, 2003.

Proceedings. 2003 IEEE , vol.8, no., pp.8_3967,8_3977, March 8-15, 2003

Stroupe, T. Huntsberger, B. Kennedy, H. Aghazarian, E. Baumgartner, A. Ganino, M. Garrett, A. Okon, M. Robinson,

and J. Townsend, "Heterogeneous Robotic Systems for Assembly and Servicing," Proceedings of ISAIRAS 2005.

Toglia, C., F. Kennedy, S. Dubowsky, ’Cooperative Control of Modular Space Robots,' Autonomous Robots, In Press,

DOI: 10.1007/s10514-011-9238-z. 2011.

Ukegawa, K., Natori, M.C., “Concept of self-assembly of space structure systems using autonomous modules,” 54th

International Astronautical Congress of the International Astronautical Federation, 29 September - 3 October 2003,

Bremen, Germany, IAC-03-U.1.01 (2003).

Weise, J. K. Briess, A. Adomeit, Reimerdes, H-G, Goeller, M, Dillman, R. “An Intelligent Building Blocks Concept for

On-Orbit-Satellite Servicing.” Turin, Italy, Sept 4-6, 2012.

Zimpfer, D., P. Kachmar, and S. Tuohy, “Autonomous Rendezvous, Capture, and In-Space Assembly: Past, Present,

and Future”, AIAA- 2005-2523, 1st AIAA Space Exploration Conference: Continuing the Voyage of Discovery,

Orlando, Florida, January/February 2005.

IAC-14- D1-4.1x23285 26 of 20 1-October-2014