Deep and Machine Learning in Sciences

49
Deep and Machine Learning in Sciences Bálint Pataki, Istvan Csabai ELTE Eötvös Loránd University Dept. of Physics of Complex Systems Data intensive sciences and machine learning group 2021.02.09 Deeplea17em, FIZ/3/089

Transcript of Deep and Machine Learning in Sciences

Page 1: Deep and Machine Learning in Sciences

Deep and Machine Learning in Sciences

Bálint Pataki, Istvan Csabai

ELTE Eötvös Loránd University

Dept. of Physics of Complex Systems

Data intensive sciences and machine learning group

2021.02.09Deeplea17em, FIZ/3/089

Page 2: Deep and Machine Learning in Sciences

History of (machine) intelligence / data science

Model World

OBSERVATION

Page 3: Deep and Machine Learning in Sciences

History of (machine) intelligence / data science

Model World

OBSERVATION

Page 4: Deep and Machine Learning in Sciences

History of (machine) intelligence / data science

Model World

OBSERVATION

Instruments

crutch for senses

Page 5: Deep and Machine Learning in Sciences

Natural intelligence

7±2 bit

Pollack, I. The information of elementary auditory displays.

J. Acoust. Soc. Amer., 1952, 24, 745-749.

G.A. Miller The Magical Number Seven, Plus or Minus Two:

Some Limits on our Capacity for Processing Information,

Psychological Review, 63, 81-97. (1956)

Homo Sapiens: Technical Specifications

CPU 100 GN (giga-neurons)

Clock frequency 4-32 Hz

CPU cores 1 (male version), 2+ (female v.)

CPU speed 0.1 Flops (floating point op. / sec)

Memory (short term) 7 +/-2 bits

Storage 1TB-2.5PB

Power 20 W

Camera 576Mpix, 24Hz

Touch Yes

Display No

Speakers Mono

GPS No

WIFI No

Bluetooth No

2G/3G/4G/5G No/No/No/No

Latest version update 100 000 BC

Main Features :

• Find food

• Escape predators

• Kill enemies

• Find mate and reproduce

Page 6: Deep and Machine Learning in Sciences

History of (machine) intelligence / data science

Model World

OBSERVATION

EXPERIMENT

Mathematicaldescription

Instruments

Predictions

7±2 bit*

crutch for senses

crutch for mind

Page 7: Deep and Machine Learning in Sciences

History of (machine) intelligence / data science

Model World

OBSERVATION

EXPERIMENT

Mathematicaldescription

Instruments

Predictions

7±2 bit*

Virtual reality

𝑭 = 𝑮𝒎𝟏𝒎𝟐

𝒓𝟐Λ=0.7

Ωm=0.3

Initial values “laws”, equations Simulated reality

Page 8: Deep and Machine Learning in Sciences

Science – technology – science – technology ...

Solid state physicsTransistor/

microelectronics

Elektronics Sensors Data

Astronomy Mechanics Quantummechanics

Moore’s-law

Page 9: Deep and Machine Learning in Sciences

New challenges in sciences20th century 21st century

manual observations high throughput instruments

simple equations complex simulations

small data big data300 million galaxies

2.5 terapixels

3.2 gigabases,

37 trillion cells

Page 10: Deep and Machine Learning in Sciences

AI: Why inevitable? Why now?Key challenges: amount of data and complexity of models

7±2

bit

?

10kx3.2 G bp

1Mx3k

10kx30k

5Gpx/image

2.5Tpx

400M tx

Perceptron ‘57, Hopfield ’82, Backprop ‘86

more data (MNIST’98 60k, CIFAR’10 60k,

IMAGENET’10 14M)

steadily improving models, deeper

understanding of statistics/data/models

more compute power. GPU!!

• V100 GPU: 100 TFlops

Image recognition progress

Page 11: Deep and Machine Learning in Sciences

Idea: mimic the brain’s• flexibility

• self-organization

• self-learning

• generalization

• massive parallelism

• fault-tolerance

„Biologically inspired approach”

Using figures from: D. Kriesel – A Brief Introduction to Neural Networks (ZETA2-EN): http://www.dkriesel.com/en/science/neural_networks

Synapses

Too complex

and not well understood enough

for direct implementation

Page 12: Deep and Machine Learning in Sciences

The “black box concept”

Robot example

• Input: 8 sensors

• Output: stop or go

Goal: avoid obstacles

Learning => regression

There are several „machine learning” approaches, neural net is just one of them

Will not cover:

• SVM, random forest, decision trees …

• Unsupervised nets

Page 13: Deep and Machine Learning in Sciences

Perceptron: the artificial neuron

y

Learning is to find the optimal

set of “synaptic weights”

Page 14: Deep and Machine Learning in Sciences

Brief and gappy history The beginning

• 1943 McCulloch & Pitts: threshold based neurological switches

• 1949 Hebb: Hebb-rule connections strengthen between simultaneously active neurons

Golden age

• 1951 Minsky: adjustable weights

• 1957 Rosenblatt & Wightman: perceptron

• 1960 Widrow & Hoff: ADA-LINE, delta-rule (adaptive) – echo filtering in telephones

• 1969 Minsky & Papert: problems with perceptron

Book: John von Neumann: The computer and the brain, Yale

University Press, 1959

Page 15: Deep and Machine Learning in Sciences

Winter is coming …

The XOR problem

Not all classification problems are linear, especially the interesting ones

Minsky & Papert 1969 -> the “AI winter”

Other approaches: expert systems

Some “connectionist Eskimos”

• 1976 Grossberg & Carpenter: Adaptive Resonance Theory (ART)

• 1982 Kohonen: Self-organizing feature maps (unsupervised)

Page 16: Deep and Machine Learning in Sciences

The multilayer perceptron

Page 17: Deep and Machine Learning in Sciences

The multilayer perceptron

Transforming the input representation, adding new dimensions may help

Page 18: Deep and Machine Learning in Sciences

Brief and gappy history

The renaissance

1982 Hopfield: Hopfield networks, associative memory “spin glass”, 1985 solving TSP

1986 Parallel Distributed Processing group (Rumelhart, Hinton, Williams): backpropagation of errors

Now: Mostly the same basic architectures, with various improvements : deep learning

Page 19: Deep and Machine Learning in Sciences

AI: paradigm shift

ComputerData

ModelPrediction

ComputerData Model Prediction

IF color=red AND profile=smooth THEN type:=tomato

IF color=red AND HAS(horns) THEN type:=cow

f( ) = “apple”

f( ) = “tomato”

f( ) = “cow”

Example: Image recognition

Method: hand crafted features

Page 20: Deep and Machine Learning in Sciences

Supervised learning

input

label

apple

pear

Page 21: Deep and Machine Learning in Sciences

Supervised learning

input

label

internal representation

apple

pear

Page 22: Deep and Machine Learning in Sciences

Supervised learning

apple

prediction

input

label

internal representation

IF color=red AND profile=smooth THEN type:=tomato

IF color=red AND HAS(horns) THEN type:=cow

f( ) = “apple”

f( ) = “pear”

f( ) = “cow”

function regression

Page 23: Deep and Machine Learning in Sciences

Supervised learning: neural net

apple

prediction

input

label

internal representation

IF color=red AND profile=smooth THEN type:=tomato

IF color=red AND HAS(horns) THEN type:=cow

f( ) = “apple”

f( ) = “pear”

f( ) = “cow”

function regression

Page 24: Deep and Machine Learning in Sciences

Learning -> loss function optimization

Loss = number of wrong

categorizations

images -> points

in N dim space

Learning=minimum search

slope

Page 25: Deep and Machine Learning in Sciences

Learning as energy minimization

Concepts from statistical physics

Spin-glasses ~ Hopfield model for associative memory (1982), quantum computers

Boltzmann machines, simulated annealing, …

Renormalization? (Lin, Tegmark, Rolnick, J. Stat. Phys. 2017: Why Does Deep and Cheap

Learning Work So Well?

Page 26: Deep and Machine Learning in Sciences

Magnetic systems, Ising model, spin glass: Hopfield net

Concepts from statistical physics

Spin-glasses ~ Hopfield model for associative memory (1982), quantum computers

ferromagnet anti-ferromagnetEnergy

Dynamics

Training

Attractors

Energy surface

with (local) minima

Page 27: Deep and Machine Learning in Sciences

Proper, big enough training set

Representation of data (images, words, … -> vector space)

Nonlinear optimization

Model complexity• Accuracy

• Generalization

“Black box”, trust

ChallengesTypical network: 2M adjustable parameters

Page 28: Deep and Machine Learning in Sciences

Ribli et al. Nature Astro. 2018, MNRAS 2019

Mutations -> antibiotics resistance

Mobile sensors -> Parkinson

Mosquito images -> vector borne diseases

Medical imaging -> breast cancer

Weak lensing map -> cosmology parameters

Explainable AI

Control of aging related methylation networks

Pathology images

Quantum neural computing

MSc, PhD courses

AI Research, Education and Applications @ Eötvös University Dept. of Physics of Complex Systems

Solving analytically

untraceable

hard inverse

problems

Matamoros et al., Pataki et al. 2020.

Pataki @DREAM, Laki et al. 2016

Pataki et al. in prep.

Ribli et al. @DREAM, Sci. Rep. 2018

Ribli et al. in prep , Patent subm. 2019

SOTE TKP collab.

http://datascience.elte.hu

Page 29: Deep and Machine Learning in Sciences

Space weather : whistler detection

Page 30: Deep and Machine Learning in Sciences

Gene sequencing: nanopore

Page 31: Deep and Machine Learning in Sciences

MosquitoAlert image deep learning

False(?) negatives:

False(?) positives:

Tig

er

NO

T T

ige

r

Pataki et al. Sci. Rep. 2021.

F. Bartumeus et al.

http://www.mosquitoalert.com/

“Zika, dengue, chikungunya,

and yellow fever are all

transmitted to

humans by Ae. aegypti and

Ae. Albopictus.”

Page 32: Deep and Machine Learning in Sciences

Deep learning for colorectal cancer pathology

Collaboration SOTE-ELTE

Pencz Bianka

Pesti Adrián

Ribiánszky Annamária

Schaff Zsuzsa

Sághi Márton

Takács Dániel

Tuza Sebestyén

Kiss András

Bilecz Ágnes

Budai András

Gyöngyösi Benedek

Keszthelyi Diána

Kontsek Endre

Kovács Attila

Kovács Tekla

Kramer Zsófia

Semmelweis Egyetem

II. Sz. Patológiai Intézet

Szócska Miklós

WHO Globocan 2018

Incidence Mortality

Hungary has the highest colorectal cancer rate

>10,000 new cases, >5,000 death/yr (Orv. Hetil., 2017, 158(3), 84–89)

Early detection!

https://fightcolorectalcancer.org/prevent/colon-polyps/Dysplasia

~ 2-10 yr

invasive cancerprecancerous stage

Page 33: Deep and Machine Learning in Sciences

Deep learning for colorectal cancer pathology

Samples from colonoscopy, biopsy

Traditional: by-eye microscope

New: digital scanner

>2,000 whole slide images

• 80,000 x 60,000 pixels, 15GB

Detailed annotation by trained pathologists:• Dysplasia_low grade

• Dysplasia_high grade

• Adenocarcinoma

• Suspicious for adenocarcinoma

• Lymphovascular invasion

• Tumornecrosis

• Inflammation

• Artifact

https://www.3dhistech.com/

Dysplasia – high grade

Adenocarcinoma

Dysplasia – high grade

Necrosis

Necrosis

Ad

en

oca

rcin

om

a

Necrosis

Large, well annotated training set is the

key

bottleneck for most machine learning

tasks!

Page 34: Deep and Machine Learning in Sciences

Mammography with deep learning (Faster R-CNN ) The Digital Mammography DREAM challenge

• 1200 participants

• Dezső Ribli, best final result

• the only solution with localization

• AUC = 0.95

Publication: Nature Scientific Reports (2018)

• 90 citations

• 30-th most popular from 17000 articles

New collaborations with hospitals, clinics

• more training data

• steps towards licensing

D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai. "Detecting and

classifying lesions in mammograms with deep learning." Scientific reports

(2018)

Ren et al. 2016

NVIDIA Developer 2018

Page 35: Deep and Machine Learning in Sciences

Open source software

• https://riblidezso.github.io/frcnn_cad/

• 50 visitors/week

• runs on a regular laptop with GPU

• plugin for OsiriX/Horos medical image viewer

Mammography with deep learning (Faster R-CNN )

Page 36: Deep and Machine Learning in Sciences

Cosmological

parameters: Ωm,σ8

Complex

physical

processes

Cosmological parameters from gravitational lensingLearning new tricks from deep learning

Page 37: Deep and Machine Learning in Sciences
Page 38: Deep and Machine Learning in Sciences
Page 39: Deep and Machine Learning in Sciences
Page 40: Deep and Machine Learning in Sciences
Page 41: Deep and Machine Learning in Sciences
Page 42: Deep and Machine Learning in Sciences

Cosmological

parameters: Ωm,σ8

Complex

physical

processes? ?

Cosmological parameters from gravitational lensing Learning new tricks from deep learning

Hard inverse problem!

Ribli et al. MNRAS 2019

Ribli et al. Nature Astr. 2019

Page 43: Deep and Machine Learning in Sciences

Cosmological

parameters: Ωm,σ8

Complex

physical

processes? ?

Cosmological parameters from gravitational lensing Learning new tricks from deep learning

2M parameters

Page 44: Deep and Machine Learning in Sciences

Learned kernels: dark matter halo profile expansion

Attention focus of the network with

Layer-wise Relevance Propagation

Instead of Fourier power spectrum:

information from halo profiles

Page 45: Deep and Machine Learning in Sciences

Cosmological

parameters: Ωm,σ8

Complex

physical

processes? ?

Cosmological parameters from gravitational lensing Learning new tricks from deep learning

Learning from deep learning:

New simple method

Few parameters, robust, fast, understandable.

Page 46: Deep and Machine Learning in Sciences

Explainable AI: understanding internal representation

Page 47: Deep and Machine Learning in Sciences

Explainable AI: automatic classification enhancement

normal

cancer

A. Large calcification

B. Oval mass

C. Spiculated mass

D. Calcified vessel

E. Calcification

F. Clusetered micro-calcifications

Automatic

labels

„discovered”

by the

network

Based on

simple teaching

classesFeatures that

invoke highest

activity

Interpretable, trustworthy,

for radiologists Ribli et al. in prep , Patent subm. 2019

Page 48: Deep and Machine Learning in Sciences

Nem csak fizikát tanítunk! BSc:

• Számítógépes alapismeretek(Linux, Python alapok, professzionális tudományosszövegszerkesztés, grafikonok) [ http://oroszl.web.elte.hu/#teaching ]

• Programozási alapismeretek a fizikában(C programozás, adatkezelés, matematikai és fizikaifeladatok megoldása programokkal)[ http://www.vo.elte.hu/~dobos/teaching ]

• Fizika numerikus módszerei I-II.

• Számítógépes szimulációk, …

MSc: Tudományos adatanalitika és modellezés specializáció[ http://datascience.elte.hu ]

• Adatexploráció és vizualizáció

• Haladó statisztika és modellezés

• Adatmodellek és adatbázisok a tudományban

• Adatbányászat és gépi tanulás

• Számítógépes laboratórium

• Adattudomány számítógépes laboratórium

• Tudományos modellezés számítógépes laboratórium

• Deep learning a tudományokban (spec.) [ https://csabaibio.github.io/physdl/ ]

Page 49: Deep and Machine Learning in Sciences

Any sufficiently advanced technology is indistinguishable from magic.

(Arthur C. Clarke)

Indeed, understanding the laws of mechanics made us able to build pyramids and cathedrals, based on the laws of thermodynamics the invention of the steam engine empowered us to cross oceans and continents and today we all have „seven-league boots” in our garages. Understanding electrodynamics and quantum mechanics brought us the transistor that is at the heart of the Internet and the modern „magic mirrors”, the mobile phones.

What miracles will the advancements of machine learning bring? And what kind of challenges?

NEW PARADIGMSEDUCATION: WE NEED NEW SCIENTIST WHO HAVE PROFESSIONAL SKILLS BOTH IN THEIR DISCIPLINES AND IN MODERN INFORMATION TECHNOLOGIES.PUBLIC DATA: COMMON GOOD. GREAT OPPORTUNITIES, GREAT RESPONSIBILITY.

István Csabai ELTE Dept. of Physics of Complex Systems

[email protected]

http://complex.elte.hu/~csabai/