Decomposing event related EEG using Parallel Factor

20
Informatics and Mathematical Modelling / Intelligent Signal Processing 1 Morten Mørup Decomposing event related EEG using Parallel Factor Morten Mørup Informatics and Mathematical Modeling Intelligent Signal Processing Technical University of Denmark

description

Decomposing event related EEG using Parallel Factor. Morten Mørup Informatics and Mathematical Modeling Intelligent Signal Processing Technical University of Denmark. Outline. Non-negativity constrained PARAFAC Application of PARAFAC to the EEG. - PowerPoint PPT Presentation

Transcript of Decomposing event related EEG using Parallel Factor

Page 1: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

1Morten Mørup

Decomposing event related EEG using Parallel FactorMorten MørupInformatics and Mathematical ModelingIntelligent Signal ProcessingTechnical University of Denmark

Page 2: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

2Morten Mørup

OutlineNon-negativity constrained PARAFAC

Application of PARAFAC to the EEG

Page 3: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

3Morten Mørup

PARAFAC(Harshman & Carrol and Chang 1970)

Page 4: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

4Morten Mørup

Alternating Least Squares (ALS)

ALS corresponds to maximizing the likelihood of a GaussianConsequently, ALS assumes normal distributed noise.

Page 5: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

5Morten Mørup

Gradient descent

Especially good for cost functions without analytical solution.

Let C be the cost function, then update the parameters according to:

Page 6: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

6Morten Mørup

Why imposing Non-negativity constraints Most PARAFAC algorithms known to have problems

of degeneration among the factors

Degeneration result of factors counteracting each other.Some solutions:

Sparseness/regularization constraints i.e. c1||A||2+c2||B||2+c3||S||2

Orthogonality constraints, i.e. ATA=I

Non negativity constraint on all modalities

(if data is positive and factor components considered purely additive)

Page 7: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

7Morten Mørup

How to impose non-negativity constraints Active set algorithm (Bro & Jong, 1997)

Iteratively optimizes cost function until no variables are negative.

Gradient descent with positive updatesUpdate parameters so they remain in the positive domain.

Among various other methods

Page 8: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

8Morten Mørup

Non-negative matrix factorization (NMF)

Generalization to PARAFAC

(Lee & Seung 2001)

Page 9: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

9Morten Mørup

Electroencephalography (EEG)

EEG measures electrical potential at the scalp arisingprimarily from synchronous neuronal activity of pyramidalcells in the brain.

Event related potential (ERP) is EEG measurements time locked to a stimulus event

Page 10: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

10Morten Mørup

History of PARAFAC and EEG Harshman (1970) (Suggested its use on EEG) Möcks (1988) (Topographic Component Analysis)

ERP of (channel x time x subject) Field and Graupe (1991)

ERP of (channel x time x subject) Miwakeichi et al. (2004)

EEG of (channel x time x frequency) Mørup et al. (2005)

ERP of (channel x time x frequency x subject x condition)

Page 11: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

11Morten Mørup

time

time

frequency

Wavelet transform

Complex Morlet wavelet - Real part - Complex part

Absolute value of wavelet coefficient

Captures frequency changes through time

Page 12: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

12Morten Mørup

time

channel

subje

cts

Möcks (1988)Field & Graupe (1991)

time

frequency

channel

Miwakeichi (2004)

PARAFAC Assumption: Same signal havingVarious strength in each subjectmixed in the channels.

PARAFAC Assumption: Same Frequency signature present to variousdegree in time mixed in thechannels.

Page 13: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

13Morten Mørup

The Vector strength

Vectors coherent, i.e. correlated Vectors incoherent, i.e. uncorrelated

Vector strength a measure of coherence

Page 14: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

14Morten Mørup

Visual Paradigm(Herrmann et al. 2004)

Expected result: Coherence around 30-80 Hz, 100 ms,stronger in Objects having LTM representation.

Page 15: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

15Morten Mørup

Inter trial phase coherence (ITPC)

time

freq

uenc

ych

annel

Mørup et al.(article in press, NeuroImage 2005)

subject

Condit

ion

n

e e

en tfcX

tfcXtfcITPC

1

1

,,

,,),,(

Parafac Assumption: Same Frequency signature present to variousdegree in time, mixed in the channels and present to different degree in each condition and each subject. Factor components only additive (non-negativity constraint)ITPC normal distributed - proven by bootstrapping.

The ITPC is the vector strength over trials (epochs)

Page 16: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

16Morten Mørup

Proof of normality of ITPC

Bootstrapping:Randomly selectData from the epochsto form new datasets (each epoch might be represented 0, 1 or several times in the datasets). Calculate the ITPC ofeach of these datasets.Evaluate the distributionof these ITPC’s.

Coherent region Incoherent region

Page 17: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

17Morten Mørup

ANOVA Test of difference between conditions over subjects

ANOVA F-test valueANOVA F-test value

Time

Frequency

Channel

F-test value

K

k

S

s

K

k

KSktfcIkstfcITPC

KtfcIktfcIS

tfcZ

1 1

2

1

2

/,,,),,,,(

1/),,(),,,(

),,(

K

k

S

s

S

s

kstfcITPCKS

tfcI

kstfcITPCS

ktfcI

1 1

1

,,,,1

,,

,,,,1

,,,

Mørup et al.(article in press, NeuroImage 2005)

Page 18: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

18Morten Mørup

5-way analysis

Mørup et al.(article in press, NeuroImage 2005)

Page 19: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

19Morten Mørup

Time-frequency decomposition of ITPC

Time-frequency

Subject

conditi

on

Channel

Pull paradigm - 6 subjects, 2 condition. Even trials: Right hand was pulled by a weightOdd trials: Left hand was pulled by a weight.

Page 20: Decomposing  event  related  EEG  using  Parallel  Factor

Informatics and Mathematical Modelling / Intelligent Signal Processing

20Morten Mørup

References Bro, R., Jong, S. D., 1997. A fast non-negativity-constrained least squares algorithm. Journal of Chemometrics 11, 393-401.

Carrol, J. D., Chang, J., 1970. Analysis of individual differences in multidimensional scaling via an N.way generalization of 'Eckart-Young' decomposition. Psychometrika 35, 283-319.

Field, Aaron S.; Graupe, Daniel “Topographich Component (Parallel Factor) analysis of Multichannel Evoked Potentials: Practical Issues in Trilinear Spatiotemporal Decomposition” Brain Topographa, Vol. 3, Nr. 4, 1991

Harshman, R. A., 1970. Foundation of the PARAFAC procedure: models and conditions for an 'explanatory' multi-modal factor analysis. UCLA Work. Pap. Phon. 16, 1-84.

Herrmann, Christoph S; Lenz, Daniel; Junge, Stefanie ; Busch, Niko A; Maess, Burkhard “Memory-matches evoke human gamma-responses” BMC Neuroscience 2004, 5:13

Lee, D. D., Seung, H. S., 2001. Algorithms for non-negative matrix factorization. Advances in Neural information processing 13,

Miwakeichi, F., Martinez-Montes, E., Valdes-Sosa, P. A., Nishiyama, N., Mizuhara, H., Yamaguchi, Y., 2004. Decomposing EE data into space-time-frequency components using Parallel Factor Analysis. Neuroimage 22, 1035-1045.

Möcks, J., 1988. Decomposing event-related potentials: a new topographic components model. Biol. Psychol. 26, 199-215.

Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J., Arfred, S. M., 2005. Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage Article in press,