December 10, 2015 (3) - 北海道大学触媒科学研究所・...

16
(12)─Course in Materials Science I 1 December 10, 2015 (3)

Transcript of December 10, 2015 (3) - 北海道大学触媒科学研究所・...

(12)─Course in Materials Science I 1

December 10, 2015 (3)

(12)─Course in Materials Science I 2

金属錯体(metal complex)

■ 金属カチオンの空の軌道と,「配位子」とよばれる分子の孤立電子対が配位結合を形成 coordination bond formation with vacant metal cation orbitals and lone-pair electrons in "ligand" molecules

■ 遷移金属は空のd軌道(方向性あり)をもつ=配位結合には方向性があり,錯体の「かたち」がきまる directionality due to d-orbitals in transitionmetals = directional coordination bonds to give "shape" of metal complexes

■ 金属錯体の構造の考え方(近似法) approximation for understandingstructure of metal complexes・原子価結合法:金属イオンの混成軌道(光吸収の説明に難がある)valence-bond method: use of hybrid orbitals of metal ions/not suitable forinterpretation of photoabsorption・結晶場/配位子場理論:金属のd軌道と配位子の負電荷 crystal/ligandfield theory: interaction of d-orbitals and negative charge of ligands・分子軌道法: 金属イオンと配位子の分子軌道 molecular orbital theory:molecular orbitals of a metal ion and ligands

(12)─Course in Materials Science I 3

配位子(ligand)

■ 基本的には孤立電子対(:)をもつ having lone pair(s)■ エチレンのようにπ電子により配位するものもある some

exception like ethylene making coordination with π electrons

(12)─Course in Materials Science I 4

valence-bond method for cobalt complex

■ 金属イオンは,配位子の孤立電子対によって配位結合をつくるので,空の軌道をつかう必要がある=電子が収容されている軌道と配位子は相互作用しない no interaction of occupied orbitals withligand since coordination happens to vacant orbitals

■ 正八面体型混成軌道octahedral hybrid orbitals・sp3d2=4s+4p×3+4d×2・d2sp3=3d×2+ 4s+4p×3

Q 2つのd軌道は5種類のうちのどれがつかわれますか Which two d-orbitals are used for thesehybridization?

(12)─Course in Materials Science I 5

hybridization = overlapping orbitals

■ p軌道はx,y,zの各軸上.これと重なるのは,dx2-y2とdz2だけ three p-orbitals on x, y and z axes = overlapping only with dx2-y2 and dz2

■ p3+d2でx,y,z軸の各方向に等価な混成軌道が形成 hybridization of p3+d2: equivalent 6 orbitals on x, y and z axes

■ sp3d2・d2sp3は,のこりの3種類のd軌道とは重ならない no overlapping of sp3d2 and d2sp3 with remaining 3 d-orbitals

(12)─Course in Materials Science I 6

two kinds of hybrid orbitals for cobalt

■ コバルト(III)(=3d電子6個)の2種類の錯体 cobalt(III): six 3d electrons[CoF6]3-: sp3d2=4s+4p×3+4d×2(外軌道錯体)outer orbital complex[Co(NH3)6]3+: d2sp3=3d×2+4s+4p×3(内軌道錯体)innerorbital complex

Q 2つの錯体の磁性について説明してください Explain the magnetism for two kinds of cobalt(III) complexes.

(12)─Course in Materials Science I 7

配位結合(coordination bond)

■ 2種類のコバルト(III)錯体の電子配置 two kinds of electron configurations in cobalt(III) complexes

■ 配位結合の軌道にはかならず2個の配位子の電子が収容されている=スピンは相殺されている coordination bonds filled by two electrons each = no spins

■ 混成に使われなかった3d軌道の電子の収容状況による magnetism depending on electrons in d-orbitals not hybridized

paramagnetic = high spin

diamagnetic = low spin

(12)─Course in Materials Science I 8

結晶場理論(crystal field theory)

■ 金属イオンのd軌道と配位子の負電荷(孤立電子対)の反発的相互作用を考慮considering REPULSIVE interaction between d-orbitals and negative charges of ligands

■ 例: 金属イオンに対し座標軸に沿っての6個の負電荷が接近 six negative charges approaching to metal ion on x, y, z axes (6 coordination = octahedral complex)(1)ちかづく前は縮退した5個のd軌道 five degenerated d-orbitals before approaching(2)ちかづくと相互作用により縮退したままエネルギー上昇 higher energy due to interaction with negative charges remaining degeneration(3)負電荷と空間的にちかいものと遠いものの2種類に分裂 splitting depending on the spatial distance

(12)─Course in Materials Science I 9

hybridization = overlapping orbitals

■ p軌道はx,y,zの各軸上.これと重なるのは,dx2-y2とdz2だけ three p-orbitals on x, y and z axes = overlapping only with dx2-y2 and dz2

■ p3+d2でx,y,z軸の各方向に等価な混成軌道が形成 hybridization of p3+d2: equivalent 6 orbitals on x, y and z axes

■ sp3d2・d2sp3は,のこりの3種類のd軌道とは重ならない no overlapping of sp3d2 and d2sp3 with remaining 3 d-orbitals

(12)─Course in Materials Science I 10

crystal field splitting of titanium(IV)■ eg(二重に縮重)とt2g(三重に縮重)の2つに分裂 eg (doubly denerated)

and t2g (triply denerated)■ 特定の軌道が配位子と結合するとは考えていない not assuming bonds

between specific orbitals and ligands ■ 金属イオンの正電荷と配位子の負電荷により全体は安定化 stabilization by

positive charge of metal ions and negative charge of ligands

eg

t2g

(12)─Course in Materials Science I 11

結晶場安定化エネルギー

■ 結晶場分裂したエネルギー差=Δo energy difference in crystal field splitting = Δo

■ Ti(H2O)63+では3d電子は1つ(d1錯体)= t2gに入る one d electron in orbital t2g

■ 八面体構造では,0.4Δoの安定化=結晶場安定化エネルギー crystal field stabilization energy (CFSE) = 0.4 Δo for octahedral coordination

(12)─Course in Materials Science I 12

CFSE for octahedral coordination

Q つぎの■の部分をうめてください Fill up orange parts.

(12)─Course in Materials Science I 13

CFSE for octahedral coordination

■ CFSE=0.4×(t2g electrons)-0.6×(eg electrons)■ 一般的には低スピン型の方が安定 general trend = lower "low spin"

complexes

(12)─Course in Materials Science I 14

various crystal field splittings

CFSE depending on the structure of coordinations

(12)─Course in Materials Science I 15

CFSE depending on ligands

■ CFSEが大きくなるのは larger CFSE・配位子の負電荷が大きい:1価イオンより2価イオン higher negative charge: divalent ions > monovalent ions・小さいイオン:接近できる=F->Cl- smaller ions: approaching closely・1つの軌道に負電荷が集中:相互作用大=NH3>H2O concentrated in one orbital in ligand: stronger interaction

■ 配位子による結晶場安定化の大きさ extent of CFSE・強配位子場(strong):CO>CN->NO2

->phen(フェナントロリンphenanthroline)・中間配位子場(medium):

en(エチレンジアミン)>NH3>NCS->H2O>F-

・弱配位子場(week): RCO2->OH->Cl->Br->I-

(12)─Course in Materials Science I 16

comments on this lecture and question

Please send email in Japanese or English within 24 hours

to: [email protected]: ms20151210-XXXXXXXX (your id number)

[email protected] namenicknamecomments on today's lecturequestion(s): if any