DDDAMS-based Real-time Assessment and Control of Electric ... · PDF fileDDDAMS-based...

36
DDDAMS-based Real-time Assessment and Control of Electric-Microgrids Nurcin Celik, PI Team: Aristotelis E. Thanos, DeLante E. Moore, Xiaoran Shi Simulation & Optimization Research Lab (SIMLab) Department of Industrial Engineering University of Miami DDDAS Program PI Meeting, Arlington, Virginia Sept, 2013

Transcript of DDDAMS-based Real-time Assessment and Control of Electric ... · PDF fileDDDAMS-based...

1/36

DDDAMS-based Real-time Assessment and

Control of Electric-Microgrids

Nurcin Celik, PI

Team: Aristotelis E. Thanos, DeLante E. Moore, Xiaoran Shi

Simulation  &  Optimization  Research  Lab  (SIMLab) Department of Industrial Engineering

University of Miami

DDDAS Program PI Meeting, Arlington, Virginia Sept, 2013

2/36 Outline

! Motivation ! Overview of the Proposed DDDAMS Framework

•  Measurements    •  Decision-­‐making  algorithms  •  Agent-­‐based  simulation  of  a  microgrid    •  Distributed  generation  sources  •  Microgrid  architectures  and  load  types  •  Cost  analysis

! Experiments •  on 2-Tier IEEE-30 Bus System •  on 3-Tier IEEE-30 Bus System •  on Lab-scale Microgrid

! Results ! Conclusion and Future Work

3/36 Motivation

! USA and Canada, August 2003: Affected 55 million people

! Italy, September 2003: Affected 55 million people

! Java and Bali, August 2005: Affected 100 million people

! Brazil and Paraguay, November 2009: Affected 87 million people

! India, July 2012: Affected 670 million people

0

500

1000

1500

2000

2500

3000 Direct Effect Loss Earning

Indirect Effect Loss Earning

Industry and Residents

Government

Power Industry

Total Economic Impact

Economic Losses (in Billion $)

4/36 Motivation  for  the  Air  Force  

§  Several questions arise in case of a power outage that affects an AF Base:

•  How should a real-time diagnosis and forensics analysis be performed automatically?

•  Was the root cause a technical incident or a power contingency? •  Did it occur because of an accidental failure or malicious and possibly ongoing attack?

•  A wide spread disturbance or just a localized outage of a few minutes?

•  How should the AFB microgrid respond to this abnormality (or catastrophe)?

•  What actions should be taken to secure the AFB power supply?

quick  responsive  and  corrective  actions  are  needed  via    autonomous  control    

5/36 Challenges in Power Dispatch

…about power networks

§  large  #  of  variables,  nonlinearities,  and  uncertainties  §  operates at various scales §  resources =>more distributed §  generation =>more intermittent §  system =>more conducive to demand-response

…about dispatch control

§  changing demands §  very large range for the solution space §  Intense  and  time-­‐critical  information  exchange §  significant burden on computational resources (processing of massive datasets)

6/36 Goal in Power Dispatch

•  To produce electricity •  Economically •  Environmentally friendly •  Reliably •  Securely

•  New dispatch methods are needed for robust and holistic system operations

Objective 1: Min Cost Objective 2: Min Emissions Constraints: Power Balance

Proposed Approach

•  Dynamic data driven adaptive multi-scale simulation

framework (DDDAMS) for efficient and reliable real-time

dispatching of electricity under uncertainty

7/36 Proposed DDDAMS Approach

§  Originates from the DDDAS paradigm that was first introduced by Darema (2000)

§  Investigates  new  algorithms  and  instrumentation  methods  for  RT  data  acquisition  and  timely  control  of  electricty  microgrids  in  AF  bases  

§  Dynamically incorporates data into an executing application simulation

§  Dynamically steer the measurement process

§  More accurate analysis and prediction, more precise controls, and more reliable outcomes

§  Other application areas include

–  Natural disaster forecasting

–  Social and behavioral cognition

–  Biological system prediction

–  Supply chain management

–  Contaminant tracking…

8/36 Overview of Proposed DDDAMS Framework

! Self-configuring fidelity formation and adaptation

=>Information needs to be updated wisely in the model for savings in computing and networking resources ! Estimation of system states under uncertainty ! Modular modeling

Sensory Data and Microgrid Topology

Database

Control Task – Load Dispatch

Power Price

Power Provision

Microgrid Topology

(1)  Chosen Fidelity Level (2)  Decision Variables

Electric Microgrid

Temperature [oF]

Electrical Parameters

Wind Speed [m/s]

Solar Radiation [W/m2]

Sensors in the Real System

Wind Speed [WS-201]

Temperature [T-200A]

Solar Radiation [CMP-11]

Electrical Sensors

Legend M Module Data from sensors Data from main grid Data from modules and algorithms

Industrial Load

Residential Load

Commercial Load

Grid 20 kV

WT 1

PV 2…5

PV 1

MT

400 V 1

2 3

4

5

6

7 8

9

10

11

12

13 14

15 16

FC

M2: Batteries

M3: Solar Generators

Algorithm 2: Culling and Fidelity Selection using Optimal Computing Budget Allocation

M1: Demand

Algorithm 1: State Estimation – FDIR

State Information Sensory Data

M6: Computational Resource Availability

M5: Diesel Generators

M4: Wind Turbines

Agent-based Simulation

9/36 Collection of Data from Various Sources

   

Database  

   Voltages, Current, Real and Reactive Power Injections

Power Systems Test Case Archive University of Washington

Sub-networks Split of the IEEE-30

Power Systems Literature Rakpenthai et al. 2005.

Atmospheric  Science  Data  Center  (NASA)/  

Weather Underground Weather Profiles and Temperature

Wind Integration Datasets National Renewable Energy Laboratory (NREL)

Electrical Sensors

Wind Speed

CMP-11 Pyranometer

IEEE-30 Bus System Data

Solar Irradiance

Power  generation/  Energy  consumption    from  the  AF,  NREL,  and  EIA  

• Tyndall  AFB  map  • Energy  consumption  in  the  base  • List  of  AF  bases  with  renewables  • Structure  of  the  electricity  network  in  base  • Voltages  and  angles  for  buses  • Power  losses  in  branches  • Apparent  power  for  the  transformers  

§  Effective control of microgrid systems requires all-embracing acquisition of data about major system components

§  Fluctuating demand profiles, power generation (conventional /renewable), differences in power planning technologies, costs and availabilities of primary energy resources, transmission capacity etc.

AFB Site Visits

10/36 State Estimation Algorithm

Yes

No

START

END

New electrical measurement arrives

Store estimation of major states for

Correct the major state using the minor state estimation

Is interval over?

New environmental measurements arrive (i.e., temperature)

Estimate next major states using PF Subprocedure I

Estimate next minor state using PF Subprocedure II

State model for PF sub-procedure I:

Pk+1=aPk+u

Tk=bPk+1+v

a,b: calculated from historical data u: process noise v: measurement error

State model for PF sub-procedure I:

Pk+1=cPk+u

Zk=h(Pk+1)+v    ∀j  ∈  {1,2,…,m}

a,b: calculated from historical data h(.): function relating measurements to states u: process noise v: measurement error m: number of measurements within interval t

11/36 Particle Filtering

§  Represents probability densities by a set of randomly

chosen samples

§  Infers the posterior state given

§  transition prior

§  a realization of observations

§  Other application areas include…

•  Signal processing

•  Target tracking

•  Supply chain management

•  Optimization

Estimated Time-Dependent States

xt-1

xt

zt-1

zt

zt+1

Observations

t-1

t

t+1

p(zt|xt) Measurements depend only on state

Prior to xt

Posterior to xt

xt+1

x0 t=0

State Transition

Measurement

...........

...........

...........

...........

12/36

§  Purpose  Set  the  level  of  detail  in  simulation  for  each  pre-­‐  deRined  region  (critical,  priority  and  non-­‐critical)  

§  Goal  •  Decrease  the  computational  burden    •  Increase  the  accuracy  of  decisions    

§  Depends  on  •  Simulation  model  •  Optimal  costing  budget  allocation  (OCBA)                  scheme  

§  Higher  Ridelity  means  •  More  frequent  collection  of  data  •  More  frequent  update  to  decision  variables  •  Shorter  cycle  time  of  dispatch  update  

Culling and Fidelity Selection Algorithm

 

 

 

 

 

 

 

     

     

 

 

Industrial Load

Residential Load

Commercial Load

Grid 20 kV

WT 1

PV 2…5

PV 1

MT

400 V 1

2 3

4  

5

6

7 8

9

10

11

12

13 14

15 16

FC

 

Region 1

Region 2

Region 3

Fidelity 3

Fidelity 1

Fidelity 1

Fault detected

13/36 Agent-based System Simulation

14/36 Selection  of  Energy  Sources  via  Userform  

15/36 Overview of Agents Defined in Simulation

Device/System Information Sensed Information Derived

Generator

•  Magnitude of voltage () •  Magnitude of current (I) •  Environmental measurements

(temperature, solar irradiance, wind speed, etc.)

•  Power output (kW) •  Fuel used (gallons) •  Emission produced (lbs.)

Battery •  Voltage (V) •  Charge/discharge current •  State of charge

•  Power charged (kW) •  Power discharged (kW) •  Power grounded (kW)

Load •  Magnitude of voltage •  Phase of voltage •  Current consumption (demand)

•  Power consumed (kW)

Power Network •  Electricity price ($/kWh) •  Main grid frequency (f) •  Main grid voltage (V)

•  Microgrid frequency (f) •  Microgrid voltage (V) •  Status (whether the above factors

are in the safe operation range)

16/36 Renewable Generation via Solar Energy

§  Output •  Direct Current (DC source)

§  Major components •  PV array •  Battery storage unit •  Charge controller

§  Modeling techniques •  Analytical techniques

§  Cost •  Installation •  Maintenance

Direct  solar  irradiance  

Indirect  solar  irradiance  

(1)  

(2)  

(3)  

Generation   Transformation,  Storage,  Distribution  

Consumption  

1)  Charge  Controller,  DC  Power  2)  Batter  System  ,  DC  Power  (3)  Inverter,  AC  Power  

§  Power output from a PV system with an area A(m2) when total solar radiation of Ir(kWh/m2) is

incident on PV surface, is given by

P=Ir.η.A

Where system efficiency η=ηm. .ηpc.Pf , module efficiency ηm=ηr.(1-β(Tc-Tr))

ηm. : manufacturer’s reported efficiency

ηpc : power conditioning efficiency

Pf : packing factor

β : array temperature coefficient

Tc : reference temperature for the cell efficiency

Tr : current temperature

17/36 Renewable Generation via Wind Energy

§  Output:  DC  ,  AC,  Variable  frequency  AC  sources  (depending  on  the  generator  type)  

§  Modeling  techniques:  Mathematical  and  dynamic  model  §  Cost:  Installation  and  maintenance  

§  A  wind  turbine  generates  electiricity  only  when  the  wind  velocity  V  is  within  a  standard  range:  Vmin≤  V  ≤Vmax  

§  Power  output  of  a  turbine  with  rated  output  Pr    is:  

 P=0    V<Vmin    P=aV3-­‐bPr      Vmin≤V<Vr    P=Pr      Vr≤V≤Vmax    P=0        V>Vmax  

 

Vr  is  the  rated  wind  speed    

   a = Pr

Vr3 !Vmin3 b = Vmin

3

Vr3 !Vmin3

18/36 Renewable Generation via Ocean Energy

§  Output: AC •  A variable frequency AC source

§  Major components •  Wave Energy Device •  Power Cables •  Onshore Facility

§  Modeling techniques: State-of-the-art modeling and simulation

§  Avg. size: 1.9 square miles for utility scale system §  Cost: Installation and maintenance

Wave  energy  potential  by  location  in  MW/mile  

§  Wind moves at higher speeds over water than over land

§  Wave action adds to the extractable surface energy

§  Major ocean currents (i.e., Gulf stream) may be exploited to extract energy with underwater rotors

§  Ideal locations for U.S. bases include Hawaii, Alaska, and Northern California

19/36 Fossil Fuel Energy

§  Output      

•  Alternating  Current  (AC  source)  

§  Major  components  

•  Diesel  engine  •  Generator  •  Ancillary  devices  (base,  canopy,  sound  

attenuation,  control  systems,  circuit  breakers,  jacket  water  heaters  and  starting  system)  

§  Modeling  techniques:  Analytical  §  Cost:    Purchase,  Maintenance,  Consumption  

20/36 Various  Microgrid  Architectures  

Utility Grid

Micro-grid Boundary

 

Load

Switching gear

Backup Generation

Renewable Energy

Utility Grid

Micro-grid Boundary

 

Load

Switching gear

Backup Generation

Renewable Energy

 

•  Backup generation can be used at any time •  Required Generators Mode:

ü  Isochronous Speed Control: when microgrid is isolated

ü  Droop Speed Control: when microgrid is served from utility grid (Diesel generation should align with utility grid frequency)

•  Backup generation can only be used when microgrid is isolated

•  Required Generator Mode: Isochronous Speed Control

ON/OFF   EITHER/OR  

21/36 Site  Visit  to  Tyndall  AFB  in  Florida  

§  August 2013, SimLab visited Tyndall AFB, Civil Engineer Support Agency (AFCESA)

§  Base operating unit and host wing is 325th Fighter Wing of Air Combat Command (ACC)

§  Resides in a total area of 14.5 square miles

§  Total population: 2,932

§  Critical loads: Areas that directly impact national security, first responders and hospital

o  325 Fighter Wing HQ, AF North HQ

§  Priority loads: Command/control facilities for non-deployed U.S. based combat and supporting units

o  Actual squadrons, fighter, maintenance, and supporter groups

§  Non-critical loads:

o  Recreation, housing, and shopping areas

§  Ken Gray (Branch Chief, Renewable Energy) and Rexford Belleville P.E. (Electrical SME)

•  Toured the Tyndall Distribution network from substation to feeders •  Discussed current AF renewable energy projects •  Explained costs related to the power purchase agreements versus system purchases •  Discussed SPIDERS program and current military microgrid projects •  Emphasized fault detection portion of the framework for short term benefits

 

22/36 Cost  Analysis  (1)  

23/36 Cost  Analysis  (2)  

Solar  System  in  Nellis  AFB    o  approximated  total  cost  of  $100,000,000  o  currently  generating  30  GWh    annually    o  lifespan  20  years      Cost  :  ~$  0.167/KWh  to  purchase  the  system  vs.  ~$.0223/KWh  via  power  purchase  agreement  vs.  ~$.0715/KWh  to  purchase  from  Nevada  Energy    Cost  of  a  utility  scale  system  capable  of  meeting  needs  of  an  AF  ~$2.79/W  for  solar  ~$2.00/W  for  wind  ~$4.57/W  for  ocean  energy    

§  AF  budget  is  severely  constrained  for  new  projects  for  the  next  10-­‐20  years    §  Private  sector  beneRits  from  tax  beneRits  and  renewable  energy  credits    §  Private  sector  has  knowledge  to  operate  and  maintain  utility  scale  power  plants    (AF  would  have  to  hire  additional  contractors  to  operate  and  maintain)    

 

 

24/36 Experiments on 2-Tier IEEE 30 Bus System

Legend

Energy Load

Energy Generation

No Generation or Load

Bus

Line

   

   

   

         

 

       

Sub-network

2-Tier IEEE-30 Bus System ! 3 additional sources of DG at buses 7, 21, 23

=>Renewable/Nonrenewable

! Fidelities:

F1: Sub-network only

F2: Entire network

! Experiments are conducted on two separate

sets of scenarios on this network

1  

2  

3   4  

5  

6  

7  

8  

9  

10  

11   12  

13  

14  

15  

16  

17  

18   19  

20  

21  

22  

24  

25  

27   28  29  

30  

8  

26  

23  

2   5  

132kV  

132kV  

132kV  132kV  

132kV  

132kV  132kV  

132kV  

132kV  

1kV  33kV  

33kV  

11kV  

11kV  33kV  

33kV  33kV  

33kV  

33kV  

33kV  33kV  

33kV  

33kV  

33kV  33kV  

33kV  

33kV  33kV  

33kV  

33kV  21  

23  

7  

25/36 Results: Scenario 1

! Set-up

§  Load variation may occur only within the sub-network

§  3%, 6% and 9% variations are studied

§  at Fidelity 1: Framework is run to optimize sub-network primarily

§  at Fidelity 2: Framework is run to optimize entire network

! Fidelity 1 reveals the best compromise solution

! Computational time reduced by 302 seconds

 Fidelity  1  

Load  Variation  

3%   6%   9%  

Cost  Range   [600.59  -­‐  658.75]   [608.39  -­‐  667.05]   [605.61  -­‐  667.05]  

Emissions  Range   [0.2672  -­‐  0.2673]   [0.2672  -­‐  0.2673]   [0.2672  -­‐  0.2673]  

Compromise  Cost   634.67   635.73   627.12  

Compromise  Emissions   0.26725   0.2673   0.26727  

 Fidelity  2  Load  Variation  

3%   6%   9%  

Cost  Range   [524.28-­‐697.35]   [535.22  -­‐  693.58]   [556.05  -­‐  721.85]  

Emissions  Range   [0.2672-­‐0.2674]   [0.2672  -­‐  0.2674]   [0.2671  -­‐  0.2674]  

Compromise  Cost   665.1   657.38   667.05  

Compromise  Emissions   0.26721   0.2672   0.26719  

Load  Variation   Runtimes  Fidelity  1   Fidelity  2   Savings  in  F1  (%)  

3%   181.4516   483.5126   37.5278  6%   208.0058   471.3968   44.1254  9%   184.2011   652.9836   28.2091  

26/36 Results: Scenario 1 (cont’d)

0.2672  

0.2673  

0.2674  

0.2675  

500   550   600   650   700   750  Emissions  (Tons/h)  

Cost  ($/h)  

Non-­‐dominated  Solution  Set  

Sub-­‐Grid  Optimizaion   Full  Optimization  

0.26715  0.2672  0.26725  0.2673  0.26735  0.2674  0.26745  

500   550   600   650   700   750  

Emissions  (Tons/h)  

Cost  ($/h)  

0.26715  0.2672  0.26725  0.2673  0.26735  0.2674  

500   550   600   650   700   750  

Emissions  (Tons/h)  

Cost  ($/h)  

Best compromise

Loads 3% variated

Loads 6% variated

Loads 9% variated

! Fidelity 1 preferred solution

! Fidelity 2 preferred solution

! Not necessarily overlapping

! If do overlaps, F1 is always beneficial from computational resource usage perspective

! Emission-results are to be detailed when renewables are introduced

Fidelity 1 Fidelity 2

27/36 Results: Scenario 2

! Set-up

§  Load variation may occur within the entire network

§  3%, 6% and 9% variations are studied

§  at Fidelity 1: Framework is run to optimize sub-network primarily

§  at Fidelity 2: Framework is run to optimize entire network

! Computational time reduced by 419 seconds

! However, very few of the solutions appear in the collective non dominated solution set

 Fidelity  1   Load  Variation  3%   6%   9%  

Cost  Range   [601.39  -­‐  667.96]   [605.73  -­‐  674.24]   [646.47  -­‐  701.95]  

Emissions  Range   [0.2672  -­‐  0.2673]   [0.2672  -­‐  0.2673]   [0.2671  -­‐  0.2672]  

Compromise  Cost   631.46   668.33   673.31  

Compromise  Emissions   0.2673   0.2672   0.26718  

Fidelity  2     Load  Variation  3%   6%   9%  

Cost  Range   [560.07  -­‐  722.81]   [572.36  -­‐  745.05]   [588.72  -­‐  756.11]  

Emissions  Range   [0.2671  -­‐  0.2674]   [0.2671  -­‐  0.2673]   [0.2671  -­‐  0.2673]  

Compromise  Cost   636.34   685.87   718.78  

Compromise  Emissions   0.2672   0.2672   0.26711  

Load  Variation   Runtimes  Fidelity  1   Fidelity  2   Savings  in  F1  (%)  

3%   178.4844   536.2030   33.2867  6%   183.6092   663.1315   27.6882  9%   189.6595   609.3573   31.1245  

28/36 Results: Scenario 2 (cont’d)

Loads are 3% variated

Loads are 6% variated

Loads are 9% variated

Best  compromise  

0.26715  

0.26725  

0.26735  

550   600   650   700   750  Emissions  (Tons/h)  

Cost  ($/h)  

Non-­‐dominated  Solution  Set  Fidelity  1   Fidelity  2  

0.2671  

0.26715  

0.2672  

0.26725  

0.2673  

0.26735  

550   600   650   700   750  

Emissions  (Tons/h)  

Cost  ($/h)  

0.26705  0.2671  0.26715  0.2672  0.26725  0.2673  0.26735  

550   600   650   700   750  Emissions  (Tons/h)  

Cost  ($/h)  

! Fidelity 1 preferred solution

! Fidelity 2 preferred solution

! Not necessarily overlapping

! If do overlaps, F1 is always beneficial from computational resource usage perspective

! Emission-results are to be detailed when renewables are introduced

29/24 Experiments on 3-Tier IEEE 30 Bus System

5

17

13

11

15

G

G

G G

G G

29

30

27

26 25

28

24

22

23

18 14

12

16

19

20 21

10

9

6

8

7

2

1 3

4

G

Sub-network 1

Sub-network 2

Sub-network 3 G

G G

LEGEND : Load G : Generation : No Generation or Load : Bus : Line

! IEEE-30 Bus System split into 3 sub-networks

! 5 additional sources of DG at buses 7, 21, 22, 23, 27

! 7 Fidelities via set of combination of sub-networks: 1,2,3,12,23,13,123

30/36

! Main framework is implemented in Matlab

! Simulations are run for 10 randomly generated cases of demand change

! Demand changes are rounded to the closest predefined scenario

! Fidelity selection algorithm chooses 2 different fidelities to simulate under selected scenario

! Validation process for algorithmic decisions

=>Simulate all fidelities under the selected scenario

=>Rank the best compromise solutions of the fidelities

!   Virtual Computing Facilities (CLOUD) at the UM

§  375 Intel 2.66 GHz CPUs cores §  1THz computational power §  1.5 TB RAM §  100 TB online storage §  720 Gbps of wire-speed ethernet switching §  1.2 Gbps firewall throughput §  60 TB backup tap library §  Compatibility testing §  Application troubleshooting

Experiments on 3-Tier IEEE 30 (cont’d)

31/24 Results: Comparison of Fidelity Selection

! In 8 out of 10 cases, best compromised solutions are within the 3 best fidelities under the predefined scenario

Case  Load  Variation  (%)  

Discovery  Case  Suggested  Simulation  1   Suggested  Simulation  2  

Sub-­‐Network  1   Sub-­‐Network  2   Sub-­‐Network  3   Sub-­‐Networks   Rank   Sub-­‐Networks   Rank  1   0.39   1.50   1.32   0,0,0   1,3   4   2,3   3  2   0.99   0.54   3.77   0,0,5   2   1   1,3   5  3   0.32   2.74   2.27   0,5,0   1,3   2   2,3   3  4   3.90   1.69   0.39   5,0,0   1,2   7   3   6  5   2.26   0.10   2.60   0,0,5   2   4   1,3   1  6   2.55   4.56   6.70   5,5,5   1,2   7   2,3   2  7   5.74   3.48   1.38   5,5,0   1,3   3   2   6  8   7.40   0.45   2.28   5,0,0   1,2   6   3   5  9   4.50   3.45   12.39   5,5,10   3   5   2   3  10   10.36   6.24   4.26   10,5,5   1,3   3   1   2  

32/24 Results: Comparison of Best Compromise Solutions

! Different, but how much?

! Worst case has shown a 3.38% difference in cost and 0.02% difference in emissions

Cases  

Algorithm's  Best  Compromise  Solution     Global  Best  Compromise  solution   %  Difference  

Cost   Emissions   Cost   Emissions   Cost   Emissions  1   594.29   0.2673   599.53   0.2673   0.87   0.01  2   613.29   0.2673   613.29   0.2673   0.00   0.00  3   615.64   0.2673   599.13   0.2673   2.76   0.01  4   599.29   0.2673   620.28   0.2672   3.38   0.02  5   598.19   0.2673   598.19   0.2673   0.00   0.00  6   569.41   0.2674   579.23   0.2673   1.70   0.01  7   569.68   0.2674   577.18   0.2673   1.30   0.00  8   573.53   0.2674   560.52   0.2674   2.32   0.00  9   597.7   0.2673   609.6   0.2673   1.95   0.01  10   534.86   0.2674   543.85   0.2674   1.65   0.01  

33/36 Experiments  with  Hardware-­‐in-­‐the-­‐loop:  Lab-­‐scale  Microgrid  

Lamp  bulb  

Simulates  the  function  of  a  PV  array  

Controlled  by  a  dimmer  Represents  the  varying  loads  

Represents  the  inductive  loads  

Battery  

DC  motor  

DC  motor  

Lamp  bulb  

Fan  

Simulates  the  function  of  a  diesel  generator   Power  electronics  (DC  drives)  for  controlling  the  DC  motors  

Control  of  the  switches  

A  lab-­‐scale  microgrid  will  allow  for  §  Highlighting  of  issues  that  are  related  to  decision-­‐making  to  control  phase  of  DDDAMS  §  Partial  testing  of  different  abnormalities  in  a  real  environment  (even  if  its  is  in  a  simpler  setting)  §  Partial  validation  of  the  algorithms  in  our  proposed  framework  §  Be  familiar  with  potential  challenges  –  problems  in  a  microgrid  

•  LabView: Handling of components of lab-microgrid •  Easypower: Running electrical model of Tyndall AFB •  Autocad: Examining electrical infrastructure of Tyndall AFB •  Anylogic: Agent based simulation of the considered microgrid •  JAVA: Implementation of algorithms and linkages to simulation •  Matlab: Implementation of algorithms

34/36 Conclusions

! Assesses the system status and

! Determines a simulation fidelity leading to a near optimal set of decisions-solutions

! A DDDAMS framework has been proposed for EELD problem in power networks

! Framework encompasses

§  databases for topology information, fidelities and measurements

§  algorithms for state estimation, fidelity selection and multi-objective optimization

! Saves significantly from critical computational resource utilization

35/36 Future  Work  

§  Algorithms:  •  IdentiRication  of  uncertainties  and  extreme  events  for  the  Ridelity  selection  algorithm  •  Improvements  for  algorithmic  performance  that  will  decrease  computational  burden  

(while  not  foregoing  accuracy)  •  Incorporating  isolation-desolation procedures •  Automatic fidelity generation via topology discovery

 §  Simulation:  

•  Incorporation  of  agents  for  additional  power  sources  (microturbine,  fuel  cell  etc.)  •  Re-­‐applying  power  balancing  •  Aligning  the  framework  algorithms  (Ridelity  selection,  multiobjective  optimization  etc.)  •  Additional  user  friendly  forms  for  controlling  the  components  of  the  simulation  •  Conducting  experiments  for  validation  and  testing  

 §  Additional  Activities:  

•  Establishing  the  lab-­‐scale  microgrid  (collaboration  with  UM  ECE  for  technicality)  •  Conducting  initial  experiments  with  the  lab-­‐scale  microgrid  •  Upcoming  site  visits:  Eglin  AFB  and  MacDill  AFB  

36/36 Questions & Comments

This project is supported by the AFOSR via 2013 Young Investigator Research Award

(Award No: FA9550-13-1-0105)