DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit...

31
EENG223: Circuit Theory I DC Circuits: First-Order Circuits Hasan Demirel

Transcript of DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit...

Page 1: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

DC Circuits: First-Order Circuits

Hasan Demirel

Page 2: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  Introduc)on  •  The  Source-­‐Free  RC  Circuit  •  The  Source-­‐Free  RL  Circuit  

•  Step  Response  of  an  RC  Circuit  •  Step  Response  of  an  RL  Circuit  

First-­‐Order  Circuits    

Page 3: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  A  first-­‐order  circuit  can  only  contain  one  energy  storage  element  (a  capacitor  or  an  inductor).    

•  The  circuit  will  also  contain  resistance.    

•  So  there  are  two  types  of  first-­‐order  circuits:  §  RC  circuit  §  RL  circuit  

•  A  first-­‐order  circuit  is  characterized  by  a  first-­‐order  differen)al  equa)on.  

First-­‐Order  Circuits:  Introduc)on  

Page 4: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  A  source-­‐free  circuit  is  one  where  all  independent  sources  have  been  disconnected  from  the  circuit  a6er  some  switch  ac7on.    

•  The  voltages  and  currents  in  the  circuit  typically  will  have  some  transient  response  due  to  ini)al  condi)ons  (ini7al  capacitor  voltages  and  ini7al  inductor  currents).    

 •  We  will  begin  by  analyzing  source-­‐free  circuits  as  they  are  

the  simplest  type.  Later  we  will  analyze  circuits  that  also  contain  sources  a6er  the  ini7al  switch  ac7on.  

First-­‐Order  Circuits:  The  Source-­‐Free  Circuits  

Page 5: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  A  source-­‐free  RC  circuit  occurs  when  its  dc  source  is  suddenly  disconnected.  

•  The  energy  already  stored  in  the  capacitor  is  released  to  the  resistors.  

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  

V0

•  Since  the  capacitor  is  ini)ally  charged,  we  can  assume  that  at  7me  t=0,  the  ini)al  voltage  is:  

•  Then  the  energy  stored:  

•  Applying  KCL  at  the  top  node:  The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer,

•  By  defini7on,  iC =C dv/dt and  iR = v/R. Thus,  

Page 6: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  

V0

•  This  is  a  first-­‐order  differen-al  equa-on,  since  only  the  first  deriva-ve  of  v  is  involved.    

•  Rearranging  the  terms:  

•  Integra7ng  both  sides:  

•  ln A is  the  integra7on  constant.  Thus  

•  Taking  powers  of  e  produces:  

•  From  the  ini-al  condi-ons:  v(0)=A=V0  

•  The  natural  response  of  a  circuit  refers  to  the  behavior  (in  terms  of  voltages  and  currents)  of  the  circuit  itself,  with  no  external  sources  of  excita7on.  

Page 7: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  General  form  of  the  Differen7al  Equa7ons  (DE)  and  the  response  for  a        1st-­‐order  source-­‐free  circuit:  

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  

 §  In  general,  a  first-­‐order  D.E.  has  the  form:  

00)(1≥=+ tfortx

dtdx

τ

§  Solving  this  DE  (as  we  did  with  the  RC  circuit)  yields:  

0)0()( ≥=−

tforextxtτ

§  here  τ=  (Greek  leRer  “Tau”)  =  )me  constant(in  seconds)  

Page 8: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  Notes  concerning  τ:  First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  

§  So,  for  an  RC  circuit:     RC=τ

1)  For  the  Source-­‐Free  RC  circuit  the  DE  is:   00)(1≥=+ tfortv

RCdtdv

2)  τ is  related  to  the  rate  of  exponen)al  decay  in  a  circuit  as  shown  below.  

3)  It  is  typically  easier  to  sketch  a  response  in  terms  of  mul)ples  of  τ than  to  be  concerning  with  scaling  of  the  graph.  

Page 9: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  Ex.  7.1:  In  Fig.  7.5,  let  vC(0)= 15 V.  Find  vC ,  vx and  ix for  t>0.  

Solu)on  

•  Equivalent  Circuit  for  the  above  circuit  can  be  generated:  

Page 10: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  •  Equivalent  Resistance  seen  by  a  Capacitor  

§  For  the  RC  circuit  in  the  previous  example,  it  was  determined  that          τ= RC.  But  what  value  of  R should  be  used  in  circuits  with  mul)ple  resistors?  

§  In  general,  a  first-­‐order  RC  circuit  has  the  following  )me  constant:    

§  where  REQ is  the  Thevenin  resistance  seen  by  the  capacitor.  

§   More  specifically,                                      REQ = R (seen  from  the  terminals  of  the  capacitor  for  t>0  with                                                                          independent  sources  killed.)          

CREQ=τ

Page 11: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  Ex.  :  Refer  to  the  circuit  below.  Let  vC(0)= 45 V. DeterminevC ,  vx and  io for  t≥0.  

Solu)on  

•  Time  constant  τ :

•  Then:    

•  Consider  Req  seen  from  the  capacitor.      

Ω=+×

= 12818612

eqR

sCReq 43112 =×==τ

V45)0()( 25.04 tt

CC eevtv −−

==

V154531)(

844)( 25.025.0 tt

Cx eetvtv −− ==+

=

V75.384515

8)()()( 25.0

25.025.0t

ttCx

o eeetvtvti −−−

−=−

=−

=

Page 12: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  Ex.  7.2:  The  switch  in  the  circuit  below  has  been  closed  for  a  long  7me,  and  it  is  opened  at  t= 0. Find  v(t)  for  t≥0. Calculate  the  ini7al  energy  stored  in  the  capacitor.  

Solu)on  •  For  t<0  the  switch  is  closed;  the  capacitor  is  an  open  circuit  to  dc,  as  represented  in  Fig.  (a).    

•  For  t>0  the  switch  is  opened,  and  we  have  the  RC  circuit  shown  in  Fig.  (b).  

•  Time  constant  τ :

•  Then:    

•  The  ini)al  energy  stored  in  the  capacitor:    

Page 13: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  Ex.  :  If  the  switch  in  Fig.  below  opens  at  t= 0, find  v(t)  for  t≥0 and wC(0).  

Solu)on  

•  For  t>0  the  switch  is  opened,  and  we  have  the  RC  circuit  shown  in  Fig.  (b).  

•  Time  constant  τ :

•  Then:    

•  The  ini)al  energy  stored  in  the  capacitor:    

•  For  t<0  the  switch  is  closed;  the  capacitor  is  an  open  circuit  to  dc  as  shown  in  Fig.  (a).    

V8)0(

0V824633)(

0 ==

<=+

=

Vv

tfortv

C

C

(a)  

(b)  

Ω=×

= 316412

eqR

sCReq 5.0613 =×==τ

V8)0()( 25.0 tt

C eevtv −−

==The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Page 14: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RC  Circuits  Ex.  :  The  switch  in  the  circuit  shown  had  been  closed  for  a  long  7me  and  then  opened  at  7me  t  =  0.    

a)  Determine  an  expression  for  v(t).  b)  Graph  v(t)  versus  t.  c)  How  long  will  it  take  for  the  capacitor  to  

completely  discharge?    d)  Determine  the  capacitor  voltage  at  7me  

t=100ms. e)  Determine  the  7me  at  which  the  capacitor  

voltage  is  10V.    

Page 15: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  A  source-­‐free  RL  circuit  occurs  when  its  dc  source  is  suddenly  disconnected.  

•  The  energy  already  stored  in  the  inductor  is  released  to  the  resistors.  

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  

•  At  7me,  t=0  ,  the  intuctor  has  the  ini)al  current:  

•  Then  the  energy  stored:  

•  We  can  apply    KVL  around  the  loop  above  :  

•  By  defini7on,  vL =L di/dt and  vR = Ri. Thus,  

I0 t=0  

Page 16: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  

•  This  is  a  first-­‐order  differen-al  equa-on,  since  only  the  first  deriva-ve  of  i  is  involved.    

•  Rearranging  the  terms  and  integra7ng:  

•  Then:  

•  Taking  powers  of  e  produces:  

•  Time  constant  for  RL  circuit  becomes:  

The  natural  response  of  the  RL  circuit  is  an  exponen7al  decay  of  the  ini7al  current.  

I0 t=0  

Page 17: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

•  General  form  of  the  Differen7al  Equa7ons  (DE)  and  the  response  for  a        1st-­‐order  source-­‐free  circuit:  

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  

 §  In  general,  a  first-­‐order  D.E.  has  the  form:  

00)(1≥=+ tfortx

dtdx

τ

§  Solving  this  DE  (as  we  did  with  the  RL  circuit)  yields:  

0)0()( ≥=−

tforextxtτ

§  Then:  

§  Where:  

0)0()( 0 ≥==−−

tforeIeitittττ

RL

Page 18: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  •  Equivalent  Resistance  seen  by  an  Inductor  

§  For  the  RL  circuit  ,  it  was  determined  that  τ= L/R.  As  with  the  RC  circuit,  the  value  of  R  should  actually  be  the  equivalent  (or Thevenin)  resistance  seen  by  the  inductor.  

§  In  general,  a  first-­‐order  RL  circuit  has  the  following  )me  constant:    

§  where  REQ is  the  Thevenin  resistance  seen  by  the  inductor.  

§   More  specifically,                                      REQ = R (seen  from  the  terminals  of  the  capacitor  for  t>0  with                                                                          independent  sources  killed.)          

EQRL

Page 19: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  Ex.  7.3:  Assuming  that  i(0)  =10  A,  calculate  i(t)  and  ix(t) in  the  circuit  below.    

Solu)on  

•  Subs7tu7ng  Eq.  (2)  into  Eq.  (1)  gives.    

•  Thevenin  resistance  at  the  inductor  terminals.  we  insert  a  voltage  source  with  v0=1  V.  Applying  KVL  to  the  two  loops  results     (1)  

(2)  

Page 20: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  Ex.  7.3:  Assuming  that  i(0)  =10  A,  calculate  i(t)  and  ix(t) in  the  circuit  below.    

Solu)on  

•  Time  constant  is:  

•  Hence,  

•  Thus,  the  current  through  the  inductor  is:  

Page 21: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  Ex.  7.4:  The  switch  in  the  circuit  below  has  been  closed  for  a  long  7me.  At  t=0 the  switch  is  opened.  Calculate  i(t)    for  t>0.  

Solu)on  

•  When  t<0 the  switch  is  closed,  and  the  inductor  acts  as  a  short  circuit  to  dc,  

•  Using  current  division:  

•  Current  through  an  inductor  cannot  change  instantaneously,  

Page 22: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  Ex.  7.4:  The  switch  in  the  circuit  below  has  been  closed  for  a  long  7me.  At  t=0 the  switch  is  opened.  Calculate  i(t)    for  t>0.  

Solu)on  

When  t>0 the  switch  is  open  and  the  voltage  source  is  disconnected.  We  now  have  the  source-­‐free  RL  circuit  in  Fig.  (b).    

•  The  7me  constant  is  :  

•  Thus,    

Page 23: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  The  Source-­‐Free  RL  Circuits  Ex.  :  Determine  an  expression  for  i(t).  Sketch  i(t) versus  t.  

Page 24: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  •  Step  Response  (DC  forcing  func)ons)  •  Consider  circuits  having  DC  forcing  func)ons  for  t  >  0  (i.e.,  circuits  that  have  

independent  DC  sources  for  t  >  0).  •  The  general  solu)on  to  a  differen)al  equa)on  has  two  parts:  •  x(t) = xh+ xp =  homogeneous    solu)on  +  par)cular  solu)on  •  or  •  x(t) = xn+ xf =  natural  solu)on  +  forced  solu)on    

•  xn is  due  to  the  ini)al  condi)ons  in  the  circuit  •  and  xf is  due  to  the  forcing  func)ons  (independent  voltage  and  current  

sources  for  t  >  0).  

•  xf in  general  take  on  the  “form”  of  the  forcing  func)ons,    •  So  DC  sources  imply  that  the  forced  response  func)on  will  be  a  constant(DC),  •  Sinusoidal  sources  imply  that  the  forced  response  will  be  sinusoidal,  etc.  

Page 25: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  •  Step  Response  (DC  forcing  func)ons)  •  Since  we  are  only  considering  DC  forcing  func)ons  in  this  chapter,  we  assume  

that  :                                xf = B  (constant).  •  Recall  that  a  1st-­‐order  source-­‐free  circuit  had  the  form  Ae-t/τ.  Note  that  there  

was  a  natural  response  only  since  there  were  no  forcing  func)ons  (sources)  for  t  >  0.  So  the  natural  response  was    

0/ >= − tforAex tn

τ

•  The  complete  response  for  1st-­‐order  circuit  with  DC  forcing  func)ons  therefore  will  have  the  form:    x(t) = xf +  xn  

τ/)( tAeBtx −+=

•  The  “Shortcut  Method”:  An  easy  way  to  find  the  constants  B  and  A  is  to  evaluate  x(t)  at  2  points.  Two  convenient  points  at  t = 0 and t = ∞  since  the  circuit  is  under  dc  condi)ons  at  these  two  points.  This  approach  is  some)mes  called  the  “shortcut  method.”  

Page 26: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  •  Step  Response  (DC  forcing  func)ons)  •  The  “Shortcut  Method”  :  

§  So,  x(0) = B + Ae0= B + A  §  And  x(∞) = B + Ae-∞= B

•  Complete  response  yields  the  following  expression:  

τ/)]()0([)()( texxxtx −∞−+∞=

•  The  Shortcut  Method-­‐  Procedure:  The  shortcut  method  will  be  the  key  method  used    to  analyze  1st-­‐order  circuit  with  DC  forcing  func)ons:  

 1.   Analyze  the  circuit  at  t = 0-:  Find  x(0-) = x(0+) 2.   Analyze  the  circuit  at  t = ∞:  Find  x(∞)  3.   Find  τ= REQC or  τ= L/REQ 4.   Assume  that  x(t)  has  the  form  x(t) = x(∞)+[x(0) –x(∞)] e-t/τ using  x(0)  and  

x(∞)  

Page 27: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  •  Step  Response  (DC  forcing  func)ons)  Notes:  The  “shortcut  method”  also  works  for  source-­‐free  circuits,  but  x(∞) = B=0 since  the  circuit  is  dead  at  t = ∞.  If  variables  other  than  vC  or  iL  are  needed,  it  is  generally  easiest  to  solve  for  vC  or  iL  first  and  then  use  the  result  to  find  the  desired  variable.  

Page 28: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  Ex.  7.10:  The  switch  in  Fig.  Below  has  been  in  posi7on  A  for  a  long  7me.  At  t=0  the  switch  moves  to  B.  Determine  v(t)  for  t>0 and  calculate  its  value  at  t  =1  s  and  4  s.  

Solu)on  •  Voltage  across  the  capacitor  just  before  t=0. Capacitor  is  open  circuit  under  dc  condi7ons:  

•  Capacitor  voltage  cannot  change  instantaneously:  

•  For  t>0    (switch  to  B).  Thevenin  Resistance    connected  to  the  capacitor:    

•  Time  constant:    

Page 29: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RC  Circuit  Ex.  7.10:  The  switch  in  Fig.  below  has  been  in  posi7on  A  for  a  long  7me.  At  t=0  the  switch  moves  to  B.  Determine  v(t)  for  t>0 and  calculate  its  value  at  t    1  s  and  4  s.  

Solu)on  •  Since  the  capacitor  acts  like  an  open  circuit  to  dc  at  steady  state,  v(∞) = 30 V.  Thus,  

Page 30: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

HW#3  Ex.  1  :    Find  v(t)  and  i(t) for  t ≥0.  

Ex.  2  :    Find  v(t)  and  i(t) for  t ≥0.  

Page 31: DC Circuits: First-Order Circuitsfaraday.ee.emu.edu.tr/eeng223/Circuit Theory-1-C7-1stordercircuit.pdf · • Step*Response*of*an*RL*Circuit* First/Order*Circuits* * EENG223: Circuit

EENG223: Circuit Theory I

First-­‐Order  Circuits:  Step  Response  of  an  RL  Circuit  Ex.  3:    Find  v(t)  and  i(t) for  t ≥0.