David Rose [email protected]

78
David Rose [email protected] Three-Dimensional Structures of Immunoglobulins - Antibody Domain and Fragment Nomenclature - Structural basis of Diversity - Immunoglobulin Fold - Shapes / Categories of Binding Sites - Biochemical Basis of Binding / Recognition - Conformational Changes on Binding - Antibody Flexibility - Other Immunoglobulin- like Molecules

description

David Rose [email protected] Three-Dimensional Structures of Immunoglobulins - Antibody Domain and Fragment Nomenclature - Structural basis of Diversity - Immunoglobulin Fold - Shapes / Categories of Binding Sites - Biochemical Basis of Binding / Recognition - PowerPoint PPT Presentation

Transcript of David Rose [email protected]

Page 1: David Rose                        drose@oci.utoronto

David Rose

[email protected]

Three-Dimensional Structures of Immunoglobulins

- Antibody Domain and Fragment Nomenclature

- Structural basis of Diversity - Immunoglobulin Fold

- Shapes / Categories of Binding Sites

- Biochemical Basis of Binding / Recognition

- Conformational Changes on Binding - Antibody Flexibility

- Other Immunoglobulin- like Molecules

Page 2: David Rose                        drose@oci.utoronto
Page 3: David Rose                        drose@oci.utoronto
Page 4: David Rose                        drose@oci.utoronto

R.R. Porter, Nobel Lecture, 1972

Page 5: David Rose                        drose@oci.utoronto

(Fab’)2

Fv fragment

Page 6: David Rose                        drose@oci.utoronto

Antibody Domain and Fragment Nomenclature

- Variable, Constant RegionsDefined by similarity of amino-acid sequence between antibodiesEach forms a structural unit (Ig fold)

- Heavy Chains1 variable domain (N-terminus): Vh3 (IgG) or more constant domains: Ch1 - Ch3

constant domains define antibody class

- Light Chains1 variable domain (N-terminus): Vl1 constant domain: Cl

- Antigen Binding Fragment (Fab)Vl/Vh - Cl/Ch1 heterodimer

- Constant (crystallizable) Fragment (Fc)Ch2-Ch3 homodimer

- Variable Fragment (Fv)Vl/Vh heterodimer

- Epitope: Part of the antigen recognized by the antibody- Paratope: Antibody recognition region

Page 7: David Rose                        drose@oci.utoronto
Page 8: David Rose                        drose@oci.utoronto

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 9: David Rose                        drose@oci.utoronto

- Variability Plotsv = num different residue types / Freq (most common)

- Relationship to V(D)J gene segments

Page 10: David Rose                        drose@oci.utoronto

Kappa light chain V regions

Page 11: David Rose                        drose@oci.utoronto

IgG heavy chain V regions

Page 12: David Rose                        drose@oci.utoronto

V V V V

V

V

J

J

J J J J CL

CL

CL

V J CD

Light Chain

Heavy Chain

Page 13: David Rose                        drose@oci.utoronto

Light Chain Variable Region

Immunoglobulin Fold:Each region (V,C) forms a -sheet sandwich110-120 residues

Page 14: David Rose                        drose@oci.utoronto

Light Chain Constant Region

Page 15: David Rose                        drose@oci.utoronto

- Canonical CDR structuresChothia and Lesk

L1-3, H1, H2 well defined by loop structures

- Framework / Complementarity -Determining Regions (CDRs)(Hypervariable regions)

assemble to make up the antibody binding region.

- Fab/Fv binding site (combining site)

6 CDRs: 3 Light Chain + 3 Heavy ChainL1-3, H1-3

Page 16: David Rose                        drose@oci.utoronto

Canonical forms of CDR loops.

Al-lazikani, Lesk & Chothia, J Mol Biol (1997) 273:927

Page 17: David Rose                        drose@oci.utoronto
Page 18: David Rose                        drose@oci.utoronto

Canonical forms, chain L1 CDRs

Page 19: David Rose                        drose@oci.utoronto

H3 CDR’s: 12-residue length

Al-lazikani, Lesk & Chothia J Mol Biol (2000) 295:979

Page 20: David Rose                        drose@oci.utoronto
Page 21: David Rose                        drose@oci.utoronto

Shapes / Categories of Binding sites

- Flat: mostly surface residues from both antibody and antigen. Frequently discontinuous regions of antigen

- Groove / Crevice:Binds to stretches of antigen, usually continuous

- Pocket:Usually small molecule antigens, tight loops, or ends of polymers that penetrate a small pocket.

Page 22: David Rose                        drose@oci.utoronto

Pocket Groove Flat

Combining Site Shapes

Page 23: David Rose                        drose@oci.utoronto

Types of Antigens:

1. Small Molecules (haptens)

Pocket-shapedshape complementarityelectrostatics / hydrogen bonds (enthalpy-driven)High association constants (108 - 109 M-1)

Page 24: David Rose                        drose@oci.utoronto
Page 25: David Rose                        drose@oci.utoronto

2. Proteins

a. discontinuousflat shapedhydrophobic (elimination of water)Van der Waalshydrogen bondssome entropic contribution

Buried surface ~700-800 Å2

Moderate - high association constants (106 - 108 M-1)

Page 26: David Rose                        drose@oci.utoronto
Page 27: David Rose                        drose@oci.utoronto

b. continuousgroove / creviceextended loop on antigen

(usually -turn but can be -helix)higher entropic cost

Hydrophobic, entropic, van der Waalsshape complementarity

Induced fit of antibody and/or antigen

Page 28: David Rose                        drose@oci.utoronto

Fab F11.2.32 HIV-1 protease peptide complex

Lescar et al, J Mol Biol (1997) 267: 1207

Page 29: David Rose                        drose@oci.utoronto
Page 30: David Rose                        drose@oci.utoronto

Fab 17/9 complex with peptide from Influenza virus hemagglutinin

Rini, Schulze-Gahmen & Wilson (1992) Science 255:959

Page 31: David Rose                        drose@oci.utoronto

MRK-16 Fab structure: Vasudevan, Tsuruo and Rose, J. Biol Chem (1998) 273:25413

Page 32: David Rose                        drose@oci.utoronto

Jean M. H. van den Elsen, Douglas A. Kuntz, Flip J. Hoedemaeker, and David R. Rose Antibody C219 recognizes an -helical epitope on P-glycoprotein PNAS 96: 13679-13684

Page 33: David Rose                        drose@oci.utoronto
Page 34: David Rose                        drose@oci.utoronto

3. Carbohydrate / polysaccharide

Groove - shaped (chain binder)or pocket-shaped (end binder)

Hydrophobic (especially aromatic)some hydrogen bondswater can be used as coordinating ligand

High entropic costLower buried surface (500-600 Å2)Lower association constants (104 - 105 M-1)

Page 35: David Rose                        drose@oci.utoronto

Fab Se155.4 complex with Salmonella cell-surface antigen

Cygler, Rose & Bundle (1991) Science 253:442

Page 36: David Rose                        drose@oci.utoronto

Binding of cholera O1 antigen to Fab S-20-4

Villeneuve et al, PNAS (2000) 97:8433

Page 37: David Rose                        drose@oci.utoronto
Page 38: David Rose                        drose@oci.utoronto
Page 39: David Rose                        drose@oci.utoronto
Page 40: David Rose                        drose@oci.utoronto

Conformational changes / flexibility

Induced fitantibody binding site plasticityepitope

Antibody flexibilitydomain:domain interaction changesantigen bindingtether links in intact IgG structure

Page 41: David Rose                        drose@oci.utoronto
Page 42: David Rose                        drose@oci.utoronto

Antibody conformational change on complexation: Fab 17-IA with HRV-14Smith et al (1996) Nature 383:350

Page 43: David Rose                        drose@oci.utoronto
Page 44: David Rose                        drose@oci.utoronto

Epitope Conformational change on complexation : HIV Protease

Page 45: David Rose                        drose@oci.utoronto

Epitope conformational change on complexation: Flu hemagglutinin

Page 46: David Rose                        drose@oci.utoronto

Conformational Change on Antigen Binding

Page 47: David Rose                        drose@oci.utoronto
Page 48: David Rose                        drose@oci.utoronto

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 49: David Rose                        drose@oci.utoronto

Harris LJ, Skaletsky E, McPherson A. (1998) J Mol Biol 275:861

Crystal Structure of an Intact IgG

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 50: David Rose                        drose@oci.utoronto
Page 51: David Rose                        drose@oci.utoronto
Page 52: David Rose                        drose@oci.utoronto

Same antibody binds to two different antigens

Antibody D3H44 uses different regions of the combining site to bind to 6A6 and TF. “open book” view coloured by electrostatics.

Eigenbrot et al, (2003) J. Mol. Biol. 331:433-446

Page 53: David Rose                        drose@oci.utoronto

D3H44 residues contacting 6A6 (green) and TF (pink)

Page 54: David Rose                        drose@oci.utoronto

Grafting loops from D1.3 onto the F8 framework

Donini et al (2003), J. Mol. Biol. 330:323-332

Affinities of reduced scFv’s from periplasm (l) and cytoplasm (r) to HEL

Page 55: David Rose                        drose@oci.utoronto

Residues the same in F8 (grey) or D1.3 (blue)

Page 56: David Rose                        drose@oci.utoronto

Grafted loops in P1(red),P2(orange), P3(yellow),P4(green), P5(cyan)

Page 57: David Rose                        drose@oci.utoronto
Page 58: David Rose                        drose@oci.utoronto

Evolution of affinity to same antigen epitopeAntibodies to hen egg lysozyme differing due to somatic mutation.

Li et al (2003), Nature Str. Biol. 10:482-488

Page 59: David Rose                        drose@oci.utoronto
Page 60: David Rose                        drose@oci.utoronto

Shape complementarity (left) and contact residues (rt) for H26 (top) and H8

Page 61: David Rose                        drose@oci.utoronto

Progression from weakest (H26 red) to strongest (H8 blue) comparison to unliganded H63 (yellow). H8 complex least distorted from unliganded

Page 62: David Rose                        drose@oci.utoronto

Same antibody, different specificities

James et al (2003), Science 299:1362-1367

Page 63: David Rose                        drose@oci.utoronto
Page 64: David Rose                        drose@oci.utoronto
Page 65: David Rose                        drose@oci.utoronto

Other Immunoglobulin Family Proteins

Page 66: David Rose                        drose@oci.utoronto
Page 67: David Rose                        drose@oci.utoronto
Page 68: David Rose                        drose@oci.utoronto
Page 69: David Rose                        drose@oci.utoronto
Page 70: David Rose                        drose@oci.utoronto

IgG Fc Complexes

Protein A domain B1 Protein G domain C2

Rheumatoid Factor Neonatal Fc Receptor

DeLano et al, Science (2000) 287:1279

Page 71: David Rose                        drose@oci.utoronto
Page 72: David Rose                        drose@oci.utoronto
Page 73: David Rose                        drose@oci.utoronto

QuickTime™ and aGIF decompressor

are needed to see this picture.

Page 74: David Rose                        drose@oci.utoronto

T-cell Receptor

Page 75: David Rose                        drose@oci.utoronto

T-cell Receptor Antibody Fab

Page 76: David Rose                        drose@oci.utoronto

D.N.Garboczi, P.Ghosh, U.Utz, Q.R.Fan, W.E.Biddison, D.C.Wiley. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2 Nature 384, 134 (1996)

Page 77: David Rose                        drose@oci.utoronto
Page 78: David Rose                        drose@oci.utoronto

QuickTime™ and aGIF decompressor

are needed to see this picture.