Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien...

26
X Band Workshop - Components & Subsystems D a t e d u d o c u m e n t Klystron development in X band Sébastien Berger [email protected] R&D Thales Electron Devices

Transcript of Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien...

Page 1: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems

Dat

e du

doc

umen

t

Klystron development in X bandSébastien [email protected] R&D Thales Electron Devices

Page 2: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems2

Thales Components & Subsystems

Medical radiologyRadiography, radiologyAngiography, urologyDental 3D imagingVet exams

Traveling Wave TubesAmplifiersPower Grid TubesAssociated sub-systems

Digital flat detectorsX-Ray Imaging UnitsX-Ray Image IntensifiersCCD camerasAssociated sub-systems

Traveling Wave TubesTransmittersKlystronsCFAsAssociated sub-systems

KlystronsGyrotronsDiacrodesAssociated sub-systems

Power grid tubesX-Ray TubesX-Ray detectorsAssociated sub-systems

IndustrialNDT-SecurityLaserIndustrial heatingSterilization

Subsystems and products

ApplicationsSpaceTelecomBroadcastEarth observationNavigation….

DefenseRadarsCountermeasuresMissiles

ScienceFusionLight SourcesLarge accelerators

Page 3: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems3

From Components to Subsystems - Science

Energy storage Mega Joule Laser

Klystrons, gyrotrons, IOTs & tetrodes RF amplifier

Page 4: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems4

Outline

Klystron technology for X band

A single beam 9.3 GHz / 4 MW Klystron

Alternative technologies PPM focusing Multi-Beam Klystron

Page 5: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems5

X band klystron

Klystron source for medical and industrial applications

Page 6: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems6

The klystron, a high-gain amplifier

Klystron is a high-power, high-gain amplifier providing :

More peak power than magnetrons

Stability of output power

Reliability : theoretical long lifetime even at high frequencies

Output power versatility

preamplifierKlystronamplifier

Isolator/circulator

Signal from 9.3 GHz oscillator

Input ~10 W Output ~ MW

Solid-state device

Page 7: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems7

X band for industrial and medical applications

… but in field of industrial and medical applications, some others parameters have strong importance :

Compactness of the source as a whole : klystron + (oil tank) + HV modulator

Availability of passive components

Power consumption

Cost

HV modulatorOil tank

Focalisation

Power transmissionLinac

Klystron

Page 8: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems8

X band klystron

Single beam 4 MW Klystron

Electromagnet focusing

Page 9: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems9

9.3 GHz Klystron

RF source characteristics

Frequency (f) 9.3 GHz

Pulsed output power 4.0 MW

Average output power 4 kW

RF pulse duration 5 µs

Pulse repetition rate 200 Hz

Duty cycle 0.001

-1 dB bandwidth >30 MHz

Perveance (K) 1.0 µA / V1,5

Efficiency 49 %

Expected lifetime > 30 000 hours

Operating conditions

Cathode voltage (V) 152 kV

Cathode current (I) 60 A

X ray shielding integrated

Page 10: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems10

Interaction structure

Simulation of klystron operation : electron beam interaction with cavities’ RF fieldanimation period = 1 / (9.3 GHz)

RF in RF out

Axi

al e

lect

ron

velo

city

6 cavities including 1 harmonic Interaction length (cavity 1 to 6) = 270 mm Output cavity carefully shaped to reduce electric field below 60 MV/m (at the

expense of coupling factor…)

Page 11: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems11

Power transfer curve

Calculation result at nominal cathode voltage :(V=152 kV)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70

Input power (W)

Ou

tpu

t p

ow

er (

MW

)

152 kV nominal voltage

140 kV

130 kV

120 kV

• saturation gain = 51.5 dB• Output power = 4.3 MW• Efficiency = 49 %

Page 12: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems12

Bandwidth at saturation

Thales 9.3 GHz Klystron

46.5

47.0

47.5

48.0

48.5

49.0

49.5

50.0

50.5

51.0

51.5

52.0

9.26 9.27 9.28 9.29 9.30 9.31 9.32 9.33 9.34 9.35 9.36 9.37

Frequency (GHz)

Gai

n (

dB

)

Calculated bandwidth at –1 dB : 60 MHz (at nominal cathode voltage)

Wide instantaneous bandwidth compared to magnetron

Page 13: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems13

The challenges of X band for standard klystron

Calculation of window’s temperature

RF electric field in output cavity Directly limits the pulsed output power

Power loss in output window Directly limits the average output power

Page 14: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems14

Klystron & electromagnet interfaces

Output waveguide WR112 flange SF6 pressurization (3 bars)

Water coolingTotal flow ~ 26 L / min

ElectromagnetPower consumption ~ 4 kW

Electron gun power supply 152 kV / 60 A / 9.2 kW modulator Oil tank insulation Heater voltage 15 V , current 13 A

Input driver Input power = 30 W at saturation

Page 15: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems15

Footprint and weight

Klystron Height = 0,9 m Weight ~ 60 kg Output flange at 400 mm from axis

Electromagnet Outer diameter = 500 mm Weight ~ 350 kg

Page 16: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems16

Scaling of klystron length

L(gun) = 30 cm

L(interaction) = 27 cm

L(collector) = 30 cm

Electron gun

Drift tubes& cavities

Electron collector

Sub elementKlystron length = 87 cm + HV connector

Page 17: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems17

Scaling : electron gun

Gun ceramic length :

L(gun) V

Page 18: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems18

Scaling : interaction structure

Electron gun

Interaction structure length :

L(interaction) q

q : reduced plasma length

q V.K-0.5.f -1

Page 19: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems19

Scaling : collector

Collector length (empirical) :

L(interaction) K-0.5.(V.I)0.42

K dependence due to natural beam expansion

Page 20: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems20

Dimensioning parameters

System size scales more with power and voltage than with frequency

Focusing solenoid is a major contributor to weight, size and power consumption

HV modulatorOil tank

Focalisation

Power transmissionLinac

Klystron

Page 21: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems21

X band klystron

Alternative technologies

Dealing with : weight size high voltage

Page 22: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems22

PPM focusing technology

Single beam klystron with PPM focusing allows reduction of size, weight and power consumption

Magnetic field (red) and electron trajectories

Page 23: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems23

Multi Beam Klystron (MBK) technology

Perveance K = I / V1.5

Peak power P = V.I

A number of beams interacting together in cavities :

K(total) = Σ K(beam)

Lower voltage (goal : under 50 kV for operation in air)

Better efficiency

Wider bandwidth (less sensibility to cavity frequency)

For medical and industrial systems :

klystron length and modulator size reduced

oil tank suppressed

Page 24: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems24

TH1801 MBK

1.3 GHz, 116 kV, 10 MW 1.5 ms RF pulse @ 10 Hz 7 electron beam-structure

Current status : 7 serial tubes under operation at DESY. Stability at every voltage. Currently operating under saturation on FLASH machine. Full output power for conditionning and optimization of future photo-

injector of European XFEL.

7 beam electron gun

Page 25: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems25

9.3 GHz MBK

Choice of cavity and operating mode :

Example : coaxial cavityCourtesy of C. Lingwood, Lancaster U.

Fundamental mode :

TM n,1,0

TM 0,1,1

High order mode :

TM 0,10,0

Compatibility with spatial arrangement of beams

Good beam-field coupling (high R/Q)

Sufficient mode separation or damping possibilities to avoid mode competition

Manufacturing aspect

Page 26: Date du document X Band Workshop - Components & Subsystems Klystron development in X band Sébastien Berger sebastien.berger@thalesgroup.com R&D Thales.

X Band Workshop - Components & Subsystems26

Thales development team

Thales klystron & gyrotron development team :

Armel Beunas

Christophe Lievin

Rodolphe Marchesin

Jean-Christophe Bellemere

Sébastien Berger