Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming...

83
Data-model integration: Data-model integration: Examples from belowground Examples from belowground ecosystem ecology ecosystem ecology Kiona Ogle Kiona Ogle University of Wyoming University of Wyoming Departments of Botany & Statistics Departments of Botany & Statistics www.uwyo.edu/oglelab www.uwyo.edu/oglelab

Transcript of Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming...

Page 1: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Data-model integration:Data-model integration:Examples from Examples from

belowground ecosystem belowground ecosystem ecologyecology

Kiona OgleKiona OgleUniversity of WyomingUniversity of Wyoming

Departments of Botany & StatisticsDepartments of Botany & Statisticswww.uwyo.edu/oglelabwww.uwyo.edu/oglelab

Page 2: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Today’s TaskToday’s Task

• What are some ecological questions to which sensor network data could be applied?

• How would those data be used in models?

• Overview modeling of ecological data and processes.

Page 3: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .
Page 4: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Types of QuestionsTypes of Questions

• What are some ecological questions to which sensor network data could be applied?– Spatial & temporal processes

• Improved ecological understanding• More accurate prediction & forecasting

– Example problems• “Biogeochemical exchanges between the

atmosphere & biosphere”• How do environmental perturbations affect carbon

& water exchange?• Partitioning ecosystem processes & components• Linking processes & mechanisms operating at

multiple temporal & spatial scales

Page 5: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

How to Address Such Questions?How to Address Such Questions?

• Couple data and models– Sensor network data

• Very rich– Real-time; large datasets; spatially extensive and/or

temporally intensive

• Heterogeneous– Different locations, processes, and conditions

– Models & data analysis• Less appropriate:

– “Classical” analyses that assume linearity and normality of data

– Design-based inference about patterns

• More appropriate: – Coupling of process-based models with diverse and rich

datasets– Model-based inference about patterns and mechanisms

Page 6: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Why Couple Data & Process Why Couple Data & Process Models?Models?

– Parameter estimation (or “model parameterization”)

• Quantification of uncertainty• Improved predictions and forecasts• Decision support, management, conservation

– Synthesize multiple types of data• Relate different system components to each other• Learn about important mechanisms

– Hypothesis generation• Use data-informed models to generate testable hypotheses• Inform sampling and network design

– Data analysis• Go beyond simple “classical” analyses• Explicit integration of multiple data types, diverse scales,

and nonlinear and non-Gaussian processes

Page 7: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

How to Couple Data & Process How to Couple Data & Process Models?Models?

– Multiple approaches, for example:• Maximum likelihood-based models• Least squares, minimization of objective functions• Hierarchical Bayesian models

– Hierarchical Bayesian approach• Recall, from Jennifer’s talk …

( , , | )

( | , ) ( | ) ( , )

D P

D P D P

P Process Data

P Data Process P Process P

Observed data

Latent (or true) process Data parameters

Process parametersUnknown quantities

Posterior

Likelihood Probabilistic process modelPrior(s)

Page 8: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

OutlineOutline• The process model:

– Types of ecological models– Building process models

• Examples from belowground ecosystem ecology:– Motivating issues– Ex 1: Estimating components of soil organic matter

decomposition– Ex 2: Deconvolution of soil respiration (i.e., CO2 efflux)– In both examples, highlight:

• Data sources• Process models• Data-model integration

• Implications of data-model integration for sensor network data & applications

Page 9: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Hierarchical Bayesian ModelHierarchical Bayesian Model

( , , | )

( | , ) ( | ) ( , )D P

D P D P

P Process Data

P Data Process P Process P

Observed data

Latent (or true) process Data parameters

Process parametersUnknown quantities

Posterior

Likelihood Probabilistic process modelPrior(s)

( | , ) :DP Data ProcessData = Latent process + observation error

( | ) :PP ProcessLatent process = Expected process + process error

Data model (likelihood)

Probabilistic process model

The “process model”

Page 10: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Process ModelThe Process Model

• Conceptual model:– Systems diagrams– Graphical models

• Model formulation:– Explicit, mathematical eqn’s

• Systems equations• State-space equations

Conceptualmodel

Mathematicalmodel

Simulation model

Analyticaloutput

Numerical/simulation

output

The “process model”

Observedquantities

(data)

“Compare”

Unobservedor latent

quantities

“Predict”

Unobservedquantities

(parameters)

Outputs

Observedquantities

(driving variables)

Inputs

Page 11: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Types of Process ModelsTypes of Process Models

Deterministic Stochastic

Compartment models(differential or difference equn’s)

Matrix models

Reductionist models(include lots of details & components)

Holistic models(use general principles)

Static models Dynamic models

Distributed models(system depends on space & time)

Lumped models

Linear models Nonlinear models

Causal/mechanistic models Black box models

Analytical models Numerical/simulation models

Jorgensen (1986) Fundamentals of Ecological Modelling. 389 pp. Elsevier, Amsterdam.

Page 12: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Upcoming Example:Upcoming Example:Soil Carbon Cycle ModelSoil Carbon Cycle Model

Deterministic Stochastic

Compartment models(differential or difference equn’s)

Matrix models

Reductionist models(include lots of details & components)

Holistic models(use general principles)

Static models Dynamic models

Distributed models(system depends on space & time)

Lumped models

Linear models Nonlinear models

Causal/mechanistic models Black box models

Analytical models Numerical/simulation models

Page 13: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Source: Xu et al. (2006) Global Biogeochemical Cycles Vol. 20 GB2007.

Example Process ModelExample Process Model

Simplifiedsystems diagramof the soilcarbon cycle ina temperateforest

Pools or state variables

Flows of carbon

Page 14: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Source: Xu et al. (2006) Global Biogeochemical Cycles Vol. 20 GB2007.

Model FormulationModel Formulation

( ) ( ) ( )d

t t u tdt

X AX B A: matrix of flux rates or

“carbon transfer coefficients” (parameters)

u(t): flux of carbon into the system(e.g., photosynthetic flux) (driving variable or modeled quantity)

B: vector of ‘allocation fractions’ (parameters)

X: vector of state variables (unobservable latent quantities, outputs)

Page 15: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Source: Xu et al. (2006) Global Biogeochemical Cycles Vol. 20 GB2007.

Model FormulationModel Formulation

( ) ( ) ( )d

t t u tdt

X AX B

( )

( )

( )

( )

( )

X

X

AX

B

t

dt

Expected dttprocess

u t

u t

Observable(data)

Page 16: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

How to Couple Data & Process How to Couple Data & Process Models?Models?

– Hierarchical Bayesian approach

( , , | )

( | , ) ( | ) ( , )

D P

D P D P

P Process Data

P Data Process P Process P

Observed data

Latent (or true) process Data parameters

Process parametersUnknown quantities

Posterior

Likelihood Probabilistic process modelPrior(s)

( | , ) :DP Data ProcessData = Latent process + observation error

( | ) :PP ProcessLatent process = Expected process + process error

Data model (likelihood)

Probabilistic process model

Page 17: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

OutlineOutline• The process model:

– Types of ecological models– Building process models

• Examples from belowground ecosystem ecology:– Motivating issues– Ex 1: Estimating components of soil organic matter

decomposition– Ex 2: Deconvolution of soil respiration (i.e., CO2 efflux)– In both examples, highlight:

• Data sources• Process models• Data-model integration

• Implications of data-model integration for sensor network data & applications

Page 18: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Ecosystem ProcessesEcosystem Processes

Emphasis on aboveground

What about belowground?

Page 19: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

NN

HH2200

HH2200

HH2200

CCCC

NN

PP

Biogeochemical CyclesBiogeochemical Cycles

Page 20: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

NN

HH2200

HH2200

HH2200

CCCC

NN

PP

Biogeochemical CyclesBiogeochemical Cycles

Belowground system is critical

Tightly linked to aboveground system

Page 21: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

BelowgroundBelowground• Little info• Difficult to measure• Aboveground measurements (helpful but limited)

Aboveground Aboveground • Lots of info• Easy to measure

Outstanding issuesOutstanding issues• Partitioning above- & belowground• Quantifying & partitioning belowground• Implications for ecosystem function• Examples: arid & semiarid systems

Figure from Kieft et al. (1998) Ecology 79:671-683

Belowground “Issues”Belowground “Issues”

Page 22: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Motivating Questions: Soil Carbon Cycle Motivating Questions: Soil Carbon Cycle

• From where in the soil is CO2 coming from?

• What are the relative contributions of autotrophs vs. heterotrophs?

• What factors control decomposition rates & heterotrophic activity?

• How does pulseprecipitationaffect sourcesof respiredCO2?

• Implications ofclimate changefor desert soilcarbon cycling?

Page 23: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Integrative ApproachIntegrative Approach

• Diverse data sources– Experimental & observational– Lab & field studies– Multiple scales– Varying “amounts” & “completeness”

• Process-based models– Key mechanisms, processes, components– Balance detail & simplicity– Multiple scales & interactions

• Statistical models: data-model integration– Hierarchical Bayesian framework– Mark chain Monte Carlo

Page 24: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Examples Presented TodayExamples Presented Today

Deterministic Stochastic

Compartment models(differential or difference equn’s)

Matrix models

Reductionist models(include lots of details & components)

Holistic models(use general principles)

Static models Dynamic models(implicit dependence on time)

Distributed models(implicit dependence on space & time)

Lumped models

Linear models Nonlinear models

Causal/mechanistic models Black box models

Analytical models Numerical/simulation models

Page 25: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Objectives:Objectives: 1.1. Identify soil & microbial processes affecting Identify soil & microbial processes affecting

decompositiondecomposition

2.2. Learn how vegetation (i.e., microsite) controls these Learn how vegetation (i.e., microsite) controls these processesprocesses

Ex 1: Soil organic matter Ex 1: Soil organic matter decompositiondecomposition

Page 26: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Experimental DesignExperimental Design

Mesquite shrublandin southern Arizona

Microsite types:1. bare ground2. grass3. small mesquite4. big mesquite

Bare ground Grass Small mesquite Big mesquite

3 cores (reps)

Page 27: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

...

8 depths (layers)

...

Add water

Add sugar + water

Incubate at 25 oC

CO2

CO2

CO2 Measure CO2 efflux(soil respiration rate)at 24 & 48 hours

Experimental DesignExperimental Design

Page 28: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

...

8 depths (layers)

...

Add water

Add sugar + water

Incubate at 25 oC

CO2

CO2

CO2 Measure CO2 efflux(soil respiration rate)at 24 & 48 hours

Measure:Microbial biomassSoil organic carbonSoil nitrogen

Experimental DesignExperimental Design

Page 29: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

• Full-factorial design:

• Microsite• 4 levels: bare, grass, small mesq, big mesq

• Soil layer• 8 levels: 0-2, 2-5, ..., 40-50 cm

• Substrate addition type• 2 levels: water only, sugar + water

• Incubation time• 2 levels: 24, 48 hrs

• Soil core or rep• 3 cores per microsite

• Stochastic data:

• Soil respiration rate• N = 359 (25 missing)

• Microbial biomass• N = 18 (14 missing)

• Soil organic carbon• N = 89 (7 missing)

Design & Data OverviewDesign & Data Overview

Page 30: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Some DataSome Data

Page 31: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Soil d

ep

th

microbesmicrobes soil Csoil C COCO22 flux flux

?? ?? datadata

Estimate microbial respiration (decomposition) parameters (i.e.,

process parameters)

Carbon substrate Micro

bial

biom

assR

esp

irati

on

Analysis ObjectivesAnalysis Objectives

biomass&

activity

Page 32: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Estimate microbial respiration (decomposition) parameters (i.e.,

process parameters)

Carbon substrate Micro

bial

biom

assR

esp

irati

on

Microbial biomass (B)

Resp

irati

on (

R)

Saturating carbon (C)

Low C

Michaelis-Menton type model:

Assume Ac related to “substrate quality”:

Ab

Ac

0 1max 0,

Ab B Ac CR

Ab B Ac CAc c c N

0 1max 0,Ac c c N

microbial “base-line” metabolic rate

microbial carbon-use efficiency

Process Model: Soil RespirationProcess Model: Soil Respiration

Page 33: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

• Full-factorial design:

• Microsite• Soil layer• Substrate addition type• Incubation time• Soil core or rep

• Stochastic data:

• Soil respiration rate• Microbial biomass• Soil organic carbon

Soi

l dep

th

microbesmicrobes soil Csoil C COCO22

?? ?? datadata

NN

fixedfixed

B C R N

• Things to consider:

• Multiple data types• Nonlinear model• Missing data• Experimental design

0 1max 0,

Ab B Ac CR

Ab B Ac CAc c c N

Data-Model IntegrationData-Model Integration

somedata

somedata

Page 34: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

1. Let LR = log(R)

2. For microsite m, soil depth d, soil core r, substrate-addition type s, and time period t:

Observed rate Mean (“truth”)(latent process)

Observationprecision

(= 1/variance)

Data Model (Likelihood)Data Model (Likelihood)

Page 35: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

1. Now, for the covariates...

2. For microsite m, soil depth d, and soil core r:

3. Note: the likelihoods are for both the observed and missing data

Observed Mean (“truth”)(latent process)

Observation precision(= 1/variance)

{ , , } { , }

{ , , } { , }

~ ,

~ ,

md r C md C

md r B md B

C Normal

B Normal

Data Model (Likelihood)Data Model (Likelihood)

Page 36: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Likelihood components

Data parameters

Latent processes

{ , , , , } { , , , }

{ , , } { , }

{ , , } { , }

~ ,

~ ,

~ ,

md r s t LR md r s LR

md r C md C

md r B md B

LR Normal

C Normal

B Normal

, ,D LR C B

{ , , , } { , } { , }, ,LR md r s C md B mdLatent processes

Data Model (Likelihood)Data Model (Likelihood)

Page 37: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Latent processes

Deterministic model for soil microbes & carbon contents

{ , , , } { , } { , }, ,LR md r s C md B mdLatent processes

*{ , } { , } { }

*{ , } { , } { }

C md md m

B md md m

c C

b B

Stochastic model for latent respiration

{ , , , } { , , }~ . ,LRLR md r s LR md sNormal

Probabilistic Process ModelProbabilistic Process Model

Page 38: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Specify expected process: Michaelis-Menten (process) model

{ , , , } { , , }~ . ,LRLR md r s LR md sNormal

{ , } { , } { , }

{ , } { , } { , }{ , , }

{ , }

water only.

sugar + water

B md md C md

B md md C mdLR md s

B md

Ab Acif s

Ab Ac

Ab if s

{ , } 0 1 { , }max 0,md mdAc c c N

Stochastic model for latent respiration

Microbial biomass (B)

Res

pir

atio

n (R

)

Saturating carbon (C)

Low C

Probabilistic Process ModelProbabilistic Process Model

Page 39: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Process components

Process parameters

* *{ , } { , } { } { } 0 1, , , , , , ,

LRP md md m mc b C B Abc c

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

{ , , , } { , , }

{ , } { , } { , }

{ , } { , } { , }{ , , }

{ , }

{ , } 0 1 { , }

*{ , } { , } { }

*{ , } { , } { }

~ . ,

.

max 0,

LRLR md r s LR md s

B md md C md

B md md C mdLR md s

M md

md md

C md md m

B md md m

Normal

Ab Acwater

Ab Ac

Ab sugar

Ac c c N

c C

b B

Probabilistic Process ModelProbabilistic Process Model

Page 40: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Data parameters

Process parameters

* *{ , } { , } { } { } 0 1, , , , , , ,

LRP md md m mc b C B Abc c

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

, ,D LR C B

Conjugate, relatively non-informative priors for precision terms

, , , ~ 0.01,0.001LRLR C B Gamma

Parameter Model (Priors)Parameter Model (Priors)

Page 41: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Data parameters

Process parameters

* *{ , } { , } { } { } 0 1, , , , , , ,

LRP md md m mc b C B Abc c

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

, ,D LR C B

Non-informative Dirichlet priors for relative distributions of microbes and carbon

{ ,.} { ,.}, ~ 1,1,1,...,1m mc b Dirichlet

Multivariate version of the beta distribution(with all parameters set to 1: multidimensional uniform)

Parameter Model (Priors)Parameter Model (Priors)

Page 42: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Data parameters

Process parameters

* *{ , } { , } { } { } 0 1, , , , , , ,

LRP md md m mc b C B Abc c

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

, ,D LR C B

Relatively non-informative (diffuse) normal priors for the rest:

* *0 1 { } { }, ,ln ,ln ,ln ~ 0,0.0001m mc c C B Ab Normal

Parameter Model (Priors)Parameter Model (Priors)

Page 43: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

4 8 3 2 2 2

{ , , , , } { , , , }1 1 1 1 1

4 8 3 2 2

{ , , } { , } { , , } { , }1 1 1

exp2 2

exp exp2 2 2 2

ex2

( | , )

LR

LR LRmd r s t LR md r s

m d r s t

C C B Bmd r C md md r B md

m d r

D

LR

C B

P Data Process

0.0010.00

4 8 3 2 2

{ , , , } { , , }1 1 1

10.99 0.001 0.99 0.99 0.001 0.99

20 1

1

e e e e

0.0001 0.0001 0.

p

0001 0.0001exp 0 exp

.

02 2 2 2

2

CLR B LR

LR

LR

LR md r s LR md sm

C B

d r s

LR

c c

2

2

4 2 2* *{ } { }

1

0.0001 0.0001exp 0

2 2

0.0001 0.0001 0.0001 0.0001exp 0 exp 0

2 2 2 2m mm

Ab

B C

The PosteriorThe Posterior

Page 44: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

4 8 3 2 2 2

{ , , , , } { , , , }1 1 1 1 1

4 8 3 2 2

{ , , } { , } { , , } { , }1 1 1

exp2 2

exp exp2 2 2 2

ex2

( | , )

LR

LR LRmd r s t LR md r s

m d r s t

C C B Bmd r C md md r B md

m d r

D

LR

C B

P Data Process

0.0010.00

4 8 3 2 2

{ , , , } { , , }1 1 1

10.99 0.001 0.99 0.99 0.001 0.99

20 1

1

e e e e

0.0001 0.0001 0.

p

0001 0.0001exp 0 exp

.

02 2 2 2

2

CLR B LR

LR

LR

LR md r s LR md sm

C B

d r s

LR

c c

2

2

4 2 2* *{ } { }

1

0.0001 0.0001exp 0

2 2

0.0001 0.0001 0.0001 0.0001exp 0 exp 0

2 2 2 2m mm

Ab

B C

No analytical solution for the joint posterior distribution

No analytical solution for most of the marginal distributions

Approximate the posterior: Markov chain Monte Carlo methods,implemented in WinBUGS

The PosteriorThe Posterior

Page 45: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Model Implementation: Model Implementation: WinBUGSWinBUGS

Page 46: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Model Goodness-of-fitModel Goodness-of-fit

Page 47: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

[1,1]

[1,2]

[1,3]

[1,4]

box plot: parms.m[1,]

1.00E+3

2.00E+3

3.00E+3

4.00E+3

5.00E+3

[2,1]

[2,2][2,3]

[2,4]

box plot: parms.m[2,]

0.0

5.0

10.0

C* (total soil carbon, g C/m2) B* (microbial biomass, g dw/m2)

Bare Bigmesq.

Med.Mesq.

Grass Bare Bigmesq.

Med.Mesq.

Grass

Example ResultsExample Results

Page 48: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Example ResultsExample Results

[5,1,1][5,1,2]

[5,1,3]

[5,1,4]

[5,1,5]

[5,1,6]

[5,1,7] [5,1,8]

box plot: parms.md[5,1,]

0.0

0.05

0.1

0.15

0.2

[5,2,1]

[5,2,2]

[5,2,3]

[5,2,4]

[5,2,5]

[5,2,6][5,2,7]

[5,2,8]

box plot: parms.md[5,2,]

0.0

0.05

0.1

0.15

0.2

Bare ground Big mesquite

Soil depth (or layer)

Surface Deep Surface Deep

Rela

tive a

mou

nt

of

mic

rob

ial b

iom

ass

Page 49: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Sensitivity to Data SourcesSensitivity to Data Sources

Page 50: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

• From where in the soil is CO2 coming from?

• What are the relative contributions of autotrophs vs. heterotrophs?

• What factors control decomposition rates & heterotrophic activity?

• How does pulseprecipitationaffect sourcesof respiredCO2?

• Multiple datasources

• lots• limited

Ex 2: Deconvolution of Soil Ex 2: Deconvolution of Soil RespirationRespiration

data

datadata

data

datadata

data

data

Page 51: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Field SitesThe Field Sites

Sonoran Desert

San Pedro River Basin

Santa Rita Experimental Range

Page 52: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Stable Isotope TracersStable Isotope Tracers

CO2

CO2

1212CC

1212CC

1212CC1313CC

Source isotope

signatures

Respired CO2

signature

Important data source:facilitates “partitioning”

Page 53: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

stochastic data Literature data

Data Source ExamplesData Source Examples

Datasets: field/lab pubs

Soil Isotopes (δ13CTot)(automated chambers

& Keeling plots)

Soil CO2 flux(manual chambers)

Pool Isotopes (δ13Ci)(roots, soil, litter;

Keeling plots)

Soil CO2 flux(automated chambers)

Root respiration(in situ gas exchange)

Root distributions(arid systems,

different functionaltypes)

Soil carbon(arid systems;

total C)Root respiration

(arid systems,different functional

types)

Microbial mass(arid systems;

total mass)

Root mass(arid systems;

total mass)

Litter(arid systems; total mass,

carbon, microbes)

Soil temp & water(automated,

multiple locations,many depths)

covariate data

Soil samples(carbon content,C:N, root mass)

Soil incubations(root-free,

carbon substrate,microbial mass,

heterotrophic activity)

Potential sensor network data

Page 54: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Example DataExample Data

Day-1 0 2 6 14

Resp

iratio

n (

mol /

m2 /

s)

0

1

2

3

4

5

6Pre-monsoon Dry MonsoonWet Monsoon

Santa Rita pulse experiment

Res

pira

tion

(m

ol /

m2

/ s)

San Pedro automated flux measurements

San Pedro incubation experiment

-27

-25

-23

-21

-19

-17

-15

-13

-2 0 2 4 6 8 10 12 14 16

Day

d13C

of

resp

ired

CO

2 (

o/ o

o)

Santa Rita pulse experiment – d13C

Page 55: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Hierarchical Bayesian Model:Hierarchical Bayesian Model:Deconvolution ApproachDeconvolution Approach

• Integrate multiple sources of Integrate multiple sources of informationinformation

• Diverse data sources

• Different temporal & spatial scales

• Literature information

• Lab & field studies

• Detailed flux modelsDetailed flux models• Respiration rates by source type & soil depth

• Dynamic models

• Mechanistic isotope mixing modelsMechanistic isotope mixing models• Multiple sources

Page 56: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

stochastic data Literature data

Data Source ExamplesData Source Examples

( | ) ( | ) ( )j j jP Data L Data P

Soil Isotopes (δ13CTot)(automated chambers

& Keeling plots)

Soil CO2 flux(manual chambers)

Pool Isotopes (δ13Ci)(roots, soil, litter;

Keeling plots)

Soil CO2 flux(automated chambers)

Root respiration(in situ gas exchange)

Root distributions(arid systems,

different functionaltypes)

Soil carbon(arid systems;

total C)Root respiration

(arid systems,different functional

types)

Microbial mass(arid systems;

total mass)

Root mass(arid systems;

total mass)

Litter(arid systems; total mass,

carbon, microbes)

Soil temp & water(automated,

multiple locations,many depths)

covariate data

Soil samples(carbon content,C:N, root mass)

Soil incubations(root-free,

carbon substrate,microbial mass,

heterotrophic activity)

Page 57: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Bayesian DeconvolutionBayesian Deconvolution

d 13 ( ), ( ), ( , ), ( , ), ( , )Obs ObsTot Tot iData C t R t SWC z t T z t M z t

The Hierarchical Bayesian ModelThe Hierarchical Bayesian Model

Likelihood of data

(isotopes & soil flux)

d d

113 2

2

3 ( )

( )

( )~ ,

( )~ ,

ObsTot CTot

ObsTo Tot t R

C t No

R t N

C

R to

t

Latent processes: from isotope mixing model &

flux models

Functions of parameters

Some Likelihood ComponentsSome Likelihood Components

Define process models…

Observations(data)

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Page 58: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Deconvolution ProblemThe Deconvolution Problem

Isotope mixing model(multiple sources &

depths)

Relative contributions

(by source & depth)

Total flux(at soil

surface)

Flux model(source- & depth-

specific)

Mass profiles(substrate, microbes,

roots)

(Q10 Function, Energy of Activation)

( , )

( , )( )

ii

Tot

r z tp z t

R t

1 0

( ) ( , )source BN

Tot ii

R t r z t dz

/ /( , )i known measured estimatedM z t

????

d d

13 13

1 0

( ) ( , ) ( , )source BN

Tot i ii

C t C z t p z t dz

( , ) , ( , ), ( , ), ( , )i i ir z t f SWC z t T z t M z t

Contributions by source (i ) and depth (z )? Temporal variability?

Source-specific respiration? Spatial & temporal variability?????

????

Theory & Process ModelsTheory & Process Models

From previous “incubation/decomposition” study (Ex 1)

Page 59: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

What is i?(source-specific

parameters)

The Deconvolution ProblemThe Deconvolution ProblemObjectivesObjectives

Flux model(source- & depth-

specific)

( , ) , ( , ), ( , ), ( , )i i ir z t f SWC z t T z t M z tCovariate data

( , )

( , ) ( )

( ) ( , )

i i

i Tot

Tot i

r z t

r z t R t

R t p z t

Total soil flux

Contributions

How to estimate How to estimate ii??

Component fluxes

Page 60: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Bayesian DeconvolutionBayesian DeconvolutionThe Parameter Model (Priors)The Parameter Model (Priors)

Example: Example: Lloyd & Taylor (1994) model

( , ) , ( , ), ( , ), ( , )

1 1( , ) ( , ) exp

( , )

i i i

i i oo o

r z t f SWC z t T z t M z t

r z t r z t ET T z t T

Informative priors for EEoo and TToo:

304 308 312 316 215 220 225 230 235 240

~ 308.56,2Eo No ~ 227.13,10To No

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Page 61: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

ImplementationImplementation

• Markov chain Monte Carlo (MCMC)Markov chain Monte Carlo (MCMC)• Sample parameters (θi ) from posterior

• Posteriors for: θi’s, ri(z,t)’s, pi(z,t)’s, etc.

• Means, medians, uncertainty

• WinBUGSWinBUGS

Page 62: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Soil Temperature

Day of Year

190 200 210 220 230 240 250 260 270

Soi

l T (

oC

)

15

20

25

30

Soil Moisture

VW

C (

v/v)

0.04

0.08

0.12

Proportional Contribution of Respiration SourcesP

ropo

rtio

nal C

ontr

ibut

ion

0.000

0.005

0.010

0.015

0.020

0.025Heterotrophs (0-5 cm)Grass Roots (5-50 cm)Mesquite Roots (5-50 cm)

Results: Dynamic Source ContributionsResults: Dynamic Source ContributionsSan Pedro Site – Monsoon SeasonSan Pedro Site – Monsoon Season

Zoom-inZoom-in

Page 63: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Results: Root Respiration ResponsesResults: Root Respiration ResponsesZoom-in: July 27 – August 4Zoom-in: July 27 – August 4

05

1015202530

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

0.0

1.0

2.0

3.0

4.0

5.0

209 210 211 212 213 214 215 216 217

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Date

Tota

l ro

ot

resp

irati

on

(um

ol m

-2 s

-1)

Soil w

ate

r (v/v

)

Rain

(m

m)

Mesquite (C3 shrub)

Sacaton (C4 grass)

Soil water

Jul 27 Aug 4

Page 64: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Results: Contributions Vary by DepthResults: Contributions Vary by Depth

0.0

1.0

2.0

3.0

4.0

5.0

209 210 211 212 213 214 215 216 217

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Date

Tota

l ro

ot

resp

irati

on

(um

ol m

-2 s

-1)

Soil w

ate

r (v/v

)

0.00 0.10 0.20 0.00 0.10 0.20 0.00 0.10 0.20

Day 210 Day 213 Day 216

0-5

5-10

10-15

15-20

20-25

25-30

30-40

40-50

Dep

th (

cm)

0-5

5-10

10-15

15-20

20-25

25-30

30-40

40-50

0-5

5-10

10-15

15-20

20-25

25-30

30-40

40-50

Relative contributions by depth

Mesquite (C3 shrub)

Sacaton (C4 grass)

Soil water

Page 65: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

SummarySummary

• Sources of soil COSources of soil CO22 efflux efflux• Mesquite (shrub): major contributor, stable source

• Sacton (grass): minor contributor, threshold response

• Microbes (bare): minor contributor, coupled to pulses

• Deconvolution & data-model Deconvolution & data-model integrationintegration

• Soil depth (including litter)

• By species or functional groups

• Quantify spatial & temporal variability

• Incorporate environmental drivers

• Implications & applicationsImplications & applications• Identify mechanisms

• Predictions & forward modeling

Page 66: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

OutlineOutline• The process model:

– Types of ecological models– Building process models

• Examples from belowground ecosystem ecology:– Motivating issues– Ex 1: Estimating components of soil organic matter

decomposition– Ex 2: Deconvolution of soil respiration (i.e., CO2 efflux)– In both examples, highlight:

• Data sources• Process models• Data-model integration

• Implications of data-model integration for sensor network data & applications

Page 67: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Implications for Sensor Implications for Sensor NetworksNetworks– Parameter estimation (or “model

parameterization”)•Process models related to “biogeochemical exchanges between the atmosphere & biosphere”

•Quantification of uncertainty•Improved predictions and forecasts

– Synthesize data•Go beyond simple “classical” analyses•Explicit integration of multiple data types & scales•Relate different system components to each other•Learn about important mechanisms

– Hypothesis generation & sampling design•Use data-informed models to generate testable hypotheses

•Inform sampling and network design– Where (spatial), when (temporal), what

(components)?

Page 68: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Photo by Travis HuxmanPhoto by Travis HuxmanMonsoon flood, San Pedro River Basin; Sonoran desertMonsoon flood, San Pedro River Basin; Sonoran desert

Questions?Questions?

Page 69: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .
Page 70: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .
Page 71: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Soil Temperature

Day of Year

190 200 210 220 230 240 250 260 270

Soi

l T (

oC

)

15

20

25

30

Soil Moisture

VW

C (

v/v)

0.04

0.08

0.12

Proportional Contribution of Respiration Sources

Pro

port

iona

l Con

trib

utio

n

0.000

0.005

0.010

0.015

0.020

0.025Heterotrophs (0-5 cm)Grass Roots (5-50 cm)Mesquite Roots (5-50 cm)

Results: Dynamic Source ContributionsResults: Dynamic Source Contributions

Page 72: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Example WinBUGS OutputExample WinBUGS Outputparms[1] chains 1:2

iteration

1 2000 4000 6000

300.0

305.0

310.0

315.0

EO

parms[2] chains 1:2

iteration

1 2000 4000 6000

190.0

200.0

210.0

220.0

230.0

TO

Posteriorstatisticsparameter node mean sd 2.5% median 97.5% sampleEo parms[1] 307.7 1.205 305.2 307.7 309.9 1000To parms[2] 201.1 2.335 195.8 201.0 205.1 1000

....contribution pSc[1,1,1] 0.00145 0.002904 -0.03455 6.34E-4 0.03565 1000by pSc[1,1,2] 0.8854 0.009694 0.8433 0.8853 0.9288 1000[date, pSc[1,1,3] 0.1132 0.009998 0.06992 0.1131 0.1558 1000plot, pSc[1,2,1] 0.00158 0.003157 -0.03353 6.685E-4 0.03607 1000source] pSc[1,2,2] 0.9721 0.008952 0.9297 0.9725 1.013 1000

pSc[1,2,3] 0.02636 0.008649 -0.01523 0.02622 0.0654 1000....

Page 73: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Inverse ProblemThe Inverse ProblemPlant water uptake Soil respiration

Isotope mixing model

Fractional contributions

Total flux

Fluxmodel

Substrate orroot profiles

( , )

( , )( )Tot

U z tq z t

U t

1 1 2 2( ) ( , ) (1 ) ( , )RA z Ga Ga

0

( ) ( , )B

TotU t U z t dz

(Q10 Function, Energy of Activation)

( , ) ( , )( , )

( )i i

iTot

r z t M z tp z t

R t

1 0

( ) ( , ) ( , )source BN

Tot i ii

R t r z t M z t dz

/ ?( , )i known measuredM z t

????

????

d d

d d

0

18 18

0

( ) ( ) ( , )

( ) ( ) ( , )

B

stem

B

stem

D t D z q z t dz

O t O z q z t dz

d d

13 13

1 0

( ) ( , )source BN

Tot i ii

C t C p z t dz

( , ) ( ) ln ( )

( , ) ( , ) ( ) ( )root root

U z t RA z a RA z

z t k z t t k t

( , ) , ( , ), ( , )i ir z t f SWC z t T z t

Page 74: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Inverse ProblemThe Inverse Problem

Isotope mixing model(multiple sources &

depths)

Relative contributions

(by source & depth)

Total flux(at soil

surface)

Flux model(source- & depth-

specific)

Mass profiles(substrate, microbes,

roots)

(Q10 Function, Energy of Activation)

( , ) ( , )( , )

( )i i

iTot

r z t M z tp z t

R t

1 0

( ) ( , ) ( , )source BN

Tot i ii

R t r z t M z t dz

/ ?( , )i known measuredM z t

????

d d

13 13

1 0

( ) ( , ) ( , )source BN

Tot i ii

C t C z t p z t dz

( , ) , ( , ), ( , )i ir z t f SWC z t T z t

Contributions by source (i ) and depth (z )? Temporal variability?

????Source-specific respiration? Spatial & temporal variability?

Page 75: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

What is i?(source-specific

parameters)

Likelihood of data

(isotopes & soil flux)

d d

113 2

2

3 ( )

( )

( )~ ,

( )~ ,

ObsTot CTot

ObsTo Tot t R

C t No

R t N

C

R to

t

From isotope mixing model & flux models

The Deconvolution ProblemThe Deconvolution ProblemData-Model IntegrationData-Model Integration

Flux model(source- & depth-

specific)

( , ) , ( , ), ( , ), ( , )i i ir z t f SWC z t T z t M z tCovariate data

( , ) ( )

( ) ( , )i Tot

Tot i

r z t R t

R t p z t

Total soil flux

Contributions

Depend on

i

Page 76: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

stochastic data Literature data

Data Source ExamplesData Source Examples

( | ) ( | ) ( )j j jP Data P Data P

Soil Isotopes (δ13CTot)(automated chambers

& Keeling plots)

Soil CO2 flux(manual chambers)

Pool Isotopes (δ13Ci)(roots, soil, litter;

Keeling plots)

Soil CO2 flux(automated chambers)

Root respiration(in situ gas exchange)

Root distributions(arid systems,

different functionaltypes)

Soil carbon(arid systems;

total C)Root respiration

(arid systems,different functional

types)

Microbial mass(arid systems;

total mass)

Root mass(arid systems;

total mass)

Litter(arid systems; total mass,

carbon, microbes)

Soil temp & water(automated,

multiple locations,many depths)

covariate data

Soil samples(carbon content,C:N, root mass)

Soil incubations(root-free,

carbon substrate,microbial mass,

heterotrophic activity)

Page 77: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Deconvolution ProblemThe Deconvolution ProblemPlant water uptake Soil respiration

Isotope mixing model

Fractional contributions

Total flux

Fluxmodel

Substrate orroot profiles

( , )

( , )( )Tot

U z tq z t

U t

1 1 2 2( ) ( , ) (1 ) ( , )RA z Ga Ga

0

( ) ( , )B

TotU t U z t dz

(Q10 Function, Energy of Activation)

( , ) ( , )( , )

( )i i

iTot

r z t M z tp z t

R t

1 0

( ) ( , ) ( , )source BN

Tot i ii

R t r z t M z t dz

/ ?( , )i known measuredM z t

????

????

d d

d d

0

18 18

0

( ) ( ) ( , )

( ) ( ) ( , )

B

stem

B

stem

D t D z q z t dz

O t O z q z t dz

d d

13 13

1 0

( ) ( , )source BN

Tot i ii

C t C p z t dz

( , ) ( ) ln ( )

( , ) ( , ) ( ) ( )root root

U z t RA z a RA z

z t k z t t k t

( , ) , ( , ), ( , )i ir z t f SWC z t T z t

Page 78: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Plant water uptake Soil respiration

1 1 2 2( ) ( , ) (1 ) ( , )

( , )

( , )

RA z Ga Ga

U z t

q z t

( , ) , ( , ), ( , )

( )

( , )

i i

Tot

i

r z t f SWC z t T z t

R t

p z t

What areω, 1, 1, 2, 2?

What isi?

Likelihood of data

d d

113 2

2

3 ( )

( )

( )~ ,

( )~ ,

ObsTot CTot

ObsTo Tot t R

C t No

R t N

C

R to

t

d

d

d

d

2

18 8 21

( )( )~ ,

( ))~ ,(

Obsstem D

Obsste

stem

stemm O

D t

O t

D t No

O t No

From isotope mixing model & flux model

The Deconvolution ProblemThe Deconvolution Problem

Page 79: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Types of data provides by sensor networks

• high-frequency tunable diode laser (TDL) measurement of the stable isotope

• eddy covariance for measuring concentrations and fluxes of gases (e.g., water vapor and CO2)

• soil environmental data: temperature, water content, water potential, etc.

• micro-met data: air temp, RH, vpd, light, wind speed, etc.

• plant ecophys/ecosystem data: sapflux, ET, albedo & reflectance

Page 80: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

6 6

1 1

i ii i

i i i i

i ii i

i i

a cdPA R S E

dt c

dS a Ed S

dt c

d

d

Process modelsProcess models

State ID TABLENM "PLT_CN" PHYSCLCD "STATECD" "CYCLE""SUBCYCLE""UNITCD""COUNTYCD" "PLOT" "SUBP" "TREE" "CONDID"VA 229 TREE 23854928010661.00 21 51 3 2 1 1 13 2 1 1VA 407 TREE 23958646010661.00 21 51 3 4 1 1 19 1 5 1VA 408 TREE 23958646010661.00 21 51 3 4 1 1 19 1 6 1VA 1059 TREE 23958861010661.00 21 51 3 4 1 1 54 2 6 2VA 6768 TREE 23997965010661.00 22 51 3 5 2 7 9 2 4 1VA 7019 TREE 23906005010661.00 22 51 3 3 2 7 15 2 9 1VA 7111 TREE 23857072010661.00 22 51 3 2 2 7 16 2 7 1VA 8105 TREE 23805545010661.00 22 51 3 1 2 7 39 2 1 1VA 8539 TREE 23906968010661.00 22 51 3 3 3 9 9 1 3 1VA 12808 TREE 23807296010661.00 23 51 3 1 4 15 29 3 8 1VA 12810 TREE 23807296010661.00 23 51 3 1 4 15 29 3 10 1VA 13315 TREE 23858135010661.00 22 51 3 2 4 15 54 1 1 1VA 19399 TREE 23809332010661.00 22 51 3 1 2 19 23 3 4 1VA 19445 TREE 23909859010661.00 22 51 3 3 2 19 26 1 8 1VA 22050 TREE 23861227010661.00 23 51 3 2 5 21 8 2 5 1VA 22053 TREE 23861227010661.00 23 51 3 2 5 21 8 2 2 1VA 22060 TREE 23861227010661.00 23 51 3 2 5 21 8 1 4 1VA 22137 TREE 23910676010661.00 23 51 3 3 5 21 12 2 6 1VA 23519 TREE 23910590010661.00 23 51 3 3 5 21 39 2 5 1VA 26415 TREE 23911957010661.00 22 51 3 3 1 25 1 2 8 2VA 26783 TREE 23863007010661.00 21 51 3 2 1 25 7 2 3 1VA 28623 TREE 23862849010661.00 22 51 3 2 1 25 41 2 17 1VA 29299 TREE 24002221010661.00 24 51 3 5 1 25 54 3 6 1VA 29320 TREE 24002221010661.00 24 51 3 5 1 25 54 4 14 1VA 30129 TREE 23862787010661.00 22 51 3 2 1 25 69 3 6 1VA 30139 TREE 23862787010661.00 22 51 3 2 1 25 69 3 11 1VA 32119 TREE 23913201010661.00 23 51 3 3 5 27 42 3 2 1VA 34017 TREE 23813210010661.00 22 51 3 1 2 29 23 4 9 1VA 34329 TREE 23913514010661.00 22 51 3 3 2 29 29 1 4 1VA 34716 TREE 23914198010661.00 22 51 3 3 2 29 35 1 20 1VA 35041 TREE 24003030010661.00 22 51 3 5 2 29 41 3 2 1VA 36375 TREE 23813999010661.00 22 51 3 1 2 29 68 2 5 1VA 36410 TREE 23813999010661.00 22 51 3 1 2 29 68 3 7 1VA 36411 TREE 23813999010661.00 22 51 3 1 2 29 68 3 8 1

DataData

P

(|

X )

Statistical toolsStatistical toolsdata-model integrationdata-model integration

( | )

( | ) ( )( | ) ( )

P X

P X PP X P d

Key componentsKey components

Page 81: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

The Process ModelThe Process Model

• Conceptual models:– Systems diagrams– Graphical models

• Model formulation:– Explicit, mathematical eqn’s

• Systems equations• State-space equations

“Compare”Observations

of real systemConceptual

modelMathematical

model

Simulation model

Analyticaloutput

Numerical/simulation

output

Observationaldata

Page 82: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

Examples Presented TodayExamples Presented Today

Deterministic Stochastic

Compartment models(differential or difference equn’s)

Matrix models

Reductionist models(include lots of details & components)

Holistic models(use general principles)

Static models Dynamic models(implicit dependence on time)

Distributed models(implicit dependence on space & time)

Lumped models

Linear models Nonlinear models

Causal/mechanistic models Black box models

Analytical models Numerical/simulation models

Jorgensen (1986) Fundamentals of Ecological Modelling. 389 pp. Elsevier, Amsterdam.

Page 83: Data-model integration: Examples from belowground ecosystem ecology Kiona Ogle University of Wyoming Departments of Botany & Statistics .

( , , | ) ( | , ) ( | ) ( , ) D P D P D PP Process Data P Data Process P Process P

Assuming conditional independence,likelihood of all data is:

4 8 3 2 2 2

{ , , , , } { , , , }1 1 1 1 1

4 8 3 2 2

{ , , } { , } { , , } { , }1 1 1

( | , ) exp2 2

exp exp2 2 2 2

LR LRD md r s t LR md r s

m d r s t

C C B Bmd r C md md r B md

m d r

P Data Process LR

C B

Likelihood components

{ , , , , } { , , , }

{ , , } { , }

{ , , } { , }

~ ,

~ ,

~ ,

md r s t LR md r s LR

md r C md C

md r B md B

LR Normal

C Normal

B Normal

Data Model (Likelihood)Data Model (Likelihood)