Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented...

15
1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le 1 , Peter Carr 2 , Yisong Yue 1 , and Patrick Lucey 3 California Institute of Technology 1 , Disney Research 2 , and STATS LLC 3 1. Introduction Current state-of-the-art sports statistics compare players and teams to league average performance. For example, metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected Point Value” (EPV) in basketball [2] and “Expected Goal Value” (EGV) in soccer [3] and hockey [4] are now commonplace in performance analysis. Such measures allow us to answer the question “how does this player or team compare to the league average?” Even “personalized metrics” which can answer how a “player’s or team’s current performance compares to its expected performance” have been used to better analyze and improve prediction of future outcomes [5]. These measures have enhanced our ability to analyze, compare and value performance in sport. But they are inherently limited because they are tied to a discrete outcome of a specific event. For example, EPV for basketball focuses on estimating the probability of a player making a shot based on the current situation, and is learnt off enormous amounts of historical data. The general use case is then to aggregate these outcomes, and compare and rank them to see how various players and teams compare to each other. In contrast, what we’d really like to know is how teams create time and space for scoring opportunities at the fine-grain level. With the widespread (and growing) availability of player and ball tracking data comes the potential to quantitatively analyze and compare fine-grain movement patterns. An excellent example of this was the 2013 ESPN article written by Zach Lowe, which described how the Toronto Raptors were using “ghosting” to analyze player decision-making in STATS SportVU tracking data [6]. Specifically, the Raptors created software to predict what a defensive player should have done instead of what they actually did. Developing the computer program required substantial manual annotation, but the insight gained turned heads because it made the effectiveness of defensive positioning both a measurable and viewable quantity for the first time. Motivated by the original “ghosting” work, we showcase an automatic “data-driven ghosting” method using advanced machine learning methodologies applied to a season’s worth of tracking data from a recent professional league in soccer. An example of our approach is depicted in Figure 1 which illustrates a scoring chance that Fulham (red) created against Swansea (blue). Suppose we are interested in analyzing the defensive movements of Swansea. It might be useful to visualize what the team actually did compared to what a typical team in the league might have done. Using our approach, we are able to generate the defensive motion pattern of the “league average” team, which interestingly results in a similar expected goal value (69.1% for Swansea and 71.8% for the “league average” ghosts -- to fully appreciate the insights revealed by data-driven ghosting, we urge the readers to view the supplemental video at http://www.disneyresearch.com/publication/data- driven-ghosting.)

Transcript of Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented...

Page 1: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

1

2017ResearchPapersCompetitionPresentedby:

Data-DrivenGhostingusingDeepImitationLearning

HoangM.Le1,PeterCarr2,YisongYue1,andPatrickLucey3CaliforniaInstituteofTechnology1,DisneyResearch2,andSTATSLLC3

1. IntroductionCurrentstate-of-the-artsportsstatisticscompareplayersandteamstoleagueaverageperformance.For example,metrics such as “Wins-above-Replacement” (WAR) in baseball [1], “Expected PointValue”(EPV)inbasketball[2]and“ExpectedGoalValue”(EGV)insoccer[3]andhockey[4]arenowcommonplaceinperformanceanalysis.Suchmeasuresallowustoanswerthequestion“howdoesthisplayerorteamcomparetotheleagueaverage?”Even“personalizedmetrics”whichcananswerhowa“player’sorteam’scurrentperformancecomparestoitsexpectedperformance”havebeenusedtobetteranalyzeandimprovepredictionoffutureoutcomes[5].

Thesemeasureshaveenhancedourabilitytoanalyze,compareandvalueperformanceinsport.Butthey are inherently limited because they are tied to a discrete outcome of a specific event. Forexample,EPVforbasketballfocusesonestimatingtheprobabilityofaplayermakingashotbasedonthecurrentsituation,andislearntoffenormousamountsofhistoricaldata.Thegeneralusecaseisthentoaggregatetheseoutcomes,andcompareandrankthemtoseehowvariousplayersandteamscomparetoeachother.Incontrast,whatwe’dreallyliketoknowishowteamscreatetimeandspaceforscoringopportunitiesatthefine-grainlevel.

Withthewidespread(andgrowing)availabilityofplayerandballtrackingdatacomesthepotentialtoquantitativelyanalyzeandcomparefine-grainmovementpatterns.Anexcellentexampleofthiswasthe2013ESPNarticlewrittenbyZachLowe,whichdescribedhowtheTorontoRaptorswereusing“ghosting”toanalyzeplayerdecision-makinginSTATSSportVUtrackingdata[6].Specifically,theRaptorscreatedsoftwaretopredictwhatadefensiveplayershouldhavedoneinsteadofwhattheyactuallydid. Developingthecomputerprogramrequiredsubstantialmanualannotation,butthe insightgainedturnedheadsbecause itmadetheeffectivenessofdefensivepositioningbothameasurableandviewablequantityforthefirsttime.

Motivatedbytheoriginal“ghosting”work,weshowcaseanautomatic“data-drivenghosting”methodusingadvancedmachinelearningmethodologiesappliedtoaseason’sworthoftrackingdatafromarecent professional league in soccer. An example of our approach is depicted in Figure 1whichillustrates a scoring chance that Fulham (red) created against Swansea (blue). Suppose we areinterestedinanalyzingthedefensivemovementsofSwansea.Itmightbeusefultovisualizewhattheteamactuallydidcomparedtowhatatypicalteamintheleaguemighthavedone.Usingourapproach,we are able to generate the defensive motion pattern of the “league average” team, whichinterestinglyresultsinasimilarexpectedgoalvalue(69.1%forSwanseaand71.8%forthe“leagueaverage” ghosts -- to fully appreciate the insights revealed by data-driven ghosting,we urge thereaders to view the supplemental video at http://www.disneyresearch.com/publication/data-driven-ghosting.)

Page 2: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

2

2017ResearchPapersCompetitionPresentedby:

Figure1Ourdata-drivenghostingmethodcanbeappliedtovariousgamecontextstobetterunderstanddefensivestrategies.Inthedepictedscenario,Fulham(red)scoresagoalonSwansea(blue).Ghosts(white)representwhereSwanseadefendersshouldhavebeenaccordingtoaleagueaveragemodel(LAG)andManchesterCitymodel(MUG).

Howeverinpractice,acoachoranalystmaynotwanttocomparetheirdefensetotheleagueaverage,buttoanotherspecificteam.By“fine-tuning”ourleagueaveragemodeltothetrackingdatafromaparticular team, our data-driven ghosting technique can estimate how each team might haveapproached thesituation. Forexample, thecoach/analystmaywant to seehowManchesterCitywoulddefendthesameattackingplay.Usingourapproach,wecannowseehowtheywoulddefenddifferently(Figure1(right)),andhowmuchitchangestheEGV(69.1%to41.7%).Theotherbenefitofusingourghostingapproachisthatissavesthecoach/analystfromsearchingforsimilarplaysinothermatches(whichmaynotevenexist).

To achieve automatic ghosting, we leverage a machine learning method called “deep imitationlearning”.OurmethodologyresemblestechniquesusedtoteachcomputerstoplayAtari[7]andGo[8]. We modify standard recurrent neural network training to consider both instantaneous andfuture losses,whichenablesghostedplayerstoanticipatemovementsoftheirteammatesandtheopposition.More importantly,ourapproachavoidstheneedforman-yearsofmanualannotation.Ourghostingmodelcanbetrainedinseveralhours,afterwhichitcanghosteveryplayinreal-time.

Inthenextsections,wedescribethemethodologybehindourghostingsystem,andshowcasehowautomatedghostingcanprovide insightfulanalysesandcomparisonsof teamdefensivebehavior.Wealsoemphasizethatourapproachisgeneral,andcanbeappliedtoawiderangeofsportssuchasbasketballandfootball.

2.DeepImitationLearningforModelingDefensiveSituationsWhilethemathematicalbackgroundrequiredtoimplementourdeepimitationlearningmethodcanseemcomplicated(seeAppendixAforfulldetails),thehigh-levelintuitionisquitesimple. Inthissectionwe provide an overview of deep imitation learning, and how it can be applied to soccertrackingdata.

Page 3: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

3

2017ResearchPapersCompetitionPresentedby:

Forthispaper,weused100gamesofplayertrackingandeventdatafromarecentprofessionalsoccerleague.Asweareinterestedinmodelingdefensivesituations,weonlyfocusedonsequencesofplaywhere the opposition had control of the ball. A defensive sequence is terminatedwhen a goal isscoredagainstthedefendingteam,theballgetsoutofthepitch,dead-balleventsoccur(e.g.foul,off-side),orthedefensiveteamregainspossessionoftheball.Intotal,therewereapproximately17400sequences of attacking-defending situations (~3 million frames at 10 frames per second). Theaveragelengthofallsequencesisapproximately170frames,or17seconds.

2.1.Whatis“DeepImitationLearning?”Beforeexplainingwhat“deepimitationlearning”is,wefirstexplainwhat“imitationlearning”is.Inmanycomplexsituations,itcanbeverychallengingforahumanexperttodescribeandcodifythepolicyorstrategyduetothegranularityorfidelityofthesituation.Forsuchtasks,wecanusemachinelearningtoautomaticallylearnagoodpolicyfromobservedexpertbehavior,alsoknownasimitationlearning or learning from demonstrations, which has proven tremendously useful in control androboticsapplications[9-14].

Duetothedynamic,continuousandhighlystrategicnatureofsports likesoccer,hand-craftingormanuallydescribingstrategyata fine-grain level isequallyproblematic.Forexample inFigure1,gettingahumantodescribethelocation,velocityandaccelerationofeveryplayerattheframe-levelwouldbeprohibitivelytime-consuminganderror-riddled.Evenifahumanwereabletodescribetheplayviarules,itishighlyunlikelythatanotherhumanwouldbeabletolearnfromsuchrulesasitwouldsurelymiss some importantcontextorother information. Inpractice,ahumanwould justobservemanyexamplesuntil theycouldunderstandwhat todoataconceptual level.Teachingacomputer isnodifferent.Thekey is to firstobtain the right representationwhichcanenable thecomputertolearnfromtheobservations.Inrecentyears,deeplearninghasproventobeapowerfultoolcapableoflearningamulti-layerrepresentationhiddeninthedata,enablingautomaticfeaturediscovery that saves tremendous amount of human engineering effort. In this work, we bringtogetherelementsfromautomaticformationdiscovery[16],imitationlearningcombinedwithdeeplearningmethodstolearncomplexrelationshipsfromhigh-dimensionalspatiotempotalsportdatadomainssuchassoccer.

2.2.FormationDiscoveryandDeepImitationLearningApplicationAsthedatacomesfromdifferentteamsandplayers,onekeycomponentofthepre-processingstepisrole-alignment(ororderingtheplayers ina formwherethe computer can quickly compare strategicallysimilarplays).Weextractthedominantroleforeachplayer fromboth thedefending andattacking teambased on the centroid positions throughout thesegmentofplay,regardlessofthenominalpositionofsuch player. For example, a player whose nominalroleiscentraldefendermayfindhimselfoccupyingthedominantroleofamidfielderincertainsequenceof play. Instead of enforcing a pre-determined

formationontotheteams,thecentroidpositionsfor

Page 4: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

4

2017ResearchPapersCompetitionPresentedby:

eachsequenceareautomaticallydiscoveredfromdatabyclusteringeachrole,viaalinearassignmentalgorithm, to a role centroid represented by a mixture of Gaussian distributions, in a way thatmaximizes the self-consistency within role from one segment of play to another (resembles themethodfrom[16]).Theresultisanaverageformationacrosstheseasoncloselyresemblinga4-4-2formation.

As soccer is fundamentally a spatial game, one would expect the geometric relationship amongplayersandtheballtocontainimportantsemanticandstrategicvalues.Weformthefullinputvectortoourmodelbyincludingnotonlytheabsolutecoordinatesofplayersandball,butalsotherelativepolarcoordinates(distanceandangle)ofeachplayertowardstheball,goal,andtherolethatwetrytomodel.The full featurevectorateachtimestepcontainsgeometric features forall roles in theformationintheformofonemini-blockforeachrole.Thesemini-blocksarethenstackedinafixedorder consistentwith role alignment. In order for themodel to identify one-on-one versus zonecoverage, we also indicate which mini-block of input features correspond to the closest threepositionstotherolebeingmodeledateachtimestep.Inaddition,anextrainputvectorindicatingtheteamidentityisaddedtotheinput.Thisidentityvectorisusefulforlearningparticularstructuralandstylisticelementsassociatedwithdifferent teams,allowingus thestudy the impactof tuningourghostingmodeltodifferentteamstyles.

Weuserecurrentneuralnetworks,apopulardeep-learningtool,tolearnthefine-grainedbehaviormodelforeachroleintheformationineachtimestep.AparticulartypeofrecurrentneuralnetworkscalledLongShort-TermMemory(LSTM)wasusedduetoitspowerfulabilitytocapturelong-rangedependenciesinsequentialdata.Themodeltakesinasequenceofinputfeaturevectorsasdescribedaboveand the corresponding sequenceof eachplayer’spositionsasoutput labels.Eachplayer ismodeledbyanLSTM,whichconsistsoftwohiddenlayersofnetworkswith512hiddenunitsineachlayer.Theroleofthesehiddenunitsistocapturetheinformationfromtherecenthistoryofactionsfromallplayersandmaptheinformationtothepositionofthenexttimestep,inamanneranalogoustohowanAIprogramwastrainedfromdatatomapthehistoryofthegametothenext frameofactioninAtariandGo.

Usingthestandarddeeplearningapproach,however,provesinsufficienttolearnarobustbehaviormodel,duetothetypicallylongtemporalspanofsequencesofplayandsheerhigh-dimensionalityofthelearningproblem.Intuitively,aswithanyregressionmethod,themodel’spredictionscandeviatefromthegroundtruthlabels.Insequentialmodelingsettings,thisdeviationcancompoundovertimeandcanleadtoseriousmodelingerrors.Toaddressthisissue,weleveragetechniquesfromimitationlearning. Themain idea is thatwewant to train amodel that can learn to recover from its ownpredictionmistakesso that themodelcanberobustover longsequencesofdecisions.Weuseanimitationlearningalgorithmthatlearnstocapturenotonlythebehaviorofeachroleintheteam,butalsohowmultipleplayersineachteamjointlybehavefromoneframetothenext.Afulldescriptionofourmachinelearningapproachisgivenintheappendix.

Page 5: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

5

2017ResearchPapersCompetitionPresentedby:

3.CharacterizationofTheAverageGhostingTeam

Asafirstchecktoseeifourleague-averagemodelpassestheeye-test,wedeploythetrainedmodelon held out sequences to inspect whether the trainedmodel behaves in a sensiblemanner.Weobserve that our model learned to maintain solid defensive formation and structure, with themodeledplayersmovinginamannerthatexhibitsspatialandformationalawareness.Toillustratethis,weshowthreeexamplesofplayinFigure3.

Inthefirstexample,theghostingplayers(white)fromLiverpoolmovetogetherwiththerestoftheteammates (blue) in pressing higher up the pitch in a situationwhenManchester City (red) justregained possession in the middle of the field. To avoid clutter, we display only the ghostingtrajectories(inwhite)ofthefiveleftpositionsoftheteam.

Figure3Examplesofghostingbehaviorforour“leagueaverage”model.

Because our algorithmmodels the interactions between teammates, our ghosted players exhibithigh-level coherent team behaviors. In the middle panel of Figure 3, ghost player number 5 ofSunderlandbrokefromformationtochallengetheballcarriernumber7ofAstonVilla(red).Ghostplayer number 9 of Sunderland swaps roles with ghost number 5 and drops back to mark theattackingnumber6.

Inmanysituations,thebehaviorofthe“leagueaverage”teammaybesubstantiallydifferentfromtheactualplaysuchthattheoutcomecouldbedifferent.IntherightpaneofFigure3,theghostingplayernumber8moreproactivelyclosedthepassinglanethatcouldhavepreventedtheshotongoalbyattackingnumber6(red),whichhappenedinrealityduetothefactthatbothnumber5and8fromQPR(blue)dropmoredeeplyandyieldedopenspace.

3.1VariancefromTheAverageGhostingbyPositionsandTeam

We canquantifyhow theplayers and teamsdiffer from the “average” team.Theaverage level ofdeviationacrossallplayersandteamsisabout~4meters.Toputthisnumberincontext,notethat

Page 6: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

6

2017ResearchPapersCompetitionPresentedby:

thisisahighlyaccurateaveragelevelofprecision,asthemodelhastotakeintoaccountthearbitrarilylongsequenceofplay.Incontrast,morenaivemachinelearningapproaches(thatdonotaccountforerrorpropagationthroughtime)wouldsufferfromveryhighlevelsofpredictionerror(frequentlyinthe20-30metersrange).Wecanfurtherbreakdownthedeviationintogroupsofposition.Forthedefenderpositions,themajorityofthedeviationsarelessthan3metersapartfromtheactualplayerpositions.Thedeviationincreasesasthedominantpositionsmovefurtherupthefield.Thisreflectsincreasinglevelofvariationinhowattack-orientedplayerswoulddefend.Thedefensivebehaviorofa striker, for example, could change significantly from team to team and among specific players,leading to ahigher level of varianceby the “average” ghostingpositions.We show thisdeviationaccordingtopositioninFigure4.

Figure4:Deviationfromtheaverageghostingmodelbypositions(Central Defenders (green), Central Midfielders (blue) andForwards(red)

Forourteamanalysis,weusedall20teamsinourdataset. As we can not disclose the specificperformance of these teams, we denote them asteams A-T. At the team level, this variance canindicatewhich teamdiffers themost fromaveragebehavior in terms of defensive positioning. Wequantifythisoutofpositionratiobyusingan80-20rule:aplayeratanygivenmomentisconsideredoutofpositionifhisdeviationfromhisghostisinexcessofthe80thpercentileoftheentireleagueaverage.Abreakdown of this tendency gives us a sense of

whichteamsusenon-conventionalformations.InFigure5,theteamsaresortedbythetotalnumberofgoalsconcededovertheseasoninanincreasingorder.Weanalyzedeachteam’sbehaviorviatwogroups: i) “back line” positions (backs), and ii) “front line” positions (midfielders and forwards).While this positioning variance is only onepart of thewholepicture, note that both the top andbottomteamsintheleagueintermsofthegoalconcededwerethetwooutliers.Forthetopteam,the

deviation may come in part from the attack-oriented positions (wingers and forwards)exhibiting awider range ofmovement relative toother teams. In the caseof thebottom team,whoended the season with a relegation, bothdominantlydefensiveandoffensiveplayerstendtodriftfarfromtheleagueaverage.

Figure 5: The out of position frequency (large deviations) byteamforboththebackandforwardpositions.Teamsareorderedfrom left to right sorted by the overall goals conceded in theentireseason

Page 7: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

7

2017ResearchPapersCompetitionPresentedby:

3.2ExpectedGoalValueofGhostingTeam

Anaturalusecaseforghostingistostudyhowhypotheticalscenariosmayunfold,i.e.,counterfactualreasoning.Inadditiontoqualitativeassessmentsofghosting,wealsowishtoquantitativelyassesstheeffectofalternativedefensivereactionstothesamesituation.Asacasestudy,weanalyzedsafety-criticalplaysequences,suchasgoalscoringopportunities,toseehowtheplaymaybealteredviaghostingtoimprovethedefensivepositioning.To analyze the goal scoring opportunities, we extracted shot events from the entire season.Concretely,wefocussedonthe10-secondsegmentsleadinguptoanopen-playshotevent,eitheronorofftarget(wedidnotusepenalties,free-kicks,setpieces,andgamesequenceswithlessthan11playersfromeitherside).WequantifiedtheperformanceofeachmodelusingtheExpectedGoalValue(EGV)metric[3],whichcanestimatethegoalscoringprobabilityofeachshotbasedontherecentplayerandballpositionsandevents.SimilartothesetupinFigure1,foreachshotsequence,theaverageghostisinitializedbythecurrentpositionsofthedefensiveplayersonlyfortheveryfirstframe,andthesequenceisunfoldedthereafterbyrunningtheghostingmodelacrosstheremainingtimesteps.Notethatallotherfactorsofthegivensequenceremainedunchanged(attackingplayerpositionsandballmovement).Attheendofthesequence,theexpectedgoalprobabilityiscalculatedbasedonthecollectivebehavioroftheghostingteam.TheoverallEGVisthesumofexpectedgoal

valuesoverallsequences.TheexpectedperformanceoftheleagueaverageteamversustheactualoutcomesareshowninTable1.TheEGVfromopen-playsshot events improved compared to the total numbers of goalsconcededfromall20teams(EGVof474onactualgoalcountof494fromopen-plays),primarilyduetothe“leagueaverage”teamabletolowerthescoringchanceagainstseveraloftheweakestteamsintheleague(teamI,J,K,LandT).4.QuantifyingtheEffectofTeamStyleAnalystsandcoachesoftenwanttocompareteamperformancewithnotjusttheleagueaverage,butalsowithspecificteamsandcertain characteristics (attack-oriented, possession-based etc.).Doingsoatafine-grainedlevel,however, isdifficultandnearlyimpossiblewithdiscretestatistics.Ourghostingsystemprovidesawaytonotonlymodeltheexpectedtrajectoryofeachplayer,but also incorporate the ability to impose stylistic elements ofspecific teams in order to answer the question: how woulddifferentteamsreacttothesamesituation?Toaddressthisquestion,weemployedtechniquesfrommachinelearning for domain adaptation. Intuitively, by taking an extravectorindicatingtheidentityoftheteamasinputtothemodel,ourdeep-learningbasedmodelcanextractelements

Page 8: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

8

2017ResearchPapersCompetitionPresentedby:

relevanttoeachteam’splayingstyle(suchasspatialarrangement,aggressivenessetc.).Inanygivenghostingscenario,the“average”teammodelcanthenbeadaptedtotheplayingstyleofanyteamintheleaguebychangingtheteamidentityvector,thusallowssimulatinghowtheghostteamplayingwithadifferentteamstylewouldfareunderthesamescenarios.Thisisanalogoustorecentdeeplearningadvancesinstyletransfer,wherethestylisticelementsfrompaintingsandpicturescanbeextractedwithadatasetconsistingof,forexample,VanGogh’sworks,sothatVanGogh’spaintingstylecanbetransferredtootherimages[15].Westudyhowdifferentstylescanimpactthedefensiveperformance,comparedtotheaveragemodel.Withdomainadaptation, theaveragemodel can takeon the identitiesofeachof20 teams in theleague,onall6020open-playshoteventsacrosstheentireseason.Wethencomparehowtheaverageghostingteamandteam-specificghostsperformrelativetotheactualoutcomes,andtoeachother.

Figure6Theeffectofassigningdifferentteamstylestoaverageghostingmodelintermsoftotalexpectedgoalvaluesoverseason’sopen-playshots(green)vs.totalactualnumberofgoalsconcededbyeachteam(blue)

OurresultsaresummarizedinFigure6.Interestingly,noticethedifferenceindefensiveperformanceof each team style. Since all other factors are controlled, the difference in overall expected goalsconcededcanbeattributedtodifferentdefendingstyles.Weobservea61.8%correlationbetweenthetotalEGVcoming fromdifferentghostingstyleswiththeoverallnumberofgoalsconceded inreality.Whileluckandindividualskillsmatterforanyteam,teamF’sdefensiveperformanceseemsattributable to an efficient defensive formation (4-5-1 pressing system under a new coach. TheformationdiscoverymethodofSection2.2appliedtoteamFalsoindicatestheyfrequentlyplaywith5midfielders,withthevarianceofmidfielders’movementshigherthantherestoftheleague).Duringtheactualseason,teamFalsopossessedthesecond-lowestgoalconcededperopen-playopportunityintheleague(calculatedfromTable1),astatisticconsistentwiththeefficiencyofteamF’sghost.Ofcourse,thisisonlyonepieceofthedefensiveequation,sinceshoteventsinisolationdonotreflecthowteamsorganizetheirdefenselongpriortotheshotopportunity.Inaddition,EGVforthistypeofsituationisnotperfect,sinceitdoesnotcapturethepossibilityofdefensiveghoststerminatingtheshot opportunity altogether. Nonetheless, ghosting to different teams in thismanner is a still aninterestingandnovelwaytocomparedefensivebehaviorsacrossteamsonanequalfooting,withoutrelyingondisparatestatisticscomingfromdifferentgamesandscenarios.

Page 9: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

9

2017ResearchPapersCompetitionPresentedby:

The approach we described thus far is a data-efficient way to extract “personalized” strategicelements fromdifferent teams to facilitatebothmodelingandevaluation.Weemphasize thatourapproachisgeneralandcanbeappliedtomodelingnotjusttheaverageteamintheleague,butalsoteam-specificmodels(assumingsufficienttrackingdata).5.ExampleofTheDynamicsofGhostingNowthatwehaveabetterideaofhowourghostingmethodworks,andhowthe“leagueaverage”modelvariestoaspecificteam’smodel,wecanrevisittheexampleshowninFigure1andbreak-downthisplayingreaterdetail(aseparatevideohighlightingmanydifferentscenariosisavailableathttp://www.disneyresearch.com/publication/data-driven-ghosting).Asbefore,weconsiderthesequenceofplaybetweenFulham(Red,attackingfromleft)andSwansea(Blue,defendingonright).WecomparewhatSwanseaactuallydidwiththatoftheleagueaverageghosts(LAG-white,top)andtheManchesterCityghosts(MCG-white,bottom).Theballtrajectoriesareinyellow.Notethatwedonotmodelgoal-keeperpositions,whicharehighlighted(number1).Toavoidclutter,wesuppressirrelevanttrajectoriestohighlightkeyplayersanddynamics.

Figure7Exampleofthedynamicsofghostingacrossaplaysequencebytwodifferentghostingstyles.

Page 10: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

10

2017ResearchPapersCompetitionPresentedby:

TheactualscenarioresultedinagoalscoredagainstSwanseaafterareboundfromacounter-attackbyFulham.Asmentionedintheprevioussection,bothghostingmodelswereinitializedwiththeactualpositionsofSwanseaplayersinthefirstframe.Theghostingsystemtakesoverandmakesdecisioninreal-timeabouthoweachplayershouldpositionhimselfforeveryframethereafter. Red#6 and Red#7 open the counter-attack with a “give-and-go pass” to get behind Blue#4 andBlue#7.Instage1(leftcolumn),bothLAGandMCGbehavesimilarlyastheplayunfolds,andcloselyresembletheactualSwanseadefense.TheonlyexceptionisLAG#8.ComparedtoBlue#8andMCG#8, LAG#8 proactively challenges the dribble by Red#6,who in reality drew in Blue#5 andcreatedawide-openpasstoRed#10,leadingintostage2(middlecolumn).Thisisthekeymomentin the play. In the actual sequence, Red#10 is left unmarked and gets an uncontested shot ongoalkeeperBlue#1.HerebothMCG#5andLAG#5positionedthemselvesfurtherbackandwereabletogettoRed#10intimetocontesttheshot.Suchattempthypotheticallycouldhavepreventedthereboundthatledtothegoal.Asthesequenceofeventsunfoldtostage3,thereboundfoundRed#9,whoisleftuncoveredbyactualBlue#9,leadingtothegoal(rightcolumn).ThenuanceddifferenceinpositioningbyMCG#2andLAG#2endedupmakingamajordifferenceinthescoringchance.SimilartoBlue#2,LAG#2failedtocoverRed#9.MCG#2,however,rushedbackdeeperintothebacklinefromearliermomentsoftheattackandwasinapositiontocontesttheshotontheopennet,andcouldhave covered for an attempt by both Red#7 and Red#9. The end resultwas a reduction in goalprobabilityfrom~70%(bothactualsequenceandLAGsequence)to~40%byMCG.Thefine-grainedsimulationandevaluationofdefensivescenariospresentedherewouldnothavebeenpossibleusingonlydiscretestatisticsaspopularlyusedinsportanalytics.Ourmethodisalsogeneral and has a rich potential to enable team-specific modeling for both coaching and mediaanalysispurposes.6.SummaryTheongoingexplosionoftrackingdatahasnowmadeitpossibletoapplypowerfulmodernmachinelearning techniques tobuild increasingly fine-grainedmodelsofplayerand teambehavior. Withdata-drivenghosting,we cannow, for the first time, scalablyquantify, analyzeand compare fine-graineddefensivebehavior.Inthispaper,wehavedemonstratedthevalueofourapproachinarangeofcasestudies.Weemphasizethatourapproachisalsoapplicabletosportsbeyondsoccer,suchasbasketballandfootball.

Page 11: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

11

2017ResearchPapersCompetitionPresentedby:

References[1]http://www.fangraphs.com/library/misc/war/[2]D.Cervone,A.D’Amour,L.BornnandK.Goldsberry,“POINTWISE:PredictingPointsandValuingDecisionsinRealTimewithNBAOpticalTrackingData”atMITSSAC,2014.[3]P.Lucey,A.Bialkowski,M.Monfort,P.CarrandI.Matthews,“QualityvsQuantity:ImprovedShotPredictioninSoccerusingStrategicFeaturesfromSpatiotemporalData”,inMITSSAC,2015.[4]B.Macdonald,“AnExpectedGoalsModelforEvaluatingNHLTeamsandPlayers”,inMITSSAC,2012.[5]X.Wei,P.Lucey,S.Morgan,M.ReidandS.Sridharan,““TheThinEdgeoftheWedge”:AccuratelyPredictingShotOutcomesinTennisusingStyleandContextPriors”,inMITSSAC,2016.[6]Z.Lowe.“Lights,Cameras,Revolution”.Grantland.19Mar2013.[7]R.McMillan.“Google’sAIisNowSmartEnoughtoPlayAtariLikethePros”.WIRED.25Feb2015.[8]C.Metz.“WhattheAIBehindAlphaGoCanTeachUsAboutBeingHuman”.WIRED.19May2016.[9]P.Abbeel,andA.Ng.“Apprenticeshiplearningviainversereinforcementlearning.”InInternationalConferenceonMachineLearning(ICML),2004.[10]H.Le,A.Kang,Y.YueandP.Carr,“SmoothImitationLearningforOnlineSequencePrediction”.InInternationalConferenceonMachineLearning(ICML),2016.[11]B.Argall,S.Chernova,M.Veloso,andB.Browning.“Asurveyofrobotlearningfromdemonstration”.Roboticsandautonomoussystems,57(5):469–483,2009.[12]S.RossandD.Bagnell.“Efficientreductionsforimitationlearning”.InConferenceonArtificialIntelligenceandStatistics(AISTATS),2010.[13]S.Ross,G.GordonandA.Bagnell.“Areductionofimitationlearningandstructuredpredictiontono-regretonlinelearning”.InConferenceonArtificialIntelligenceandStatistics(AISTATS),2011.[14]A.Jain,B.WojcikandT.Joachims,andA.Saxena.“Learningtrajectorypreferencesformanipulatorsviaiterativeimprovement”.InNeuralInformationProcessingSystems(NIPS),2013.[15]L.Gatys,A.EckerandM.Bethge.“Aneuralalgorithmofartisticstyle”.InNeuralInformationProcessingSystems(NIPS),2015[16]A.Bialjowski,P.Lucey,P.Carr,Y.Yue,S.SridharanandI.Matthews.“Large-scaleanalysisofsoccermatchesusingspatiotemporaltrackingdata”.In2014IEEEInternationalConferenceonDataMining(ICDM),2014

Page 12: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

12

2017ResearchPapersCompetitionPresentedby:

AppendixDataPreparationDuetothelackofhighqualityannotateddata,wefocusedonathirdoftheseasonworthofmatches(~100games).Forthepurposeofmodelingsoccerdefense,wefurthersegmentthegameeventsintopossessionsequences.Ateamisdefinedtobeinadefensivesituationwhenitisnotincontroloftheball.Adefensivesequenceisterminatedwhenagoalisscoredagainstthedefendingteam,theballgetsoutofthepitch,dead-balleventsoccur(e.g.foul,off-side),orthedefensiveteamregainspossessionoftheballafterhaving2consecutivetouches.Thispre-processingstepresultsinapproximately17400sequencesofattacking-defendingsituations(~3millionframesat10framespersecond).

Onekeycomponentofthepre-processingofthedataisrole-alignment.Role-alignmentisnecessaryforreducingthedimensionalityofthelearningproblem,essentiallyprovidingadditionalcontexttoimposeorderingonthetraininginput.Atthesimplestlevel,onecanviewthelearningproblemasamappingfromthepreviouspositionsof22playersandtheball,tothepositionofaparticularplayeratthecurrenttimestep.Onekeyissuewithlearningthiskindofmappingwithoutimposinganorderingisthatthedatarequirementtolearna“permutation-invariant”behaviorwillneedtoincreasebyafactorofbillions((10!)2specifically).Toreducethisdataburden,wefirstextractthedominantroleforeachplayerfromboththedefendingandattackingteambasedonthecentroidpositionthroughoutthesegmentofplay,regardlessofthenominalpositionofsuchplayer.Assuch,aplayerwhosenominalroleiscentraldefendermayfindhimselfoccupythedominantroleofamidfielderincertainsequenceofplay.Theleagueaverageapproximatesa4-4-2formation.Ineachsegmentofpossession,weorderthetrainingdatabasedonthedominantroles,wheretheassignmentofroleattemptstomatchthisaverage4-4-2formation,usingtheHungarianalgorithm(forminimumcostassignment,wherecostmeasurethedistanceofeachroletoeachofthe10possibleGaussiandistributionsofspatialcoveragelearnedfromdata).

Figure8Statefeaturevectorextractedfromanorderedlistofplayerpositionateachtimestep

Page 13: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

13

2017ResearchPapersCompetitionPresentedby:

Assoccerisaspatialgame,onewouldexpectthegeometricrelationshipamongplayersandtheballtocontainimportantsemanticandstrategicvalues.Weformthefullinputvectorforthepurposeoftrainingbyincludingnotonlytheabsolutecoordinatesofplayersandball,butalsotherelativepolarcoordinatesofeachplayertowardstheball,goal,andtherolethatwetrytomodel.Figure1describesthestructureofafullinputvectorateachtimestep.Heretherolebeingmodelistheleftbackposition.Thefullinputfeaturevectorrepresentingtheleftbackpositionconsistofmini-blocksoffeaturesforeachrolefromthedefendingandattackingteam,sortedbyafixedorder.Themini-blockforthegoal-keeper,forexample,containsabsolutepositionandvelocity,thedistanceandanglerelativetotheleft-backposition,thedistanceandangleofthegoal-keepertothedefendinggoal,andthedistanceandangletotheballatthecurrenttimestep.Inadditiontostackingthemini-blocksoffeaturestogether,wealsoduplicatethefeaturesfromthemini-blockscorrespondingtotheclosest3positionstotheleft-backateachtimesteps.Thisresultsinafullinputfeatureofdimension399foreachroleateachframe.Wecallthisinputvectorthestatefeaturevectorforeachrole.

DeepMulti-agentImitationLearningTheimitationlearningtaskistomapthestatefeaturevectorateachtimesteptothecorrespondingactionoftheplayerbeingmodel,whereactionisdefinedastheplayerpositionatthefollowingtimesteps.Inprinciple,thisisanonlinesequencepredictionproblem,wherethemodeloutputsactionofaplayerconditionedonthestateofsuchplayer,asrepresentedbytherecenthistoryofactionsofthemodeledplayer,aswellasotherplayers.Anaturalcandidatetoaddresssuchonlinesequencepredictionproblemisrecurrentneuralnetworks(RNN).AparticularlypopularclassofRNNs,LongShort-TermMemory(LSTM)hasbeensuccessfullyusedinrecentdeeplearningapplicationssuchasmachinetranslation,speechrecognition,handwritingsynthesis,etc.TwomajordifferencesbetweenoursettingandpreviousapplicationsofLSTMare(i)playersneedtomakedecisioninreal-time,renderingthepopularencoder-decoderapproachtosequence-to-sequencemodelingimpractical(ii)ourlearningset-upbelongstotheclassofdynamicalsystemlearningwhereactioncouldaltersubsequentstatedistribution,potentiallycausingamismatchbetweentrainingandinferencethatcouldseverelylimittheperformanceoftraditionalLSTMmodels.

Figure9Exampleofphase1ofalgorithmwithk=2

Page 14: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

14

2017ResearchPapersCompetitionPresentedby:

Ourproposedmethodjointlycombinestrainingandinferencetoaddressbothoftheseissues.Thismethodsimulatesonlinepredictioninanofflinefashion,whileallowingthemodeltograduallylearnlonger-rangeprediction.Phase1ofthealgorithmlearnsamodelforeachofthe10rolesofthe“average”defendingteam(seefigure9foranillustration).Inphase2,weusedthesepre-trainedmodelslearnedfromphase1toscaleupthetrainingofsingleplayerintojointtrainingofmultipleplayerstomodelcollaborativemulti-agentlearning(figure10showcasesthejointtrainingof2players).

DeepImitationLearningAlgorithm:Todescribeourlearningalgorithminmoredetails,wegenericallydenoteasequenceofstate-actionpairsas{(s0,a0),(s1,a1),…,(sT,aT)}.WeuseT=50inforourghostingapplicationtosoccerdefense.

Phase1:Learnsingleplayermodelforeachrolejin{1,2,..,10}o Initializearecurrentnetworkmodelgiventheground-truthdataset{(s0,a0),

(s1,a1),…,(sT,aT)}forafewiterationso Fork=1,2,…,T:

▪ Fort=0,k,2k,..,T:● Fori=0,1,..,k-1:

o Applythemodeltost+itoobtainactiona’t+io Usetheactiona’t+itoupdatethenextstatest+i+1(similarto

structureinfigure1withthenewactiona’t+i)● Fori=0,1,…,k-1:

o Usethelossbetweenpredictiona’t+iandgroundtruthactionat+itoupdatetherecurrentnetworkmodelusingstochasticgradientdescent

Phase2:Learnmultiplayermodelsimultaneouslyforallrolejin{1,2,..,10}o Fork=1,2,…,T:

▪ Fort=0,k,2k,…,T:● Fori=0,1,…,k-1:

o Applythepreviouslytrainedmodelsforeachrolejtostatevectors(j)t+itoobtainactiona’(j)t+i

o Usingpredictedactiona’(j)t+itoupdatestatefeaturevectorforthenexttimesteps(j)t+i+1forrolejands(j’)t+i+1forallotherrolej’

● Fori=0,1,…,k-1:o Usethelossbetweenpredictiona’(j)t+iandgroundtruthaction

a(j)t+itoupdatetherecurrentnetworkmodelforrolejusingstochasticgradientdescent

Page 15: Data-Driven Ghosting using Deep Imitation Learning...1 2017 Research Papers Competition Presented by: Data-Driven Ghosting using Deep Imitation Learning Hoang M. Le1, Peter Carr2,

15

2017ResearchPapersCompetitionPresentedby:

Figure10Illustrationofphase2ofalgorithmwith2playersandk=1