Danielle L. Jacobs- Microwave Assisted Organic Synthesis

download Danielle L. Jacobs- Microwave Assisted Organic Synthesis

of 28

Transcript of Danielle L. Jacobs- Microwave Assisted Organic Synthesis

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    1/28

    Microwave AssistedOrganic Synthesis

    Danielle L. Jacobs

    Crimmins Group Meeting

    10/11/06

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    2/28

    So how did those TV

    dinners become sopopular?

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    3/28

    History

    Randall & Booth (WWII)

    Formed basis of radar transmitters

    Raytheon Company (1946)

    Commercially available in 1954 for $5,000

    Industrial/domestic wavelength regulated

    at 2.45 GHz

    Initially used in industry for irradiating coal,drying, ceramic processing, etc

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    4/28

    History

    Other applications limited as it wasperceived heating phenomenon arose

    exclusively from w intrxns with water Used since late 1970s for inorganic rxns

    Organic rxns in mid-1980s, but only

    recently exploded Lack of controllability, reproducibility,

    safety aspects

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    5/28

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    6/28

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    7/28

    Electromagnetic Spectrum

    Electric field component

    Responsible for dielectric heating

    Dipolar polarization

    Conduction

    Magnetic field component

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    8/28

    Dipolar Polarization

    Average Relaxation Time average time ittakes for a collection of molecules to

    randomize after electric field is switchedoff

    Debye Equation

    = 4r3/kT r ~ molecular size

    ~ viscosity (intermolecular forces)

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    9/28

    Dipolar Polarization

    Loss Tangent (Energy Dissipation Factor) a measure of the ability to absorb

    microwave energy and convert it intothermal energy (heat)

    Derived from Maxwells eqn

    tan=/ = loss factor

    = dielectric constant

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    10/28

    Conduction

    Due to translational motion of electriccharges when an electric field is applied

    Ions cause increased collision rate andconvert kinetic energy to heat

    Tap water vs. distilled water

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    11/28

    Rate Enhancement

    Arrhenius Equation

    k=Ae-Ea/RT

    Does not decrease rxn Ea Increases pre-exponential factorA

    Thermodynamic rxns more affected than

    kinetic rxns

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    12/28

    Thermodynamics vs. Kinetics

    polar transition state:excellent formicrowave energy

    transfer

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    13/28

    Thermodynamics vs. Kinetics

    resonance-stabilizedintermediates oftenhave longer lifetimes

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    14/28

    Thermal Effects

    More efficient energetic coupling of solventwith microwaves promotes higher rate of

    temperature increase Inverted heat transfer, volumetric

    Hot spots in monomode microwaves

    Selective on properties of material(solvents, catalysts, reagents,intermediates, products, susceptors)

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    15/28

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    16/28

    Selective Solvent Effects

    Biphasic systems

    Ionic solvents

    High BP, low VP, high thermal stability,environmentally friendly

    Nucleation Limited Boiling Point (NLBP)

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    17/28

    Method Development

    Open vessel vs. pressurized system

    Solvent selection

    Polar/ionic rapid rise in T, above BP

    Non-polar behaves as heat sink

    Solventless rxn mixture is absorbing

    Time, temperature, power settings

    Reflux, simultaneous cooling, orcontinuous flow options

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    18/28

    Microwaves in Industry

    Pharmaceuticals

    Combichem

    Med chem

    Process chemistry

    Green chemistry

    Solvent-free rxns

    Solid-support

    MORE

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    19/28

    The Contest

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    20/28

    Recent Applications of MAOS

    MCROrganocatalysis

    OlefinationRadical rxns

    MetathesisReduction

    RearrangementOxidation

    Organometallic rxnsHeterocycles

    (Trans)esterification(De)protectionCycloadditionCondensation

    Nucleophilic substitutionAlkyl/aryl coupling

    AlkylationN-acylation

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    21/28

    Heterocycles

    Fresneda, P.M.; Molina, P.; Sanz, M.A.; Synlett2001, 218.

    Coleman, C.M.; MacElroy, J.M.D.; Gallagher, J.F.; OShea, D.F. J. Combinatorial Chem.2002, 4, 87.

    Nolt, M.B., et. al. Tetrahedron2006

    , 62, 4698.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    22/28

    Organometallic Reactions

    Skoda, Foldes, R., et. al. Steroids, 2002, 67, 709.

    Trost, B.M.; Andersen, N.G.; J. Am. Chem. Soc. 2002, 124, 14320.

    Trost, B.M>; MeEachern, E.J.; Toste, F.D.; J. Am. Chem. Soc. 1998, 120, 12702.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    23/28

    Rearrangements

    Pelc, M.J.; Zakarian, A. Tetrahedron Lett. 2006, 47, 7519.

    Pelc, M.J.; Zakarian, A. Org. Lett. 2005, 7, 1629.

    Pelc, M.J. Thesis, Florida State University.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    24/28

    Rearrangements

    Craig, D.; Henry, G.D. Eur. J. Org. Chem. 2006, 3558.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    25/28

    Cross Metathesis

    Bargiggia, F.C.; Murray, W.V. J. Org. Chem. 2005, 70, 9636.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    26/28

    What the Hell is Sparging?

    Nosse, B.; Schall, A.; Jeong, W.B.; Reiser, O.Adv. Synth. Catal.2005, 347, 1869.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    27/28

    Radical Initiation

    Homolytic cleavage of weak bonds occurswithout initiators

    Jessop, C.M.; Parsons, A.F.; Routledge, A.; Irvine, D.J. Eur. J. Org. Chem. 2006, 1547.

    Hartung, J.; Daniel, K.; Gottwald, T.; Grob, A.; Schneiders, N. Org. Biomol. Chem. 2006, 4, 2313.

  • 8/3/2019 Danielle L. Jacobs- Microwave Assisted Organic Synthesis

    28/28

    Lead References

    Lidstrm, P.; Tierney, J.P.; Wathey, B.; Westman, J.Tetrahedron2001, 57, 9225

    Hayes, Brittany, L. Microwave Synthesis. Chemistry at theSpeed of Light. North Carolina: CEM Publishing, 2002.

    Tierney, J.P., and P. Lidstrm, ed. Microwave AssistedOrganic Synthesis. Oxford: Blackwell Publishing Ltd, 2005.

    de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev.2005, 34, 164.