Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

download Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

of 144

Transcript of Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    1/144

    H A R M O N I C A N A L Y S I S A N D

    P A R T I A L D I F F E R E N T I A L E Q U A T I O N S

    B J R N E . J . D A H L B E R G

    C A R L O S E . K E N I G

    I S S N 0 3 4 7 - 2 8 0 9

    D E P A R T M E N T O F M A T H E M A T I C S

    C H A L M E R S U N I V E R S I T Y O F T E C H N O L O G Y

    A N D T H E U N I V E R S I T Y O F G T E B O R G

    G T E B O R G 1 9 8 5 / 1 9 9 6

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    2/144

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    3/144

    F O R E W O R D

    T h e s e l e c t u r e n o t e s a r e b a s e d o n a c o u r s e I g a v e r s t a t U n i v e r s i t y o f T e x a s , A u s t i n

    d u r i n g t h e a c a d e m i c y e a r 1 9 8 3 - 1 9 8 4 a n d a t U n i v e r s i t y o f G t e b o r g i n t h e f a l l o f 1 9 8 4 .

    M y p u r p o s e i n t h o s e l e c t u r e s w a s t o p r e s e n t s o m e o f t h e r e q u i r e d b a c k g r o u n d i n o r d e r

    t o p r e s e n t t h e r e c e n t r e s u l t s o n t h e s o l v a b i l i t y o f b o u n d a r y v a l u e p r o b l e m s i n d o m a i n s

    w i t h b a d b o u n d a r i e s . T h e s e n o t e s c o n c e n t r a t e o n t h e b o u n d a r y v a l u e p r o b l e m s f o r t h e

    L a p l a c e o p e r a t o r f o r a c o m p l e t e s u r v e y o f r e s u l t s , w e r e f e r t o t h e s u r v e y a r t i c l e b y C a r l o s

    K e n i g I a m v e r y g r a t e f u l f o r t h i s k i n d p e r m i s s i o n t o i n c l u d e i t h e r e . I t i s a l s o m y p l e a s u r e

    t o a c k n o w l e d g e m y g r a t i t u d e t o P e t e r K u m l i n f o r e x c e l l e n t w o r k i n p r e p a r i n g t h e s e n o t e s

    f o r p u b l i c a t i o n .

    J a n u a r y 1 9 8 5

    B j r n E . J . D a h l b e r g

    i

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    4/144

    i i

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    5/144

    C o n t e n t s

    0 I n t r o d u c t i o n 1

    1 D i r i c h l e t P r o b l e m f o r L i p s c h i t z D o m a i n . T h e S e t u p 1 1

    2 P r o o f s o f T h e o r e m 1 . 1 a n d T h e o r e m 1 . 2 1 9

    3 P r o o f o f T h e o r e m 1 . 6 2 5

    4 P r o o f o f T h e o r e m 1 . 3 3 7

    5 P r o o f o f T h e o r e m 1 . 4 4 7

    6 D i r i c h l e t P r o b l e m f o r L i p s c h i t z d o m a i n s . T h e n a l a r g u m e n t s f o r t h e

    L

    2

    - t h e o r y 5 1

    7 E x i s t e n c e o f s o l u t i o n s t o D i r i c h l e t a n d N e u m a n n p r o b l e m s f o r L i p s c h i t z

    d o m a i n s . T h e o p t i m a l L

    p

    - r e s u l t s 5 7

    I n d e x : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 4

    A p p e n d i x 1 C . E . K e n i g : R e c e n t P r o g r e s s o n B o u n d a r y V a l u e P r o b l e m s o n

    L i p s c h i t z D o m a i n s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 7

    A p p e n d i x 2 B . E . D a h l b e r g / C . E . K e n i g : H a r d y s p a c e s a n d t h e N e u m a n n

    P r o b l e m i n L

    p

    f o r L a p l a c e ' s e q u a t i o n i n L i p s c h i t z d o m a i n s : : : : : : : : : 1 0 7

    i i i

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    6/144

    i v

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    7/144

    C h a p t e r 0

    I n t r o d u c t i o n

    I n t h i s c o u r s e w e w i l l s t u d y b o u n d a r y v a l u e p r o b l e m s ( B V P : s ) f o r l i n e a r e l l i p t i c P D E : s

    w i t h c o n s t a n t c o e c i e n t s i n L i p s c h i t z - d o m a i n s , i . e . , d o m a i n s w h e r e t h e b o u n d a r y @

    l o c a l l y i s g i v e n b y t h e g r a p h o f L i p s c h i t z f u n c t i o n . W e r e c a l l t h a t a f u n c t i o n ' i s L i p s c h i t z

    i f t h e r e e x i s t s a c o n s t a n t M

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    8/144

    D i r i c h l e t p r o b l e m

    u = 0 i n

    u = f o n @

    N e u m a n n p r o b l e m

    u = 0 i n

    @ u

    @ n

    = f o n @

    t h e c l a m p e d p l a t e p r o b l e m

    8

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    9/144

    a n d t h a t

    ( ) s u p

    y > 0

    k u ( y ) k

    p

    k f k

    p

    T h u s w i t h X = L

    p

    ( R

    n

    ) a n d Y = f u : u h a r m o n i c i n R

    n + 1

    +

    a n d u s a t i s e s ( ) g w e h a v e t h e

    i m p l i c a t i o n

    f 2 X ) u 2 Y

    H o w e v e r , w e c a n a l s o r e v e r s e t h e i m p l i c a t i o n s i n c e a h a r m o n i c f u n c t i o n u w h i c h s a t i s e s

    ( ) h a s n o n - t a n g e n t i a l l i m i t s a . e . o n @ R

    n + 1

    +

    , t h e l i m i t - f u n c t i o n u

    0

    = u ( 0 ) 2 L

    p

    ( R

    n

    ) a n d

    u ( x y ) = p

    y

    u

    0

    ( x )

    S k e t c h o f a p r o o f . A s s u m e u h a r m o n i c f u n c t i o n i n R

    n + 1

    +

    t h a t s a t i s e s ( ) . T h e s e m i g r o u p

    p r o p e r t i e s o f f p

    y

    g

    y 0

    i m p l i e s

    u ( x y + ) = p

    y

    u

    ( x ) > 0 y > 0

    w h e r e u

    ( x ) = u ( x )

    ( ) ) u

    n

    * v i n L

    p

    ( R

    n

    ) a s

    n

    # 0

    ) p

    y

    u

    n

    ( x ) ! p

    y

    v ( x ) a s

    n

    # 0 y > 0

    B u t p

    y

    u

    n

    ( x ) = u ( x y +

    n

    ) a n d t h u s

    u ( x y ) = p

    y

    v ( x ) w h e r e v 2 L

    p

    ( R

    n

    )

    F o r t h e p r o o f o f t h e e x i s t e n c e o f n o n - t a n g e n t i a l l i m i t s o f p

    y

    u

    0

    w e r e f e r t o e . g . S t e i n / W e i s s

    2 ] .

    T h e n o t i o n o f s o l u t i o n o f t h e D i r i c h l e t p r o b l e m a n d a n y o t h e r p r o b l e m , i s s o u n d o n l y

    i f w e h a v e s u c h a m a t c h i n g b e t w e e n t h e b o u n d a r y v a l u e f o f u a n d t h e s o l u t i o n u i t s e l f ,

    i . e . , w e s h o u l d n o t a c c e p t c o n c e p t s o f s o l u t i o n w h i c h a r e s o w e a k s u c h t h a t t h e r e v e r s e d

    i m p l i c a t i o n i s i m p o s s i b l e .

    N o w a s s u m e t h a t i s a b o u n d e d ( c o n n e c t e d ) d o m a i n i n R

    n

    n 3 w i t h C

    2

    b o u n d a r y . ( T o

    a v o i d t e c h n i c a l i t i e s , w e h a v e a s s u m e d n 6= 2 ) . C o n s i d e r t h e D i r i c h l e t p r o b l e m

    ( D )

    u = 0 i n

    u

    @

    = f 2 C ( @ )

    L e t r d e n o t e ( ; 1 ) ( t h e f u n d a m e n t a l s o l u t i o n ) o f t h e L a p l a c e o p e r a t o r i n R

    n

    , t h a t i s ,

    r ( x ) = c

    n

    1

    x

    n ; 2

    c

    n

    = ;

    1

    ( 2 ; n ) !

    n

    ;

    1

    2 ; n

    ;

    ( n = 2 )

    2

    n = 2

    3

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    10/144

    a n d s e t

    R ( x y ) = r ( x ; y )

    F o r f 2 C ( @ ) w e d e n e

    D f ( P ) =

    Z

    @

    @

    @ n

    Q

    R ( P Q ) f ( Q ) d ( Q ) P =2 @

    S f ( P ) =

    Z

    @

    R ( P Q ) f ( Q ) d ( Q ) P =2 @

    T h u s D f a n d S f d e n o t e t h e d o u b l e l a y e r p o t e n t i a l a n d s i n g l e l a y e r p o t e n t i a l r e s p . H e r e d

    i s t h e s u r f a c e m e a s u r e o n @ a n d

    @

    @ n

    Q

    i s t h e d i r e c t i o n a l d e r i v a t i v e a l o n g t h e u n i t o u t w a r d

    n o r m a l f o r @ a t Q . I t i s i m m e d i a t e t h a t

    D f ( P ) = 0 P 2 R

    n

    n @

    a n d D f w i l l b e o u r c a n d i d a t e f o r s o l u t i o n o f ( D ) . I t r e m a i n s t o s t u d y t h e b e h a v i o u r o f D f

    a t @

    P a r t o f t h a t s t o r y i s

    L e m m a 1 . I f f 2 C ( @ ) , t h e n

    1 ) D f 2 C (

    )

    2 ) D f 2 C ( { )

    M o r e p r e c i s e l y : D f c a n b e e x t e n d e d a s a c o n t i n u o u s f u n c t i o n f r o m i n s i d e t o

    a n d f r o m

    o u t s i d e t o { . L e t D

    +

    f a n d D

    ;

    f d e n o t e t h e r e s t r i c t i o n s o f t h e s e f u n c t i o n s t o @ r e s p .

    S e t K ( P Q ) =

    @

    @ n

    Q

    R ( P Q ) f o r P 6= Q P Q 2 @ . W e n o t e t h a t

    i ) K 2 C ( @ @ n f ( P P ) : P 2 @ g )

    i i ) K ( P Q )

    C

    P ; Q

    n 2

    f o r P Q 2 @ a n d s o m e C

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    11/144

    S i n c e ' i s a C

    2

    f u n c t i o n , w e h a v e t h a t

    ' ( x ) = ' ( y ) + h x ; y r ' ( y ) i + e ( x y ) w h e r e e ( x y ) = O ( x ; y

    2

    )

    H e n c e

    K ( P Q ) C

    h P ; Q ( r ' ( y ) ; 1 ) i

    P ; Q

    n

    C

    e ( x y )

    P ; Q

    n

    C

    P ; Q

    n ; 2

    T h i s e s t i m a t e i s u n i f o r m i n P a n d Q s i n c e @ c o m p a c t .

    F o r f 2 C ( @ ) d e n e

    T f ( P ) =

    Z

    @

    K ( P Q ) f ( Q ) d ( Q ) P 2 @

    W e c a n n o w f o r m u l a t e

    L e m m a 2 ( j u m p r e l a t i o n f o r D )

    1 ) D

    +

    =

    1

    2

    I + T

    2 ) D

    ;

    = ;

    1

    2

    I + T

    a n d

    L e m m a 3 . T : C ( @ ) ! C ( @ ) i s c o m p a c t .

    S k e t c h o f p r o o f o f L e m m a 3 . D e n e t h e o p e r a t o r s T

    n

    b y

    T

    n

    f ( P ) =

    Z

    @

    K

    n

    ( P Q ) f ( Q ) d ( Q ) P 2 @

    f o r f 2 C ( @ ) , w h e r e

    K

    n

    ( P Q ) = s i g n ( K ( P Q ) ) m i n ( n K ( P Q ) ) n 2 Z

    +

    T h u s K

    n

    i s c o n t i n u o u s o n @ @ a n d A r z e l a - A s c o l i ' s t h e o r e m i m p l i e s t h a t T

    n

    i s a c o m p a c t

    o p e r a t o r o n C ( @ ) . F u r t h e r m o r e s i n c e k T

    n

    k s u p

    Q 2 @

    k K

    n

    ( Q ) k

    1

    C

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    12/144

    P r o o f o f L e m m a 1 a n d 2 . S o m e b a s i c f a c t s :

    1 )

    Z

    @

    @

    @ n

    Q

    R ( P Q ) d ( Q ) = 1 , i f P 2

    P r o o f : A p p l y G r e e n ' s f o r m u l a t o t h e h a r m o n i c f u n c t i o n R ( ; Q ) i n n B

    ( P ) f o r

    > 0 s m a l l , w h e r e B

    ( P ) = f x 2 R

    n

    : P ; x g

    2 )

    Z

    @

    @

    @ n

    Q

    R ( P Q ) d ( Q ) = 0 , i f P =2

    P r o o f : E x e r c i s e .

    3 )

    Z

    @

    K ( P Q ) d ( Q ) =

    1

    2

    , i f P 2 @

    P r o o f : E x e r c i s e .

    L e t P 2 @ . W e w a n t t o s h o w t h a t

    D f ( Q ) !

    1

    2

    f ( P ) + T f ( P ) a s 3 Q ! P

    A : A s s u m e P =2 s u p p f : E a s y .

    B : A s s u m e f ( P ) = 0 : W e n e e d .

    4 ) 9 C > 0 :

    Z

    @

    @

    @ n

    Q

    R ( P Q )

    d ( Q ) < C f o r a l l P =2 @

    P r o o f : E x e r c i s e .

    4 ) i m p l i e s t h e e s t i m a t e

    k D f k

    L

    1

    ( R

    n

    n @ )

    C k f k

    L

    1

    ( @ )

    C h o o s e f f

    k

    g C ( @ ) w i t h P =2 s u p p f

    k

    s u c h t h a t

    k f ; f

    k

    k

    L

    1

    ( @ )

    ! 0 a s k ! 1

    T b o u n d e d o p e r a t o r i m p l i e s T f

    k

    ( P ) ! T f ( P ) a s k ! 1 . H e n c e

    D f ( Q ) ; T f ( P ) C k ( f ; f

    k

    ) k

    L

    1

    ( R

    n

    n @ )

    + D f

    k

    ( Q ) ; T f

    k

    ( P ) +

    + T f

    k

    ( P ) ; T f ( P ) ! 0 a s k ! 1 a n d 3 Q ! P

    C : E n o u g h t o c h e c k f 1

    T h e r e s u l t f o l l o w s f r o m b a s i c f a c t s 1 ) a n d 3 ) . H e n c e w e h a v e p r o v e d L e m m a 1 a n d 2 p a r t

    1 ) . P a r t 2 ) f o l l o w s a n a l o g o u s l y .

    6

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    13/144

    W e n o w r e t u r n t o t h e s i n g l e l a y e r p o t e n t i a l a n d o b s e r v e t h a t S f i s h a r m o n i c i n R

    n

    n @

    a n d c o n t i n u o u s i n R

    n

    i f f 2 C ( @ ) . N e x t w e w a n t t o c o m p a r e t h e n o r m a l d e r i v a t i v e o f

    S f w i t h D f a t @ . S i n c e @ i s C

    2

    w e h a v e f o l l o w i n g r e s u l t :

    F o r " > 0 s m a l l e n o u g h

    ; " " @ 3 ( t P ) ! P + t n

    p

    2 V

    i s a d i e o m o r p h i s m , w h e r e n

    p

    i s t h e o u t w a r d u n i t n o r m a l o f @ a t P , a n d V i s a n e i g h -

    b o r h o o d o f @ . F o r P 2 @ a n d t 2 ; " " s e t

    D S f ( P + t n

    p

    ) =

    Z

    @

    @

    @ n

    p

    R ( P + t n

    p

    Q ) f ( Q ) d ( Q )

    T h e c l o s e r e l a t i o n s b e t w e e n D f a n d D S f i s f o r m u l a t e d i n

    L e m m a 4 . I f f 2 C ( @ ) t h e n

    1 ) D S f 2 C ( V \ )

    2 ) D S f 2 C ( V \ { )

    ( C o m p a r e L e m m a 1 ) .

    L e t D

    +

    S f b e t h e r e s t r i c t i o n t o @ o f t h e f u n c t i o n D S f e x t e n d e d t o V \ f r o m i n s i d e

    a n d D

    ;

    S f t h e r e s t r i c t i o n t o @ o f t h e f u n c t i o n D S f e x t e n d e d t o V \ { f r o m o u t s i d e .

    B u t R ( P Q ) = R ( Q P ) s o w i t h R

    n

    ( P Q ) = K ( Q P ) , w h i c h i s t h e r e a l - v a l u e d k e r n e l i n

    T

    f ( P ) =

    Z

    @

    K

    ( P Q ) f ( Q ) d ( Q ) P 2 @

    w e h a v e t h a t T

    i s t h e a d j o i n t o p e r a t o r o f T

    L e m m a 5 ( j u m p r e l a t i o n s f o r D S ) 1 ) D

    +

    S = ;

    1

    2

    I + T

    2 ) D

    ;

    S =

    1

    2

    I + T

    P r o o f o f L e m m a 4 a n d 5 . L e t f 2 C ( @ ) a n d d e n e

    w

    f

    ( P ) =

    D f ( P ) + D S f ( P ) P 2 V n @

    T f ( P ) + T

    f ( P ) P 2 @

    C l a i m : w

    f

    2 C ( V )

    P r o o f : w

    f

    c o n t i n u o u s o n V n @ a n d o n @ . H e n c e i t i s e n o u g h t o s h o w t a h t

    w

    f

    ( P + t n

    p

    ) ! w

    f

    ( P ) u n i f o r m l y f o r P 2 @ a s t ! 0

    7

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    14/144

    A s s u m e

    0

    2 C ( @ ) s u c h t h a t 0

    0

    1

    0

    = 1 i n a n e i g h b o r h o o d o f P a n d

    s u p p

    0

    B

    ( P )

    D e c o m p o s e f a s

    f = f

    1

    + f

    2

    0

    f + ( 1 ;

    0

    ) f

    A : w

    f

    2

    ( P + t n

    p

    ) ! w

    f

    2

    ( P ) a s t ! 0 . E a s y

    B : A s s u m e t 6= 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1

    P

    t

    = P + t n

    P

    P

    t

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    15/144

    T h e r e f o r e

    T f ( P ) + T

    f ( P ) = D

    +

    f ( P ) + D

    +

    S f ( P ) = D

    ;

    f ( P ) + D

    ;

    S f ( P ) P 2 @

    T h e j u m p r e l a t i o n s f o r D S f o l l o w .

    W e n o w g i v e t h e n a l a r g u m e n t f o r t h e e x i s t e n c e o f a s o l u t i o n o f t h e D i r i c h l e t p r o b l e m i n

    a n d t h a t i s

    D

    +

    : C ( @ ) ! C ( @ )

    i s o n t o .

    S i n c e D

    +

    =

    1

    2

    I + T , w h e r e T i s c o m p a c t , F r e d h o l m ' s A l t e r n a t i v e t h e o r e m c a n b e a p p l i e d .

    H e n c e ,

    1

    2

    I + T = D

    +

    o n t o

    i

    1

    2

    I + T

    = D

    ;

    S 1 ; 1

    T o p r o v e D

    ;

    S i s 1 ; 1 i s e a s y :

    A s s u m e D

    ;

    S f = 0 f o r s o m e f 2 C ( @ ) . S e t v = S f . T h e n

    i ) v h a r m o n i c i n {

    i i ) v ( P ) = O ( P

    2 ; n

    ) a s P ! 1

    i i i )

    @ v

    @ n

    @

    = 0

    G r e e n ' s f o r m u l a i m p l i e s

    Z

    {

    r v

    2

    =

    Z

    {

    v v +

    Z

    @

    v

    @ v

    @ n

    d = 0

    T h u s v = 0 i n {

    . B u t v 2 C ( R

    n

    ) a n d v = 0 i n

    M a x i m u m p r i n c i p l e ) v = 0 i n R

    n

    ) f = 0

    R e m a r k : T h e p r o o f a b o v e i s v a l i d f o r d o m a i n s w i t h C

    1 +

    b o u n d a r i e s w h e r e > 0 , b u t

    n o t f o r d o m a i n s w i t h b o u n d a r i e s w i t h l e s s r e g u l a r i t y .

    R e m a r k : W e o b s e r v e t h a t t h e m e t h o d i s n o n - c o n s t r u c t i v e a s a c o n s e q u e n c e o f t h e s o f t

    a r g u m e n t s ( i . e . , c o m p a c t n e s s a r g u m e n t s ) w e h a v e u s e d . H e n c e i t i s n o t p o s s i b l e t o s o l v e

    t h e D i r i c h l e t p r o b l e m f o r , s a y L i p s c h i t z - d o m a i n s b y a p p r o x i m a t i n g w i t h C

    2

    d o m a i n s

    k

    , s o l v e s o m e D i r i c h l e t p r o b l e m s f o r t h e s e a n d o b t a i n a n a p p r o x i m a t i o n o f a s o l u t i o n f o r

    , s i n c e w e d o n o t h a v e a n y e s t i m a t e s o f t h e i n v e r s e s o f t h e D

    +

    : s

    9

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    16/144

    R e f e r e n c e s

    1 ] F o l l a n d , G : I n t r o d u c t i o n t o p a r t i a l d i e r e n t i a l e q u a t i o n s . M a t h . N o t e s 1 7 , P r i n c e t o n

    U . P .

    2 ] S t e i n , E . M . / W e i s s , G : I n t r o d u c t i o n t o F o u r i e r A n a l y s i s o n E u c l i d e a n S p a c e s . P r i n c e -

    t o n U . P .

    1 0

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    17/144

    C h a p t e r 1

    D i r i c h l e t P r o b l e m f o r L i p s c h i t z

    D o m a i n . T h e S e t u p

    A f u n c t i o n ' : R

    n

    ! R s u c h t h a t

    ' ( x ) ; ' ( y ) M x ; y f o r a l l x y 2 R

    n

    i s c a l l e d L i p s c h i t z f u n c t i o n . A b o u n d e d d o m a i n R

    n + 1

    i s c a l l e d L i p s c h i t z d o m a i n i f @

    c a n b e c o v e r e d b y n i t e l y m a n y r i g h t c i r c u l a r c y l i n d e r s L w h o s e b a s e s a r e a t a p o s i t i v e

    d i s t a n c e f r o m @ s u c h t h a t t o e a c h c y l i d e r L t h e r e i s a L i p s c h i t z f u n c t i o n ' : R

    n

    ! R a n d

    a c o o r d i n a t e s y s t e m ( x y ) x 2 R

    n

    y 2 R s u c h t h a t t h e y - a x i s i s p a r a l l e l t o t h e a x i s o f

    s y m m e t r y o f L a n d L \ = L \ f ( x y ) : y > ' ( x ) g a n d L \ @ = L \ f ( x y ) : y = ' ( x ) g

    A d o m a i n D R

    n + 1

    i s c a l l e d s p e c i a l L i p s c h i t z d o m a i n i f t h e r e i s a L i p s c h i t z f u n c t i o n

    ' : R

    n

    ! R s u c h t h a t D = f ( x y ) : y > ' ( x ) g a n d @ D = f ( x y ) : y = ' ( x ) g . I n t h i s a n d

    a l l p r o c e e d i n g c h a p t e r s w e r e s e r v e t h e n o t a t i o n f o r b o u n d e d L i p s c h i t z d o m a i n s a n d D

    f o r s p e c i a l L i p s c h i t z d o m a i n s r e s p e c t i v e l y . W i t h a c o n e ; w e m e a n a c i r c u l a r c o n e w h i c h

    i s o p e n . A c o n e ; w i t h v e r t e x a t a p o i n t P 2 @ C , w h e r e C R

    n + 1

    i s a d o m a i n , i s c a l l e d

    a n o n t a n g e n t i a l c o n e i f t h e r e i s a c o n e ;

    0

    a n d a > 0 s u c h t h a t

    6= (

    ; \ B

    ( P ) ) n f P g ;

    0

    \ B

    ( P ) C

    B

    r

    ( Q ) i s o u r s t a n d a r d n o t a t i o n f o r t h e b a l l f x 2 R

    n

    : x ; Q r g . W e s a y t h a t a f u n c t i o n

    u d e n e d i n a d o m a i n C h a s n o n t a n g e n t i a l l i m i t L a t a p o i n t P 2 @ C i f

    u ( Q ) ! L a s Q ! P Q 2 ;

    f o r a l l n o n t a n g e n t i a l c o n e s ; w i t h v e r t i c e s a t P . F i n a l l y w e d e n e t h e n o n t a n g e n t i a l

    m a x i m a l f u n c t i o n M

    u f o r > 1 a n d f u n c t i o n u d e n e d i n L i p s c h i t z d o m a i n b y

    M

    u ( P ) = s u p f u ( Q ) : P ; Q < d i s t ( Q @ ) Q 2 g P 2 @

    1 1

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    18/144

    O n e o f t h e m a i n r e s u l t s i n t h i s c o u r s e w i l l b e t h e e x i s t e n c e o f a s o l u t i o n t o t h e D i r i c h l e t

    p r o b l e m

    u = 0 i n R

    n + 1

    u

    @

    = f 2 L

    2

    ( @ )

    w h e r e i s a b o u n d e d L i p s c h i t z d o m a i n . B y t h i s w e m e a n t h a t t h e r e e x i s t s a h a r m o n i c

    f u n c t i o n u i n w h i c h c o n v e r g e s n o n t a n g e n t i a l l y t o f a l m o s t e v e r y w h e r e w i t h r e s p e c t t o

    t h e s u r f a c e m e a s u r e d ( @ ) a n d t h a t t h e m a x i m a l f u n c t i o n M

    u 2 L

    2

    ( @ ) f o r > 1 . T h e

    s t a r t i n g p o i n t f o r o u r e n t e r p r i s e o f p r o v i n g t h e e x i s t e n c e o f a s o l u t i o n t o D i r i c h l e t p r o b l e m

    f o r t h e L i p s c h i t z d o m a i n i s t h e d o u b l e l a y e r p o t e n t i a l

    D g ( P ) =

    Z

    @

    @

    @ n

    Q

    R ( P Q ) g ( Q ) d ( Q ) P 2

    w h e r e R ( P Q ) i s t h e f u n d a m e n t a l s o l u t i o n f o r L a p l a c e e q u a t i o n i n R

    n + 1

    ( m u l t i p l i e d w i t h

    ; 1 ) a n d g 2 L

    2

    ( @ ) . S i n c e D g i s h a r m o n i c i n , w e a r e d o n e i f w e c a n s h o w t h a t

    f o r s o m e c h o i c e o f g w e h a v e t h e r i g h t b e h a v i o u r o f D g a t @ . H o w e v e r , t h i s i s n o t

    e a s y s i n c e f o r K ( P Q ) =

    @

    @ n

    Q

    R ( P Q ) P Q 2 @ P 6= Q , w e o n l y h a v e t h e e s t i m a t e

    K ( P Q )

    C

    P ; Q

    n 1

    w h i c h c a n n o t b e i m p r o v e d i n g e n e r a l . T h u s w e h a v e t o r e l y o n t h e

    c a n c e l l a t i o n p r o p e r t i e s o f K ( P Q ) , a n d t h e o p e r a t o r T w h i c h a p p e a r e d i n C h a p t e r 0 c a n

    o n l y b e d e n e d a s a p r i n c i p a l v a l u e o p e r a t o r . B e f o r e w e s t u d y t h e c a s e w i t h a g e n e r a l

    b o u n d e d L i p s c h i t z d o m a i n w e t r e a t t h e c a s e w i t h a s p e c i a l L i p s c h i t z d o m a i n D . F r o m

    t h i s w e o b t a i n t h e r e s u l t f o r u s i n g s t a n d a r d p a t c h i n g t e c h n i q u e s ( s e e A p p e n d i x 2 ) .

    C o n s i d e r

    D g ( P ) =

    Z

    @ D

    @

    @ n

    Q

    R ( P Q ) g ( Q ) d ( Q ) P 2 D

    w h e r e D = f ( x y ) : y > ' ( x ) g f o r a L i p s c h i t z f u n c t i o n ' : R

    n

    ! R . W e r e m a r k t h a t

    ' L i p s c h i t z f u n c t i o n i m p l i e s t h a t '

    0

    e x i s t s a . e . s o t h e d e n i t i o n o f D g m a k e s s e n s e a n d

    @

    @ n

    Q

    R ( P Q ) = C

    n

    h n

    Q

    P ; Q i

    P ; Q

    n + 1

    , w i t h n

    Q

    =

    ( r ' ( x ) ; 1 )

    p

    r ' ( x )

    2

    + 1

    f o r Q = ( x ' ( x ) ) , e x i s t s a . e .

    d ( @ D ) . T o s t a t e t h e r s t p r o p o s i t i o n , w e n e e d s o m e m o r e n o t a t i o n : F o r e v e r y m e a s u r e

    a n d e a c h - m e a s u r a b l e f u n c t i o n g a n d m e a s u r a b l e s e t A w i t h ( A ) 6= 0 w e l e t

    R

    A

    g d ,

    d e n o t e t h e m e a n v a l u e

    1

    ( A )

    Z

    A

    g d . F u r t h e r m o r e f o r g 2 L

    1

    o c

    ( @ D ) w e d e n e t h e m a x i m a l

    f u n c t i o n M g b y

    M g ( P ) = s u p

    r > 0

    Z

    @ D \ B

    r

    ( P )

    g ( Q ) d ( Q ) P 2 @ D

    T h e f o l l o w i n g r e s u l t i s c r u c i a l .

    1 2

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    19/144

    P r o p o s i t i o n 1 . 1 . L e t D = f ( x y ) : y > ' ( x ) g w h e r e ' : R

    n

    ! R i s a L i p s c h i t z f u n c t i o n

    w i t h k '

    0

    k

    1

    = A . L e t P = ( x y ) 2 D a n d P

    2 ( x ' ( x ) ) 2 @ D a n d s e t = y ; ' ( x )

    A s s u m e g 2 L

    p

    ( @ D ) f o r s o m e p w h e r e 1 < p 0 s u c h t h a t

    f x : M g ( x ) > g C

    k g k

    1

    f o r a l l g 2 L

    1

    5 ) M i s b o u n d e d i n L

    p

    1 < p 0 s u c h t h a t

    k M g k

    p

    C

    p

    k g k

    p

    f o r a l l g 2 L

    p

    H e r e 3 ) i s t r i v i a l , 4 ) c a n b e p r o v e n b y a c o v e r i n g l e m m a a r g u m e n t a n d 5 ) f o l l o w s f r o m 3 ) ,

    4 ) a n d M a r c i n k i e w i c z ' i n t e r p o l a t i o n t h e o r e m ( s e e S t e i n 1 ] ) . F o r l a t e r r e f e r e n c e w e s t a t e

    1 3

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    20/144

    M a r c i n k i e w i c z ' i n t e r p o l a t i o n t h e o r e m . L e t 1 p < q 1 a n d l e t T b e a s u b a d -

    d i t i v e o p e r a t o r d e n e d o n L

    p

    + L

    q

    . A s s u m e T i s a w e a k ( p p ) o p e r a t o r a n d a w e a k ( q q )

    o p e r a t o r . T h e n T i s b u n d e d o n L

    r

    w h e r e p < r < q . A n o p e r a t o r T i s a w e a k ( p p )

    o p e r a t o r i f t h e r e e x i s t s a c o n s t a n t C > 0 s u c h t h a t

    f x : T g ( x ) > g C

    ;

    k g k

    p

    p

    f o r a l l g 2 L

    p

    a n d > 0

    H e n c e , i f T i s b o u n d e d o n L

    p

    , t h e n T i s a w e a k ( p p ) o p e r a t o r , b u t t h e c o n v e r s e i s n o t t r u e

    i n g e n e r a l .

    P r o o f o f P r o p o s i t i o n 1 . 1 .

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    P

    D

    P

    D g ( P ) ; T

    g ( P

    ) C

    Z

    @ D \ f P

    ; Q > g

    h n

    Q

    P ; Q i

    P ; Q

    n + 1

    ;

    h n

    Q

    P

    ; Q i

    P

    ; Q

    n + 1

    g ( Q ) d

    + C

    Z

    @ D n f P

    ; Q > g

    h n

    Q

    P ; Q i

    P ; Q

    n + 1

    g ( Q ) d ( Q )

    C

    Z

    @ D \ f P

    ; Q > g

    ( + Q ; P

    )

    n + 1

    g ( Q ) d ( Q ) +

    + C

    Z

    @ D n f P

    ; Q > g

    1

    n

    g ( Q ) d ( Q )

    w h e r e w e h a v e a p p l i e d t h e m e a n v a l u e t h e o r e m t o t h e r s t i n t e g r a l . T h e s e c o n d i n t e g r a l i s

    C M g ( P

    ) a n d t h e r s t i n t e g r a l c a n a l s o b e e s t i m a t e d f r o m a b o v e w i t h t h e s a m e b o u n d

    a c c o r d i n g t o

    L e m m a 1 . 1 . L e t 0 b e a r a d i a l d e c r e a s i n g f u n c t i o n d e n e d i n R

    n

    . A s s u m e f 2 L

    1

    + L

    1

    a n d s e t m f ( x ) = s u p

    r > 0

    R

    B

    r

    ( x )

    f ( x ) d x f o r x 2 R

    n

    . T h e n f ( x ) B m f ( x ) f o r a l l x 2 R

    n

    w h e r e B =

    R

    ( x ) d x

    1 4

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    21/144

    I f w e t a k e t h i s l e m m a f o r g r a n t e d f o r a m o m e n t a n d s e t

    ( x ) =

    ( x + )

    n + 1

    t h e r s t i n t e g r a l a b o v e i s b o u n d e d f r o m a b o v e b y C M g ( P

    ) a n d w e a r e d o n e .

    P r o o f o f L e m m a 1 . 1 . I t i s e n o u g h t o p r o v e t h e l e m m a f o r 0 f 2 C

    1

    0

    2 C

    1

    0

    a n d x = 0

    S e t S

    n

    = @ B

    1

    ( 0 ) a n d A ( r ) =

    R

    B

    r

    ( 0 )

    f ( x ) d x

    W e o b t a i n

    f ( 0 ) =

    Z

    R

    n

    ( x ) f ( x ) d x =

    Z

    1

    0

    ( r ) r

    n ; 1

    Z

    S

    n

    f ( r w ) d ( w ) d r =

    =

    Z

    1

    0

    ( r ) A

    0

    ( r ) d r = ;

    Z

    1

    0

    0

    ( r ) A ( r ) d r ;

    Z

    1

    0

    0

    ( r ) B

    r

    ( 0 ) d r m f ( 0 )

    S e t f 1 i n t h e c a l c u l a t i o n s a b o v e a n d w e g e t ;

    R

    1

    0

    0

    ( r ) B

    r

    ( 0 ) d r = B . T h e l e m m a i s

    p r o v e n .

    I f w e d e n e t h e o p e r a t o r T

    b y

    T

    g ( P

    ) = s u p

    > 0

    T

    g ( P

    ) P

    2 @ D

    f o r g 2 L

    p

    ( @ D ) , t h e n

    D g ( P ) C ( T

    g ( P

    ) + M g ( P

    ) )

    f o r a l l P = ( x y ) 2 D a n d P

    = ( x ' ( x ) ) 2 @ D . T h u s i f w e c a n p r o v e t h a t T

    i s b o u n d e d

    o n L

    p

    ( @ D ) , t h e n D g ( P

    ) 0 a n d T

    . T h i s c a l l s f o r s o m e d e n i t i o n s . L e t S ( R

    n

    ) d e n o t e

    t h e S c h w a r t z c l a s s ( i . e . , t h e s p a c e o f a l l C

    1

    - f u n c t i o n s i n R

    n

    w h i c h t o g e t h e r w i t h a l l t h e i r

    d e r i v a t i v e s d i e o u t f a s t e r t h a n a n y p o w e r o f x a t i n n i t y ) w i t h t h e u s u a l t o p o l o g y .

    T i s c a l l e d a s i n g u l a r i n t e g r a l o p e r a t o r ( S I O ) i f T : S ( R

    n

    ) ; ! S ( R

    n

    )

    i s l i n e a r a n d

    c o n t i n u o u s a n d t h e r e e x i s t s a k e r n e l K s u c h t h a t f o r a l l ' , 2 C

    1

    0

    ( R

    n

    ) w i t h s u p p ' \

    s u p p =

    h T ' i =

    Z Z

    K ( x y ) ' ( y ) ( x ) d y d x

    1 5

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    22/144

    w h e r e h i i s t h e u s u a l S ; S

    p a r i n g . W e o b s e r v e t h a t K d o e s n o t d e t e r m i n e T u n i q u e l y .

    C o n s i d e r f o r i n s t a n c e T f = f

    0

    f o r w h i c h K = 0 i s a k e r n e l .

    W e s a y t h a t a k e r n e l K i s o f C a l d e r n - Z y g m u n d t y p e ( C Z - t y p e ) i f

    1 ) K ( x y )

    C

    x ; y

    n

    2 ) r

    x

    K ( x y ) + r

    y

    K ( x y )

    C

    x ; y

    n + 1

    3 ) K ( x y ) = ; K ( y x )

    T h e o p e r a t o r - k e r n e l s , w e w i l l s t u d y , w i l l b e o f t h e f o r m

    K

    i

    ( x y ) =

    ( ( x ' ( x ) ) ; ( y ' ( y ) ) )

    i

    ( x ' ( x ) ) ; ( y ' ( y ) )

    n + 1

    i = 1 2 : : : n + 1

    w h e r e ( a )

    i

    d e n o t e s t h e i - t h c o m p o n e n t o f a 2 R

    n + 1

    W e o b s e r v e t h a t t h e s e k e r n e l s a r e o f C Z - t y p e a n d a d o p t t h e c o n v e n t i o n t h a t w h e n e v e r

    w e d i s c u s s k e r n e l s K , t h e y a r e a s s u m e d t o b e o f C Z - t y p e u n l e s s w e e x p l i c i t l y s t a t e t h e

    c o n v e r s e . S t a r t i n g w i t h a k e r n e l K , w e c a n f o r m a w e l l - d e n e d S I O w i t h K a s t h e k e r n e l

    n a m e l y t h e p r i n c i p a l v a l u e o p e r a t o r ( P V O ) T . N o t e t h a t f o r ' 2 S ( R

    n

    ) )

    Z Z

    x ; y > "

    K ( x y ) ' ( y ) ( x ) d y d x =

    1

    2

    Z Z

    x ; y > "

    K ( x y ) ( ' ( y ) ( x ) ; ' ( x ) ( y ) ) d y d x

    s i n c e K ( x y ) = ; K ( y x ) a n d t h u s

    l i m

    " ! 0

    Z Z

    x ; y > "

    K ( x y ) ' ( y ) ( x ) d y d x

    e x i s t s s i n c e ' ( y ) ( x ) ; ' ( x ) ( y ) = O ( x ; y ) a n d ' 2 S ( R

    n

    ) d e c a y f a s t e n o u g h a t

    i n n i t y .

    H e n c e T : S ( R

    n

    ) 3 ' ! T ' 2 S ( R

    n

    )

    w h e r e

    h T ' i = l i m

    " ! 0

    Z Z

    x ; y > "

    K ( x y ) ' ( y ) ( x ) d y d x

    i s a S I O .

    W e l e a v e t h e p r o o f o f c o n t i n u i t y o f T a s a n e x e r c i s e . F r o m n o w o n w e a s s u m e t h a t a l l

    o p e r a t o r s T a r e P V O w i t h k e r n e l s K o f C Z - t y p e .

    T o a c h i e v e o u r g o a l t o e s t a b l i s h t h e e x i s t e n c e o f a s o l u t i o n t o t h e D i r i c h l e t p r o b l e m f o r

    L i p s c h i t z d o m a i n s , w e w i l l p r o v e t h e f o l l o w i n g s e q u e n c e o f t h e o r e m s

    T h e o r e m 1 . 1 . I f T b o u n d e d o n L

    2

    , t h e n T i s a w e a k ( 1 1 ) o p e r a t o r .

    T h i s i m p l i e s

    1 6

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    23/144

    T h e o r e m 1 . 1 ' . I f T b o u n d e d o n L

    2

    , t h e n T b o u n d e d o n L

    p

    f o r 1 < p

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    24/144

    1 8

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    25/144

    C h a p t e r 2

    P r o o f s o f T h e o r e m 1 . 1 a n d T h e o r e m

    1 . 2

    W e r e c a l l t h a t T i s a P V O w i t h k e r n e l K o f C Z - t y p e . I n t h i s c h a p t e r w e g i v e a p r o o f o f

    t h e f o l l o w i n g r e s u l t o f C a l d e r n - Z y g m u n d 1 ] .

    T h e o r e m 1 . 1 : I f T b o u n d e d o n L

    2

    , t h e n T i s a w e a k ( 1 1 ) o p e r a t o r .

    T h e f o l l o w i n g b o u n d o n T

    i s d u e t o C o t l a r 3 ] .

    T h e o r e m 1 . 2 : I f T b o u n d e d o n L

    2

    , t h e n T

    i s b o u n d e d o n L

    p

    f o r 1 < p 0

    s u c h t h a t

    f x 2 R

    n

    : T f ( x ) > g C

    k f k

    1

    f o r a l l f 2 L

    1

    a n d > 0

    b y s p l i t t i n g f i n a g o o d p a r t g , w h i c h i s a L

    2

    - f u n c t i o n a n d a b a d p a r t b . T h i s i s d o n e w i t h

    t h e f o l l o w i n g l e m m a

    L e m m a ( C a l d e r n - Z y g m u n d d e c o m p o s i t i o n ) . L e t f 2 L

    1

    ( R

    n

    ) a n d > 0 . T h e n

    t h e r e e x i s t c u b e s Q

    j

    j = 1 2 : : : s u c h t h a t

    1 ) Q

    j

    \ Q

    k

    = 0 f o r j 6= k

    2 ) f ( x ) a . e . f o r x 2 R

    n

    n

    1

    j = 1

    Q

    j

    1 9

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    26/144

    3 )

    R

    Q

    j

    f ( x ) d x g j j f x 2 R

    n

    : T g ( x ) >

    2

    g + f x 2 R

    n

    : T b ( x ) >

    2

    g

    f x 2 R

    n

    : T g ( x ) >

    2

    g +

    1

    j = 1

    2 Q

    j

    + f x 2 R

    n

    n

    1

    j = 1

    2 Q

    j

    : T b ( x ) >

    2

    g

    w h e r e 2 Q

    j

    i s t h e c u b e w i t h t h e s a m e c e n t e r a s Q

    j

    , w h i c h w e d e n o t e y

    j

    , w i t h s i d e s p a r a l l e l

    w i t h Q

    j

    a n d w i t h d o u b l e d s i d e l e n g t h s c o m p a r e d w i t h Q

    j

    . H e r e

    f x 2 R

    n

    : T g ( x ) >

    2

    g

    4

    2

    k T g k

    2

    C

    2

    k g k

    2

    C

    1

    k f k

    1

    a n d

    1

    j = 1

    2 Q

    j

    2

    n

    1

    X

    j = 1

    Q

    j

    2

    n

    k f k

    1

    s o i t r e m a i n s t o e s t i m a t e f x 2 R

    n

    n

    1

    j = 1

    2 Q

    j

    : T b ( x ) >

    2

    g a n d t h i s i s t h e p o i n t w h e r e

    w e u s e t h e p r o p e r t i e s o f t h e k e r n e l K . S e t

    b

    j

    ( x ) =

    b ( x ) x 2 Q

    j

    0 o t h e r w i s e

    F o r , x =2 2 Q

    j

    w e h a v e

    T b

    j

    ( x ) =

    Z

    Q

    j

    ( K ( x y ) ; K ( x y

    j

    ) ) b

    j

    ( y ) d y

    2 0

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    27/144

    a n d t h u s

    T b

    j

    ( x ) C

    Z

    Q

    j

    y ; y

    j

    x ; y

    n + 1

    b

    j

    ( y ) d y

    w h e r e w e u s e d

    Z

    Q

    j

    b

    j

    ( y ) d y = 0 . I n t e g r a t i n g t h e s e i n e q u a l i t i e s g i v e s

    Z

    R

    n

    n

    1

    j = 1

    2 Q

    j

    T b ( x ) d x

    1

    X

    j = 1

    Z

    R

    n

    n 2 Q j

    T b

    j

    ( x ) d x

    C

    1

    X

    j = 1

    Z

    Q

    j

    b

    j

    ( y ) d y = C k b k

    1

    C k f k

    1

    a n d c o n s e q u e n t l y

    f x 2 R

    n

    n

    1

    j = 1

    2 Q j : T b ( x ) >

    2

    g

    2

    k T b k

    L

    1

    ( R

    n

    n

    1

    j = 1

    2 Q j )

    C

    k f k

    1

    T h e p r o o f i s d o n e .

    C o r o l l a r y : I f T i s b o u n d e d o n L

    2

    , t h e n T i s b o u n d e d o n L

    p

    f o r 1 < p

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    28/144

    a n d f

    2

    ( x ) = f ( x ) ; f

    1

    ( x ) . T h u s T

    "

    f ( 0 ) = T f

    2

    ( 0 ) . T h e s t r a t e g y i s t o p r o v e t h a t f o r x "

    "

    y

    n + 1

    f ( y ) d y C

    Z

    m i n

    ;

    "

    y

    n + 1

    "

    ; n

    f ( y ) d y C M f ( 0 )

    f o r x

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    29/144

    R e f e r e n c e s

    1 ] A . P . C a l d e r o n / A . Z y g m u n d : O n t h e e x i s t e n c e o f c e r t a i n s i n g u l a r i n t e g r a l s , A c t a

    M a t h . 8 8 ( 1 9 5 2 ) p p . 8 5 - 1 3 9 .

    2 ] E . M . S t e i n : S i n g u l a r i n t e g r a l s a n d d i e r e n t i a b i l i t y p r o p e r t i e s o f f u n c t i o n s . P r i n c e t o n

    U n i v e r s i t y P r e s s 1 9 7 0 .

    3 ] M . C o t l a r : S o m e g e n e r a l i z a t i o n s o f t h e H a r d y - L i t t l e w o o d m a x i m a l t h e o r e m R e v .

    M a t . C u y a n a 1 ( 1 9 5 5 ) p p . 8 5 - 1 0 4 .

    2 3

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    30/144

    2 4

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    31/144

    C h a p t e r 3

    P r o o f o f T h e o r e m 1 . 6

    W e b e g i n t h i s s e c t i o n b y i n t r o d u c i n g s o m e o f t h e t o o l s w e n e e d t o p r o v e t h e L

    2

    - b o u n d e d n e s s

    o f T

    B M O

    p

    ( R

    n

    ) : F o r f 2 L

    1

    o c

    ( R

    n

    ) w e s e t

    k f k

    p

    = s u p

    Q c u b e

    ;

    Z

    Q

    f ( x ) ; f

    Q

    p

    d x

    1

    p

    1 p

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    32/144

    a n d w i t h r a t i o n a l s i d e l e n g t h s . S e t E =

    j

    @ Q

    j

    . F o r e a c h p a i r ( x

    1

    x

    2

    ) 2 ( R

    n

    n E ) ( R

    n

    n E )

    c h o o s e a c u b e Q 2 f Q

    j

    g s u c h t h a t x

    1

    x

    2

    2 Q . S e t f

    1

    = f

    2 Q

    a n d f

    2

    = f ; f

    1

    . D e n e

    F ( x

    1

    x

    2

    ) = T f

    1

    ( x

    1

    ) ; T f

    1

    ( x

    2

    ) +

    Z

    R

    n

    ( K ( x

    1

    y ) ; K ( x

    2

    y ) ) f

    2

    ( y ) d y

    W e n o t e t h a t F i s d e n e d a . e . a n d t h a t F i s i n d e p e n d e n t o f Q ( a s l o n g a s x

    1

    x

    2

    2 Q )

    C h e c k i t ! F u r t h e r m o r e , f o r a . e . x

    1

    2 R

    n

    a n d x

    2

    2 R

    n

    F ( x x

    1

    ) ; F ( x x

    2

    ) i s a c o n s t a n t

    ( r e g a r d e d a s a f u n c t i o n o f x ) . W e n o w d e n e T f a s t h e c l a s s x ! F ( x x

    1

    ) f o r a . e . x

    1

    2 R

    n

    I t r e m a i n s t o s h o w t h a t T : L

    1

    ! B M O i s b o u n d e d . I t i s e n o u g h t o s h o w t h a t

    Z

    Q

    F ( x x

    Q

    ) ; T f

    1

    ( x

    Q

    ) d x C k f k

    L

    1

    f 2 L

    1

    ( R

    n

    )

    f o r a l l c u b e s Q 2 f Q

    j

    g

    B u t

    Z

    Q

    T f

    1

    ( x ) d x (

    Z

    Q

    T f

    1

    ( x )

    2

    d x )

    1 = 2

    C (

    Z

    Q

    f

    1

    ( x )

    2

    d x )

    1 = 2

    C k f k

    1

    s i n c e

    Z

    R

    n

    ( K ( x y ) ; K ( x

    Q

    y ) ) f

    2

    ( y ) d y

    Z

    R

    n

    n 2 Q

    K ( x y ) ; K ( x

    Q

    y ) f ( y ) d y

    C

    Z

    R

    n

    n 2 Q

    x ; x

    Q

    y ; x

    Q

    n + 1

    d y k f k

    1

    C k f k

    1

    f o r x 2 Q

    T h e p r o p o s i t i o n f o l l o w s .

    F a c t 2 : J o h n - N i r e n b e r g i n e q u a l i t y

    T h e o r e m : L e t ' 2 B M O ( R

    n

    ) . T h e n t h e r e e x i s t s c o n s t a n t s , C > 0 > 0 , d e p e n d i n g

    o n l y o n n , s u c h t h a t

    f x 2 Q : ' ( x ) ; '

    Q

    > g C Q e x p

    ;

    ;

    k ' k

    f o r a l l > 0 a n d c u b e s Q

    S k e t c h o f a p r o o f . I t i s e n o u g h t o s h o w t h a t

    s u p

    Q c u b e

    Z

    Q

    e x p

    ;

    k ' k

    ' ( x ) ; '

    Q

    d x C

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    33/144

    A s s u m e k ' k

    = 1 a n d ' 2 L

    1

    . S i n c e t h e c o n s t a n t s C a n d w i l l b e i n d e p e n d e n t o f k ' k

    1

    ,

    t h e r e s u l t f o l l o w s f o r a g e n e r a l ' . F i x a c u b e Q . C o n s i d e r a l l c u b e s Q

    j

    i n t h e d y a d i c m e s h

    o f Q a n d c h o o s e a t > 1 . L e t

    ~

    Q

    j

    d e n o t e t h o s e d y a d i c c u b e s w h i c h a r e m a x i m a l w i t h r e s p e c t

    t o i n c l u s i o n s a t i s f y i n g

    Z

    ~

    Q

    j

    ' ( x ) ; '

    Q

    d x > t

    a n d

    ' ( x ) ; '

    Q

    t a . e . f o r x 2 Q n

    1

    j = 1

    ~

    Q

    j

    C l e a r l y

    ~

    Q

    j

    Q a n d

    1

    j = 1

    ~

    Q

    j

    1

    t

    k ' ; '

    Q

    k

    L

    1

    ( Q )

    1

    t

    Q

    T h e m a x i m a l i t y o f

    ~

    Q

    j

    i m p l i e s t h a t

    Z

    Q

    j

    ' ( x ) ; '

    Q

    d x t

    w h e r e

    Q

    j

    i s t h e m i n i m a l c u b e i n t h e d y a d i c m e s h o f Q w i t h r e s p e c t t o i n c l u s i o n f o r w h i c h

    ~

    Q

    j

    6

    Q

    j

    . F u r t h e r m o r e

    Q

    Q

    j

    ~

    Q

    j

    '

    ~

    Q

    j

    ; '

    Q

    '

    ~

    Q

    j

    ; '

    Q

    j

    + '

    Q

    j

    ; '

    Q

    Z

    ~

    Q

    j

    ' ( x ) ; '

    Q

    j

    d x + t

    2

    n

    Z

    Q

    j

    ' ( x ) ; '

    Q

    j

    d x + t

    ( 2

    n

    + 1 ) t

    S e t X ( Q ) = s u p

    Q

    j

    2 d y a d i c m e s h o f Q

    R

    Q

    j

    e x p ( ' ( x ) ; '

    Q

    j

    ) d x w h i c h i s

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    34/144

    T a k e s u p r e m u m o v e r a l l c u b e s Q . T h u s

    s u p

    Q c u b e

    X ( Q ) 1 ;

    1

    t

    e x p ( t ( 2

    n

    + 1 ) ) ] e

    t

    w h i c h i m p l i e s s u p

    Q c u b e

    X ( Q ) C i f > 0 s m a l l e n o u g h . T h e p r o o f i s d o n e .

    R e m a r k : I t i s a n e a s y c o n s e q u e n c e o f J o h n - N i r e n b e r g ' s i n e q u a l i t y t h a t t h e n o r m s k k

    p

    a n d k k

    k k

    1

    a r e e q u i v a l e n t f o r 1 < p 0 s u c h t h a t x

    p

    C e x p ( x ) f o r

    x > 0 . C h o o s e =

    2

    a n d a p p l y t h e i n e q u a l i t y a b o v e . H e n c e

    k

    '

    k ' k

    k

    p

    C s u p

    Q c u b e

    Z

    Q

    e x p

    ;

    2

    ' ( x ) ; '

    Q

    k ' k

    d x =

    = C s u p

    Q c u b e

    1

    Q

    Z

    1

    0

    e x p

    ;

    2

    t

    d

    ;

    f x 2 Q :

    ' ( x ) ; '

    Q

    k ' k

    > t g

    C s u p

    Q c u b e

    1

    Q

    Z

    1

    0

    e x p

    ;

    2

    t

    C Q e x p ( ; t ) ( ; ) d t = C

    a n d k ' k

    p

    C k ' k

    . T h e i n e q u a l i t y k ' k

    k ' k

    p

    f o l l o w s f r o m H l d e r ' s i n e q u a l i t y .

    F a c t 3 : C o n n e c t i o n b e t w e e n B M O a n d C a r l e s o n m e a s u r e s .

    C a r l e s o n m e a s u r e s o r i g i n a l l y a p p e a r e d a s a n s w e r s t o t h e f o l l o w i n g q u e s t i o n .

    Q u e s t i o n : W h i c h p o s i t i v e m e a s u r e s o n R

    n + 1

    +

    h a v e t h e p r o p e r t y

    Z Z

    R

    n + 1

    +

    P

    y

    f ( x )

    2

    d ( x y ) C ( ) k f k

    2

    2

    f o r a l l f 2 L

    2

    ( R

    n

    )

    w h e r e P

    y

    f ( x ) = p

    y

    f ( x ) w i t h t h e P o i s s o n k e r n e l p

    y

    ( x ) = c

    n

    y

    ( x

    2

    + y

    2

    )

    n + 1

    2

    ?

    T o o b t a i n a n e c e s s a r y c o n d i t i o n o n c o n s i d e r f =

    Q

    , i . e . , f i s t h e c h a r a c t e r i s t i c f u n c t i o n

    f o r a c u b e Q R

    n

    . W e i m m e d i a t e l y o b s e r v e t h a t P

    y

    f ( x ) C > 0 f o r f ( x y ) : x 2

    1

    2

    Q 0

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    35/144

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    36/144

    R e m a r k : T h e o r e m 3 . 1 i s a l s o v a l i d f o r a l l o p e r a t o r s o f t h e f o r m

    P

    t

    f ( x ) = '

    t

    f ( x )

    w h e r e ' i s a s m o o t h f u n c t i o n w h i c h d e c a y s a t i n n i t y a n d s u c h t h a t ' ( x ) ( x ) f o r s o m e

    r a d i a l f u n c t i o n 2 L

    1

    ( R

    n

    ) '

    t

    ( x ) d e n o t e s

    1

    t

    n

    '

    ;

    x

    t

    . W e l e a v e t h e p r o o f o f t h i s r e m a r k a s

    a n e x e r c i s e .

    W e n o w i n t r o d u c e t w o f a m i l i e s o f o p e r a t o r s d e n o t e d P

    t

    a n d Q

    t

    o f w h i c h t h e r s t i s a n

    a p p r o x i m a t i o n o f t h e i d e n t i t y a n d t h e s e c o n d i s a n a p p r o x i m a t i o n o f t h e z e r o o p e r a -

    t o r . L e t ' b e s m o o t h f u n c t i o n s t h a t d e c a y a t i n n i t y s u c h t h a t

    R

    R

    n

    ' ( x ) d x = 1 a n d

    R

    R

    n

    ( x ) d x = 0 . D e n e P

    t

    a n d Q

    t

    b y

    d

    P

    t

    f ( ) = ^' ( t )

    ^

    f ( )

    d

    Q

    t

    f ( ) =

    ^

    ( t )

    ^

    f ( )

    f o r n i c e f u n c t i o n s f i n R

    n

    . W e i m m e d i a t e l y o b s e r v e

    L e m m a 3 . 2 . I f f 2 L

    2

    ( R

    n

    ) , t h e n

    Z

    1

    0

    k Q

    t

    f k

    2

    2

    d t

    t

    C ( ) k f k

    2

    2

    P r o o f . A p p l y P l a n c h e r e l ' s f o r m u l a .

    T h e o r e m 3 . 2 . I f f 2 B M O ( R

    n

    ) , t h e n

    d ( x t ) = Q

    t

    f ( x )

    2

    d x d t

    t

    i s a C a r l e s o n m e a s u r e w i t h C a r l e s o n n o r m C ( ) k f k

    2

    T o c a r r y t h r o u g h t h e a r g u m e n t i n t h e p r o o f o f t h i s t h e o r e m , w e n e e d a l e m m a .

    L e m m a 3 . 3 . I f f 2 B M O ( R

    n

    ) a n d Q

    0

    i s t h e u n i t c u b e ( c e n t e r e d a t 0 ) , t h e n

    Z

    R

    n

    f ( x ) ; f

    Q

    0

    1 + x

    n + 1

    d x C k f k

    w h e r e C o n l y d e p e n d s o n n

    P r o o f . F o r a > 0 l e t a Q d e n o t e t h e c u b e w i t h s i d e s p a r a l l e l w i t h t h e s i d e s o f Q a n d o f

    l e n g t h s a t i m e s t h e s i d e l e n g t h s o f Q a n d w i t h t h e s a m e c e n t e r a s Q . W e o b s e r v e t h a t f o r

    e v e r y c u b e Q R

    n

    f

    Q

    ; f

    2 Q

    1

    Q

    Z

    Q

    f ( x ) ; f

    2 Q

    d x

    2

    n

    2 Q

    Z

    2 Q

    f ( x ) ; f

    2 Q

    d x 2

    n

    k f k

    3 0

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    37/144

    S e t Q

    j

    = 2

    j

    Q

    0

    f o r j 2 N a n d a s s u m e k f k

    = 1 . H e r e

    f

    Q

    j + 1

    ; f

    Q

    j

    2

    n

    f o r j 2 N

    w h i c h i m p l i e s

    f

    Q

    j + 1

    ; f

    Q

    0

    ( j + 1 ) 2

    n

    f o r j 2 N

    H e n c e

    Z

    R

    n

    f ( x ) ; f

    Q

    0

    1 + x

    n + 1

    d x =

    1

    X

    j = 0

    Z

    Q

    j + 1

    n Q

    j

    f ( x ) ; f

    Q

    0

    1 + x

    n + 1

    d x +

    +

    Z

    Q

    0

    f ( x ) ; f

    Q

    0

    1 + x

    n + 1

    d x

    1

    X

    j = 0

    ;

    Z

    Q

    j + 1

    f ( x ) ; f

    Q

    j + 1

    2

    j ( n + 1 )

    d x +

    +

    Z

    Q

    j + 1

    f

    Q

    j + 1

    ; f

    Q

    0

    2

    j ( n + 1 )

    d x

    + 1

    1

    X

    j = 0

    ( 2

    n ; j

    + ( j + 1 ) 2

    2 n ; j

    ) + 1 = C

    w h i c h c o m p l e t e s t h e p r o o f .

    P r o o f o f T h e o r e m 3 . 2 . Q

    t

    f ( x ) i s a w e l l - d e n e d f u n c t i o n i n R

    n + 1

    +

    s i n c e Q

    t

    1 = 0 . W e w a n t

    t o p r o v e t h a t f o r e a c h c u b e Q R

    n

    ( )

    Z Z

    ~

    Q

    Q

    t

    f ( x )

    2

    d x d t

    t

    C ( ) k f k

    2

    Q

    I t i s e n o u g h t o c o n s i d e r Q = u n i t c u b e Q

    0

    s i n c e B M O i s s c a l e - a n d t r a n s l a t i o n i n v a r i a n t ,

    i . e . , k f k

    = k f

    s

    t

    k

    w h e r e f

    s

    t

    ( x ) = f ( t ( x ; s ) ) a n d

    d t

    t

    i s s c a l e i n v a r i a n t . F u r t h e r m o r e w e m a y

    a s s u m e f

    2 Q

    0

    = 0 s i n c e Q

    t

    1 = 0 . T h u s w e h a v e t o p r o v e ( ) f o r Q = Q

    0

    a n d a l l f 2 B M O

    w i t h f

    2 Q

    0

    = 0 . S e t f

    1

    = f

    2 Q

    0

    a n d f

    2

    = f ; f

    1

    T h e n Q

    t

    f = Q

    t

    f

    1

    + Q

    t

    f

    2

    a n d w e o b t a i n

    Z Z

    Q

    0

    Q

    t

    f

    1

    2

    d x d t

    t

    Z Z

    R

    n + 1

    +

    Q

    t

    f

    1

    2

    d x d t

    t

    C ( ) k f

    1

    k

    2

    2

    C ( ) k f k

    2

    f r o m l e m m a 3 . 2 a n d f o r ( x t ) 2

    ~

    Q

    0

    w e o b t a i n

    Q

    t

    f

    2

    ( x )

    Z

    R

    n

    n 2 Q

    0

    1

    t

    n

    ;

    x ; z

    t

    f

    2

    ( z ) d z

    C ( )

    Z

    R

    n

    n 2 Q

    0

    t

    t

    n + 1

    + x ; z

    n + 1

    f

    2

    ( z ) d z

    C ( ) t

    Z

    R

    n

    f ( z )

    1 + z

    n + 1

    d z C ( ) t k f k

    a c c o r d i n g t o l e m m a 3 . 3 . T h i s c o m p l e t e s t h e p r o o f .

    W e h a v e n o w p r e p a r e d t h e t o o l s w e n e e d t o p r o v e t h e t h e o r e m o f D a v i d a n d J o u r n .

    3 1

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    38/144

    T h e o r e m 1 . 6 : I f T i s a P V O w i t h C Z t y p e k e r n e l K , t h e n

    T i s b o u n d e d o n L

    2

    i T 1 2 B M O

    H e r e t h e o n l y i f - p a r t f o l l o w s f r o m P r o p o s i t i o n 3 . 1 . T h e i f - p a r t i s t h e h a r d p a r t . T h e

    p r o o f w e p r e s e n t i s d u e t o C o i f m a n / M e y e r 1 ] . C h o o s e ' 2 C

    1

    0

    ( R

    n

    ) s u c h t h a t ' r a d i a l

    w i t h s u p p o r t i n t h e u n i t b a l l B

    1

    ( 0 ) a n d s u c h t h a t

    ^' ( ) = 1 + O (

    4

    ) a s ! 0

    D e n e P

    t

    a s a b o v e b y

    d

    P

    t

    f ( ) = ^' ( t )

    ^

    f ( ) . A n a l o g o u s l y d e n e Q

    t

    b y

    d

    Q

    t

    f ( ) = ( t )

    2

    ' ( t ) f ( )

    a n d R

    t

    b y

    d

    R

    t

    f ( ) = ( )

    ; 1

    ^'

    0

    ( t )

    ^

    f ( ) . H e n c e P

    t

    Q

    t

    a n d R

    t

    c o m m u t e s a n d

    d

    d t

    P

    2

    t

    =

    2

    t

    R

    t

    Q

    t

    T h i s i m p l i e s

    1

    2

    d

    d t

    P

    2

    t

    T P

    2

    t

    =

    1

    t

    ( R

    t

    Q

    t

    T P

    2

    t

    + P

    2

    t

    T R

    t

    Q

    t

    )

    T h e i d e a i s a s f o l l o w s : W e w a n t t o s h o w

    h

    1

    T

    2

    i C k

    1

    k

    2

    k

    2

    k

    2

    f o r a l l

    1

    2

    2 S ( R

    n

    )

    W e n o t e t h a t h

    1

    P

    2

    t

    T P

    2

    t

    2

    i ! 0 a s t ! 1 a n d h e n c e i t i s e n o u g h t o p r o v e

    Z

    1

    0

    d

    d t

    h

    1

    P

    2

    t

    T P

    2

    t

    2

    i d t C k

    1

    k

    2

    k

    2

    k

    2

    f o r a l l

    1

    2

    2 S ( R

    n

    )

    s i n c e P

    0

    i s t h e i d e n t i t y o p e r a t o r .

    F u r t h e r m o r e , i t i s e n o u g h t o p r o v e

    Z

    1

    0

    h

    1

    R

    t

    Q

    t

    T P

    2

    t

    2

    i

    d t

    t

    C k

    1

    k

    2

    k

    2

    k

    2

    f o r a l l

    1

    2

    2 S ( R

    n

    )

    s i n c e P

    t

    Q

    t

    R

    t

    a r e s e l f a d j o i n t o p e r a t o r s a n d T

    = ; T . W e n e e d t h e f o l l o w i n g e s t i m a t e .

    L e m m a 3 . 4 . L e t ' 2 C

    1

    0

    ( R

    n

    ) w i t h s u p p o r t i n t h e u n i t b a l l B

    1

    ( 0 ) a n d a s s u m e

    Z

    R

    n

    ( x ) d x = 0

    T h e n

    h

    x

    t

    T '

    y

    t

    i C p

    t

    ( x ; y )

    w h e r e

    x

    t

    ( z ) =

    1

    t

    n

    ;

    z ; x

    t

    '

    y

    t

    ( z ) =

    1

    t

    n

    '

    ;

    z ; y

    t

    a n d p

    t

    i s t h e P o i s s o n k e r n e l .

    3 2

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    39/144

    P r o o f . T h e a r g u m e n t c o n s i s t s o f a s t r a i g h t f o r w a r d c a l c u l a t i o n w h e r e w e u s e t h e C Z t y p e

    p r o p e r t i e s o f t h e k e r n e l K

    2 h

    x

    t

    T '

    y

    t

    i = l i m

    " # 0

    Z Z

    ; > "

    K ( ) (

    x

    t

    ( ) '

    y

    t

    ( ) ;

    x

    t

    ( ) '

    y

    t

    ( ) ) d d

    = l i m

    " # 0

    Z Z

    ; > "

    K ( t + y t + y )

    ;

    x y

    t

    1

    ( ) ' ( ) ;

    x y

    t

    1

    ( ) ' ( ) ) d d :

    H e n c e , i t i s e n o u g h t o p r o v e t h e l e m m a f o r y = 0

    A s s u m e x

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    40/144

    H e r e

    I =

    Z

    1

    0

    k

    ^'

    0

    ( t )

    t

    ^

    1

    ( ) k

    2

    2

    d t

    t

    C k ^

    1

    k

    2

    2

    = C k

    1

    k

    2

    2

    T o c o p e w i t h I I , w e r e w i r t e Q

    t

    T P

    2

    t

    2

    = L

    t

    P

    t

    2

    a s

    ( ( L

    t

    P

    t

    )

    2

    ) ( x ) = L

    t

    P

    t

    2

    ; P

    t

    2

    ( x ) ( x ) + P

    t

    2

    ( x ) L

    t

    1 ( x ) =

    = L

    t

    P

    t

    2

    ; P

    t

    2

    ( x ) ( x ) + P

    t

    2

    ( x ) Q

    t

    T 1 ( x )

    B u t T 1 2 B M O i m p l i e s Q

    t

    T 1

    2

    d x d t

    t

    i s a C a r l e s o n m e a s u r e a c c o r d i n g t o T h e o r e m 3 . 2 a n d

    h e n c e

    Z

    1

    0

    k P

    t

    2

    ( x ) Q

    t

    T 1 k

    2

    2

    d t

    t

    =

    Z Z

    R

    n + 1

    +

    P

    t

    2

    ( x )

    2

    Q

    t

    T 1

    2

    d x d t

    t

    C k

    2

    k

    2

    2

    w h e r e w e h a v e u s e d t h e r e m a r k t o T h e o r e m 3 . 1 . F u r t h e r m o r e u s i n g J e n s e n ' s i n e q u a l i t y

    A ( x t ) L

    t

    ( P

    t

    2

    ; P

    t

    2

    ( x ) ) ( x )

    2

    =

    =

    Z

    R

    n

    1

    t

    ( x y ) ( P

    t

    2

    ( y ) ; P

    2

    2

    ( x ) ) d y

    2

    C

    Z

    R

    n

    p

    t

    ( x ; y ) P

    t

    2

    ( y ) ; P

    t

    2

    ( x )

    2

    d y

    a n d t h u s

    Z

    1

    0

    k L

    t

    P

    t

    2

    ; P

    t

    2

    ( x ) ( x ) k

    2

    2

    d t

    t

    =

    Z

    1

    0

    Z

    R

    n

    A ( x t )

    d x d t

    t

    C

    Z

    1

    0

    Z

    R

    n

    Z

    R

    n

    p

    t

    ( x ; y ) P

    t

    2

    ( x ) ; P

    t

    2

    ( y )

    2

    d y d x

    d t

    t

    =

    = C

    Z

    1

    0

    Z

    R

    n

    Z

    R

    n

    p

    t

    ( x ) P

    t

    2

    ( x + y ) ; P

    t

    2

    ( y )

    2

    d x d y

    d t

    t

    = C

    Z

    1

    0

    Z

    R

    n

    Z

    R

    n

    p

    t

    ( x )

    \

    ( P

    t

    2

    ( + x ) ; P

    t

    2

    ( ) ) ( )

    2

    d d x

    d t

    t

    =

    = C

    Z

    1

    0

    Z

    R

    n

    Z

    R

    n

    p

    t

    ( x ) ^' ( t )

    2

    1 ; e

    i h x i 2

    ^

    2

    ( )

    2

    d d x

    d t

    t

    B u t

    Z

    R

    n

    p

    t

    ( x ) 1 ; e

    i h x i 2

    d x = 2 ; 2 e

    ; t

    T h u s

    Z

    1

    0

    k L

    t

    P

    t

    2

    ; P

    t

    2

    ( x ) ( x ) k

    2

    2

    d t

    t

    C

    Z

    R

    n

    Z

    1

    0

    2 ( 1 ; e

    ; t

    ) ^' ( t )

    2

    d t

    t

    ^

    2

    ( )

    2

    d

    C

    Z

    R

    n

    ;

    Z

    1

    0

    ( 1 ; e

    ; t

    )

    d t

    t

    +

    Z

    1

    1

    ^' ( t )

    2

    d t

    t

    ^

    2

    ( )

    2

    d

    C k

    2

    k

    2

    2

    T h i s c o m p l e t e s t h e p r o o f .

    3 4

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    41/144

    R e f e r e n c e s

    1 ] R . R . C o i f m a n / Y . M e y e r : p e r s o n a l c o m m u n i c a t i o n .

    3 5

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    42/144

    3 6

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    43/144

    C h a p t e r 4

    P r o o f o f T h e o r e m 1 . 3

    I n t h i s s e c t i o n w e p r o v e

    T h e o r e m 1 . 3 : I f ' : R ! R L i p s c h i t z f u n c t i o n a n d K

    '

    ( x y ) =

    1

    x ; y + i ( ' ( x ) ; ' ( y ) )

    ,

    t h e n t h e c o r r e s p o n d i n g o p e r a t o r T

    '

    i s b o u n d e d o n L

    2

    a n d k T

    '

    k C ( k '

    0

    k

    1

    )

    W e i m m e d i a t e l y o b s e r v e t h a t t h e k e r n e l K

    '

    i s o f C Z t y p e a n d t h u s t h e L

    2

    b o u n d e d n e s s

    o f t h e P V O T

    '

    c a n b e p r o v e d u s i n g T h e o r e m 1 . 6 , i . e . , i t i s e n o u g h t o p r o v e T

    '

    1 2 B M O .

    H o w e v e r , t h i s i s n o t e a s y .

    W e g i v e t h e p r o o f i n t w o s t e p s .

    A : T h e r e e x i s t s a n "

    0

    > 0 s u c h t h a t i f k '

    0

    k

    1

    "

    0

    t h e n k T

    '

    k C ( k '

    0

    k

    1

    )

    B : R e m o v a l o f t h e c o n s t r a i n t k '

    0

    k

    1

    "

    0

    P a r t A w a s p r o v e d b y C a l d e r n 1 ] . P a r t B w a s p r o v e d b y C o i f m a n / M c I n t o s h / M e y e r 2 ] .

    T h e p r o o f w e p r e s e n t i s d u e t o D a v i d 3 ] .

    P r o o f o f A : A s s u m e ' 2 C

    1

    0

    ( R

    n

    ) a n d d e n e

    K

    N

    ( x y ) =

    ( ' ( x ) ; ' ( y ) )

    N

    ( x ; y )

    N + 1

    N = 0 1 2 : : : :

    T

    N

    c o r r e s p o n d i n g P V O w i t h k e r n e l K

    N

    W e r e m a r k t h a t t h e T

    N

    ' s a r e c a l l e d c o m m u t a t o r s a n d a r i s e n a t u r a l l y w h e n o n e t r i e s t o

    c o n s t r u c t a c a l c u l u s o f s i n g u l a r i n t e g r a l o p e r a t o r s t o h a n d l e d i e r e n t i a l e q u a t i o n s w i t h n o n -

    s m o o t h c o e c i e n t s . W e r e f e r t o C a l d e r n 4 ] f o r a n e x t e n s i v e d i s c u s s i o n o f c o m m u t a t o r s

    a n d P D E ' s . S i n c e T =

    P

    1

    N = 0

    ( ; i )

    N

    T

    N

    , i t i s e n o u g h t o p r o v e t h a t

    k T

    N

    k C

    N + 1

    k '

    0

    k

    N

    1

    N = 0 1 2 : : : :

    3 7

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    44/144

    W e a l s o n o t e t h a t i t i s e n o u g h t o p r o v e t h a t t h e r e e x i s t s a n "

    1

    > 0 s u c h t h a t i f k '

    0

    k

    1

    "

    1

    ,

    t h e n

    k T

    N

    k C

    N

    N = 1 2 : : : :

    s i n c e T

    0

    i s t h e H i l b e r t t r a n s f o r m a n d t h i s o p e r a t o r i s L

    2

    b o u n d e d . T h e r e a r e m a n y p r o o f s

    o f t h i s f a c t a n d o n e p r o o f i s s u p p l i e d b y T h e o r e m 1 . 6 . T o p r o v e t h a t T

    N

    N = 1 2 : : : a r e

    L

    2

    b o u n d e d w e m a k e t h e f o l l o w i n g o b s e r v a t i o n .

    L e m m a 4 . 1 . I f ' 2 C

    1

    0

    , t h e n

    T

    N + 1

    ( 1 ) = T

    N

    ( '

    0

    ) N = 0 1 : : : :

    P r o o f . T h e l e m m a i s a c o n s e q u e n c e o f t h e i d e n t i t y

    d

    d y

    ;

    ' ( x ) ; ' ( y )

    x ; y

    N + 1

    = ( N + 1 )

    ( ' ( x ) ; ' ( y ) )

    N + 1

    ( x ; y )

    N + 2

    ; ( N + 1 )

    ( ' ( x ) ; ' ( y ) )

    N

    ( x ; y )

    N + 1

    '

    0

    ( y )

    a n d

    T

    N + 1

    1 ( x ) = l i m

    " # 0

    Z

    x ; y > "

    ( ' ( x ) ; ' ( y ) )

    N + 1

    ( x ; y )

    N + 2

    d y =

    = l i m

    " # 0

    1

    N + 1

    ;

    ' ( x ) ; ' ( x ; " )

    "

    ;

    ' ( x ) ; ' ( x + " )

    ; "

    + T

    N

    '

    0

    ( x ) = T

    N

    '

    0

    ( x )

    A r e c u r s i o n a r g u m e n t u s i n g P r o p o s i t i o n 3 . 1 , L e m m a 4 . 1 a n d t h e f a c t t h a t ' L i p s c h i t z

    f u n c t i o n i m p l i e s '

    0

    2 L

    1

    s h o w s t h a t T

    N

    N = 0 1 2 : : : a r e L

    2

    b o u n d e d . W h a t r e m a i n s

    t o b e d o n e i s t o s h o w t h a t

    k T

    N

    k C

    N

    N = 1 2 : : :

    f o r s o m e c h o i c e o f C > 0 . H e r e , o f c o u r s e , k k d e n o t e s t h e n o r m k k

    L

    2

    ! L

    2

    . T o c o n c l u d e t h e

    p r o o f o f A w e n o t e t h a t

    1 : I f K i s a k e r n e l o f C Z t y p e s u c h t h a t

    K ( x y ) + ( r

    x

    K ( x y ) + r

    y

    K ( x y ) ) x ; y

    C

    1

    x ; y

    n

    a n d i f k T 1 k

    C

    2

    , t h e n

    k T k D

    n

    ( C

    1

    + C

    2

    )

    f o r s o m e c o n s t a n t D

    n

    w h i c h o n l y d e p e n d s o n d i m e n s i o n n

    3 8

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    45/144

    2 : U n d e r t h e s a m e a s s u m p t i o n s a s i n 1

    k T k

    L

    1

    ! B M O

    D

    n

    ( k T k + C

    1

    )

    T h i s f o l l o w s f r o m t h e p r o o f s o f P r o p o s i t i o n 3 . 1 a n d T h e o r e m 1 . 6 . H e n c e

    k T

    N + 1

    k C

    1

    + C

    2

    k T

    N

    k N = 0 1 2 : : :

    f o r s o m e c o n s t a n t s C

    1

    C

    2

    i n d e p e n d e n t o f N a n d

    k T

    N

    k C

    N

    N = 1 2 : : :

    f o r s o m e c o n s t a n t C > 0 f o l l o w s . T h e p r o o f o f A i s c o m p l e t e d .

    P r o o f o f B : W e s t a r t w i t h t h r e e l e m m a s .

    L e m m a 4 . 2 . T h e r e e x i s t s a n "

    0

    > 0 s u c h t h a t i f

    ' ( x ) = A x + ( x ) x 2 R

    w h e r e A 2 R a n d : R ! R L i p s c h i t z f u n c t i o n w i t h k

    0

    k

    1

    "

    0

    t h e n

    k T

    '

    k C

    0

    f o r s o m e c o n s t a n t C

    0

    > 0 w h i c h i s i n d e p e n d e n t o f A .

    P r o o f . R e p e a t i n g t h e a r g u m e n t a b o v e , w e s e e t h a t i f h : R ! C L i p s c h i t z f u n c t i o n w i t h

    k h

    0

    k

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    46/144

    R e m a r k :

    ~

    L 2 L ; M L + M

    P r o o f . W i t h o u t l o s s o f g e n e r a l i t y w e c a n a s s u m e t h a t I = 0 1 M = 1 L = ;

    4

    5

    U

    f x 2 I : '

    0

    ( x ) + L 0 g h a s m e a s u r e

    1

    2

    . C h e c k t h i s !

    H e n c e ;

    1

    5

    '

    0

    9

    5

    D e n e ~' : R ! R b y

    ~' ( x ) =

    8

    0 s u c h t h a t x x + h 2 0 1 . T h u s 0 ~'

    0

    9

    5

    a n d ~' s a t i s e s ( i i ) w i t h

    ~

    L =

    ; 9

    1 0

    R e m a i n s t o c h e c k t h a t ( i ) i s s a t i s e d . S e t

    E = f x 2 I : ' ( x ) = ~' ( x ) g

    T h e n 0 2 E a n d E c l o s e d i m p l i e s t h a t

    I n E =

    k

    I

    k

    w h e r e t h e c o m p o n e n t s I

    k

    a r e o f t h e f o r m a

    k

    b

    k

    o r a

    k

    1 w h e r e 0 < a

    k

    < b

    k

    1 . B u t ~'

    i s c o n s t a n t o n e a c h i n t e r v a l I

    k

    a n d t h u s

    ' ( a

    k

    ) = ~' ( a

    k

    ) = ~' ( b

    k

    ) = ' ( b

    k

    ) i f I

    k

    = a

    k

    b

    k

    ' ( a

    k

    ) = ~' ( a

    k

    ) = ~' ( 1 ) ' ( 1 ) i f I

    k

    = a

    k

    1

    H e n c e

    Z

    I

    k

    '

    0

    ( x ) d x 0 f o r e a c h k a n d w e o b t a i n

    Z

    '

    0

    ( x ) d x 0

    F i n a l l y

    0

    Z

    '

    0

    ( x ) d x =

    Z

    \ U

    '

    0

    ( x ) d x +

    Z

    \ ( I n U )

    '

    0

    ( x ) d x

    4

    5

    \ U ;

    1

    5

    \ ( I n U )

    i m p l i e s

    \ U

    1

    4

    \ ( I n U )

    4 0

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    47/144

    a n d t h i s g i v e s u s

    = \ U + \ ( I n U )

    5

    4

    \ ( I n U )

    5

    8

    H e n c e

    E

    3

    8

    a n d t h e p r o o f i s d o n e .

    L e m m a 4 . 4 ( J o h n 6 ] ) . A s s u m e f : R ! R m e a s u r a b l e . A s s u m e t h e r e e x i s t s a n > 0

    a n d a c o n t i n u o u s f u n c t i o n C : ! R , w h e r e = f ( a b ) 2 R

    2

    : a < b g , s u c h t h a t

    f x 2 I : f ( x ) ; C ( I ) < g >

    1

    3

    I f o r e a c h i n t e r v a l I = ( a b ) . T h e n f 2 B M O ( R ) a n d

    k f k

    C w h e r e C i s i n d e p e n d e n t o f f a n d t h e f u n c t i o n C

    P r o o f . I t i s e n o u g h t o p r o v e t h e l e m m a f o r = 1 . T h e a r g u m e n t s a r e s i m i l a r t o t h o s e o n e

    u s e s t o p r o v e J o h n - N i r e n b e r g ' s i n e q u a l i t y o n c e w e h a v e p r o v e d t h e f o l l o w i n g

    C l a i m : I f I J R a r e i n t e r v a l s s u c h t h a t J = 2 I , t h e n C ( I ) ; C ( J ) 1 5

    P r o o f o f c l a i m : L e t d e n o t e t h e i n t e r v a l w i t h e n d p o i n t s C ( I ) a n d C ( J ) a n d a s s u m e t o

    o b t a i n a c o n t r a d i c t i o n t h a t > 1 5 . T h e n t h e r e e x i s t s p o i n t s z

    k

    2 k = 1 2 : : : 6 s u c h

    t h a t z

    k

    2 a n d m i n

    k 6= 1

    z

    k

    ; z

    1

    > 2 . S e t M

    k

    = f x 2 J : f ( x ) ; z

    k

    P

    6

    k = 1

    M

    k

    S i n c e C : ! R i s c o n t i n u o u s , t h e r e e x i s t i n t e r v a l s I

    k

    k = 1 2 : : : 6 s u c h t h a t I I

    k

    J

    a n d C ( I

    k

    ) = z

    k

    . H e n c e

    J >

    6

    X

    k = 1

    M

    k

    6

    X

    k = 1

    M

    k

    \ I

    k

    6

    1

    3

    I = 2 I

    T h i s c o n t r a d i c t s J = 2 I a n d c l a i m i s p r o v e n .

    W e n o w s h o w t h a t u n d e r t h e h y p o t h e s i s i n t h e l e m m a w i t h = 1

    Z

    I

    f ( x ) ; C ( I ) d x C I

    f o r e a c h i n t e r v a l I R . O b s e r v e t h a t w e d o n o t k n o w w h e t h e r f 2 L

    1

    o c

    o r n o t . S i n c e t h e

    a s s u m p t i o n s o n f a r e s c a l e - a n d t r a n s l a t i o n i n v a r i a n t w e c a n a s s u m e I = 0 1 . W e c a n a l s o

    a s s u m e C ( I ) = 0

    N o w , s e t

    k

    = 1 0 0 k k = 1 2 : : : a n d l e t

    k

    =

    j

    I

    k

    j

    b e t h e u n i o n o f t h o s e i n t e r v a l s

    i n t h e d y a d i c m e s h o f I w h i c h a r e m a x i m a l w i t h r e s p e c t t o i n c l u s i o n w i t h t h e p r o p e r t y

    C ( I

    k

    j

    ) >

    k

    . W e s e e t h a t I =2

    1

    a n d

    1

    2

    3

    . F o r e a c h I

    k

    j

    i n

    k

    t h e r e e x i s t s

    4 1

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    48/144

    a n i n t e r v a l

    ~

    I

    k

    j

    i n t h e d y a d i c m e s h o f I w h i c h i s m i n i m a l w i t h r e s p e c t t o i n c l u s i o n a n d w i t h

    t h e p r o p e r t y I

    k

    j

    *

    ~

    I

    k

    j

    . H e n c e C (

    ~

    I

    k

    j

    )

    k

    a n d t h e c l a i m a b o v e i m p l i e s

    k

    k

    + 2 g w h i c h i s a m e a s u r a b l e s e t a n d t a k e a p o i n t

    o f d e n s i t y x

    0

    2 A

    k

    . T h e n t h e r e e x i s t s a s u c i e n t l y s m a l l i n t e r v a l J i n t h e d y a d i c m e s h o f

    I s u c h t h a t x

    0

    2 J a n d

    f x 2 J : f ( x ) >

    k

    + 2 g

    9 9

    1 0 0

    J

    T h i s i m p l i e s C ( J ) >

    k

    a n d t h u s x

    0

    2 J

    k

    . H e n c e A

    k

    k

    e x c e p t f o r a s e t o f m e a s u r e

    0 a n d

    A

    k

    k

    B u t

    k + 6

    1

    2

    k

    i m p l i e s t h a t t h e r e e x i s t c o n s t a n t s B C > 0 s u c h t h a t

    A

    k

    B e

    ; C (

    k

    + 2 )

    k = 1 2 : : : :

    C h o o s i n g a s l i g h t l y l a r g e r c o n s t a n t C w e g e t

    f x 2 I : f ( x ) > g B e

    ; C

    T h e r e m a i n i n g a r g u m e n t i s t h e s a m e a s i n t h e p r o o f o f t h e r e m a r k o n p a g e 2 9 .

    F i n a l l y w e g i v e t h e a r g u m e n t f o r

    k + 6

    1

    2

    k

    P r o o f . S e t E

    k

    = f x 2 I : f ( x ) ;

    k

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    49/144

    b y t a k i n g t h e u n i o n o v e r a l l I

    k

    j

    I

    k

    0

    j

    0

    a n d u s i n g E

    k

    \ I

    k

    j

    1

    3

    I

    k

    j

    . H e n c e

    I

    k

    0

    j

    0

    X

    k

    0

    < k k

    0

    + 6

    I

    k

    0

    j

    0

    \ E

    k

    1

    3

    X

    k

    0

    < k k

    0

    + 6

    I

    k

    0

    j

    0

    \

    k

    2 I

    k

    0

    j

    0

    \

    k

    0

    + 6

    w h i c h i m p l i e s

    k + 6

    1

    2

    k

    W e h a v e n o w p r e p a r e d a l l t h e m a c h i n e r y w e n e e d t o p r o v e p a r t B . T h e i d e a i s t o m a k e a n

    i n d u c t i o n a r g u m e n t w h e r e p a r t A i s t h e b a s e a n d t h e i n d u c t i o n s t e p i s t h e f o l l o w i n g : L e t

    M > 0 . I f t h e r e e x i s t s a c o n s t a n t

    C = C

    ;

    9

    1 0

    M

    s u c h t h a t k T

    ~'

    k C f o r a l l L i p s c h i t z f u n c t i o n s ~' w i t h o s c ~'

    9

    1 0

    M t h e n t h e r e e x i s t s a

    c o n s t a n t C = C ( M ) s u c h t h a t k T

    '

    k C f o r a l l L i p s c h i t z f u n c t i o n s ' w i t h o s c ' M

    H e r e w e l e t o s c ' d e n o t e i n f f M : ' ( x ) + L x ; ( ' ( y ) + L y ) M x ; y f o r a l l x 6= y a n d

    s o m e L 2 R g

    W e r e m a r k t h a t L e m m a 4 . 2 i m p l i e s t h a t k T

    '

    k o n l y d e p e n d s o n o s c ' a n d n o t o n k '

    0

    k

    1

    W e

    o b s e r v e t h a t i t i s e n o u g h t o p r o v e t h e i n d u c t i o n s t e p f o r L i p s c h i t z - f u n t i o n s ' w i t h ' 2 C

    1

    a n d i t i s e n o u g h t o p r o v e t h a t t h e r e e x i s t s a c o n s t a n t C = C ( M ) s u c h t h a t

    k T

    '

    k

    L

    1

    ! B M O

    C

    f o r a l l L i p s c h i t z - f u n c t i o n s ' 2 C

    1

    w i t h o s c ' M . T a k e f 2 L

    1

    w i t h k f k

    1

    = 1 . L e t

    I b e a n i n t e r v a l a n d l e t x

    I

    d e n o t e t h e c e n t e r o f I . S e t z ( x ) = x + i ' ( x ) . D e c o m p o s e

    f i n f

    1

    a n d f

    2

    w h e r e f

    1

    = f

    I

    a n d f

    2

    = f ; f

    1

    . F i n a l l y s e t C

    f

    ( I ) = T

    '

    f

    2

    ( x

    I

    ) W e

    s e e t h a t C i s a c o n t i n u o u s f u n c t i o n w i t h r e s p e c t t o t h e e n d p o i n t s o f I . W i t h o u t l o s s o f

    g e n e r a l i t y w e a s s u m e I = 0 1 . F r o m L e m m a 4 . 3 w e o b t a i n a L i p s c h i t z f u n c t i o n s u c h

    t h a t o s c

    9

    1 0

    M a n d E f x 2 I : ' ( x ) = ( x ) g h a s m e a s u r e

    3

    8

    . S e t z

    ( x ) = x + i ( x )

    O u r p u r p o s e i s t o u s e t h e c h a r a c t e r i z a t i o n o f B M O f u n c t i o n s w h i c h i s g i v e n i n L e m m a 4 . 4

    b y s h o w i n g t h a t

    f x 2 I : T

    '

    f ( x ) ; C

    f

    ( I ) < C ( M ) g >

    1

    3

    f o r c o n s t a n t C = C ( M ) c h o s e n l a r g e e n o u g h a n d w h i c h i s i n d e p e n d e n t o f f . I f t h i s i s d o n e ,

    T h e o r e m 1 . 3 f o l l o w s . W e s t a r t w i t h

    T

    '

    f ( x ) ; C

    f

    ( I ) = T

    '

    f ( x ) ; T

    '

    f

    2

    ( x

    I

    )

    T

    '

    f

    2

    ( x ) ; T

    '

    f

    2

    ( x

    I

    ) + T

    '

    f

    1

    ( x ) ; T

    f

    1

    ( x ) + T

    f

    1

    ( x )

    w h e r e x b e l o n g s t o a s u b s e t o f I w h i c h w e w i l l d e n e l a t e r .

    4 3

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    50/144

    F o r x 2 I ,

    T

    '

    f

    2

    ( x ) ; T

    '

    f

    2

    ( x

    I

    )

    Z

    R n I

    z ( x ) ; z (

    1

    2

    )

    ( z ( x ) ; z ( y ) ) ( z (

    1

    2

    ) ; z ( y ) )

    f ( y ) d y

    C

    0

    ( M )

    Z

    R n I

    d y

    x ; y

    1

    2

    ; y

    w h i c h i m p l i e s

    Z

    I

    T

    '

    f

    2

    ( x ) ; T

    '

    f

    2

    ( x

    I

    ) d x C

    0

    ( M )

    F o r x 2 E I ,

    T

    '

    f

    1

    ( x ) ; T

    f

    1

    ( x )

    Z

    I n E

    z ( y ) ; z

    ( y )

    ( z ( x ) ; z ( y ) ) ( z

    ( x ) ; z

    ( y ) )

    f ( y ) d y

    B u t I n E = I

    k

    w h e r e t h e c o m p o n e n t s I

    k

    a r e i n t e r v a l s a n d

    z ( y ) ; z

    ( y ) C

    0

    ( M ) I

    k

    f o r y 2 I

    k

    H e n c e

    T

    '

    f

    1

    ( x ) ; T

    f

    1

    ( x )

    X

    k

    Z

    I

    k

    C

    0

    ( M ) I

    k

    x ; y

    2

    d y x 2 E

    S e t J

    k

    =

    1 0 0 1

    1 0 0 0

    I

    k

    a n d E

    = E \ { (

    k

    J

    k

    )

    I

    k 1

    J

    k 1

    E

    E

    J

    k

    I

    k

    T h e n E n E

    1

    1 0 0 0

    a n d

    Z

    E

    T

    '

    f

    1

    ( x ) ; T

    f

    1

    ( x ) d x C

    0

    ( M )

    X

    k

    Z

    I

    k

    Z

    J

    k

    I

    k

    x ; y

    2

    d x d y C

    0

    ( M )

    X

    k

    Z

    I

    k

    d y C

    0

    ( M )

    F i n a l l y , f r o m t h e h y p o t h e s i s i n t h e i n d u c t i o n s t e p

    Z

    I

    T

    f

    1

    ( x ) d x

    ;

    Z

    I

    T

    f

    1

    ( x )

    2

    d x

    1 = 2

    C

    ;

    9

    1 0

    M

    B u t

    f x 2 I : T

    '

    f

    2

    ( x ) ; T

    '

    f

    2

    ( x

    I

    )

    C

    0

    ( M )

    3

    g

    1

    1 0 0 0

    f x 2 E

    : T

    '

    f

    1

    ( x ) ; T

    f

    1

    ( x )

    C

    0

    ( M )

    3

    g

    1

    1 0 0 0

    f x 2 I : T

    f

    1

    ( x )

    C

    0

    ( M )

    3

    g

    1

    1 0 0 0

    4 4

  • 7/30/2019 Dahlberg B.E.J., Kenig C.E. Harmonic Analysis and Partial Differential Equations (1996)(en)(138s)

    51/144

    i f C

    0

    ( M ) l a r g e e n o u g h . H e n c e f x 2 E

    : T

    '

    f ( x ) ; T f

    2

    ( x

    I

    ) < C

    0

    ( M ) g j j E ;

    4

    1 0 0 0

    >

    1

    3

    i f C

    0

    ( M ) l a r g e e n o u g h a n d w h e r e C

    0

    ( M ) i s i n d e p e n d e n t o f f . ( N o t e t h a t w e h a v e a s s u m e d

    k f k

    1

    = 1 . ) L e m m a 4 . 4 c o n c l u d e s t h a t

    k T

    '

    k C C

    0

    ( M ) = C ( M )

    a n d t h e i n d u c t i o n s t e p i s p r o v e d .

    R e f e r e n c e s

    1 : A .