DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · –...

33
EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 1 EE247 Lecture 17 DAC Converters (continued) Reconstruction filter DAC self calibration techniques Current copiers Dynamic element matching ADC Converters Sampling Sampling switch induced distortion Sampling switch charge injection Complementary switch Use of dummy device Bottom-plate switching EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 2 DAC Reconstruction Filter Need for and requirements depend on application Tasks: Correct for sinc distortion Remove “aliases” (stair-case approximation) B f s /2 0 0.5 1 1.5 2 2.5 3 0 0.5 1 DAC Input 0 0.5 1 1.5 2 2.5 3 0 0.5 1 sinc 0 0.5 1 1.5 2 2.5 3 x 10 6 0 0.5 1 DAC Output Frequency

Transcript of DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · –...

Page 1: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 1

EE247Lecture 17

DAC Converters (continued)– Reconstruction filter

• DAC self calibration techniques– Current copiers– Dynamic element matching

ADC Converters• Sampling

– Sampling switch induced distortion– Sampling switch charge injection

• Complementary switch• Use of dummy device• Bottom-plate switching

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 2

DAC Reconstruction Filter

• Need for and requirements depend on application

• Tasks:– Correct for sinc distortion– Remove “aliases”

(stair-case approximation)

B fs/2

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C In

put

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

sinc

0 0.5 1 1.5 2 2.5 3

x 106

0

0.5

1

DA

C O

utpu

t

Frequency

Page 2: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 3

Reconstruction Filter Options

• Digital and SC filter possible only in combination with oversampling (signal bandwidth B << fs/2)

• Digital filter– Band limits the input signal à prevent aliasing– Could also provide high-frequency pre-emphasis to

compensate in-band sinc amplitude droop associated with the inherent DAC ZOH function

DigitalF ilter

DAC SCFilter

ZOH CTFilter

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 4

DAC Implementation Examples• Untrimmed segmented

– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSC December 1986, pp. 983

– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-Steering CMOS D/A Converter,” JSSC March 2001, pp. 315

• Current copiers:– D. W. J. Groeneveld et al, “A Self-Calibration Technique for

Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517

• Dynamic element matching:– R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp. 795

Page 3: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 5

2µ tech., 5VsupplySegmented (6+2)8x8 array

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 6

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

Page 4: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 7

Current-Switched DACs in CMOS( )

( )

( )

( )

M 1

M 2 M 1 M 3 M 1

M 4 M 1 M 5 M 1

M 2

M 1

M 1

M 1

M 1

M 1

M 1

M 1

2GS th1

GS GS GS GS

GS GS GS GS2

2GS th2 1

GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

V VI kV V 4RI, V V 7RIV V 9RI, V V 10RI

4RI1V VI k I

V V2I

gV V

4RgI I I 1 4Rg12

7RgI I I 1 7Rg12

I

−== − = −= − = −

−−= = − =

→ = ≈ −−

→ = ≈ −−

→ ( )

( )

M 1

M 1

M 1

M 1

2m

4 1 1 m

2m

5 1 1 m

9RgI I 1 9Rg12

10RgI I I 1 10Rg12

= ≈ −−

→ = ≈ −−

Iout

•Assumption: RI is small compared to transistor gate overdriveà Desirable to have gm small

Example: 5 unit element current sources

VDD

I1 I2 I3 I4

Rx4I Rx3I Rx2I

M1 M2 M3 M4 I5M5

RxI

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 8

Current-Switched DACs in CMOSExample: INL of 7 unit element DAC

Input

INL

[LS

B]

Example: 7 unit element current source DAC- assume gmxR=1/100•If switching of current sources sequential (1-2-3-4-5-6-7)

à INL= +0.25LSB•If switching of current sources symmetrical (4-3-5-2-6-7 )

à INL = +0.09, -0.058LSB

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

0

Page 5: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 9

Current-Switched DACs in CMOSExample: DNL of 7 unit element DAC

Input

DN

L [L

SB

]

Example: 7 unit element current source DAC- assume gmxR=1/100•If switching of current sources sequential (1-2-3-4-5-6-7)

à DNLmax= + 0.15LSB•If switching of current sources symmetrical (4-3-5-2-6-7 )

à DNL = + 0.15LSB

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7

Sequential current source switchingSymmetrical current source switching

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 10

More recent published DAC using symmetrical switching built in 0.35µ/3V analog/1.9V digital, area x10 smaller compared to previous example

(5+5)

Page 6: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 11

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 12

I

I/2 I/2

Current Divider

16bit DAC (6+10)- MSB DAC uses calibrated current sources

Page 7: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 13

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 14

I

I/2 I/2

Ideal Current Divider

Current Divider Accuracy

I

I/2+dId /2

Real Current Divider

M1& M2 mismatched

d1 d 2d

d d1 d 2

d d

WLd

thWLd GS th

I II

2

dI I I

I I

ddI 2dV

I V V

+=

−=

= × +

I/2-dId /2

M1 M2M1 M2

àProblem: Device mismatch could severely limit DAC accuracy

Page 8: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 15

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 16

Dynamic Element Matching

( ) ( )

(1) ( 2 )2 2

2

1 1o

o1

I II

21 1I

2 2I

for smal l2

+=

− ∆ + + ∆=

≈ ∆

( )( )

(1) 1 o 11 2(1) 1 o 12 2

I I 1

I I 1

= + ∆

= − ∆

/ 2 error ∆1

I1

During Φ1 During Φ2

I2

fclk

Io

Io/2Io/2( )( )

( 2 ) 1 o 11 2( 2 ) 1 o 12 2

I I 1

I I 1

= − ∆

= + ∆

Page 9: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 17

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 18

Dynamic Element Matching

( )( )

( )( )( )214

1

2)1(

121)1(

3

121)1(

2

121)1(

1

11

1

1

1

∆+∆+=∆+=

∆−=

∆+=

o

o

o

I

II

II

II ( )( )

( )( )( )214

1

2)2(

121)2(

3

121)2(

2

121)2(

1

11

1

1

1

∆−∆−=∆−=

∆+=

∆−=

o

o

o

I

II

II

II

During Φ1 During Φ2

( )( ) ( )( )

( )21

2121

)2(3

)1(3

3

14

21111

4

2

∆∆+=

∆−∆−+∆+∆+=

+=

o

o

I

I

III

E.g. ∆1 = ∆2 = 1% à matching error is (1%)2 = 0.01%

/ 2 error ∆1

I1

I2

fclk

Io

Io/2

/ 2 error ∆2

I3 I4

fclk

Io/4Io/4

Page 10: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 19

SummaryD/A Converter

• D/A architecture – Unit element – complexity proportional to 2B- excellent DNL – Binary weighted- complexity proportional to B- poor DNL– Segmented- unit element MSB(B1)+ binary weighted LSB(B2)à complexity

proportional (2B1-1) + B2 – DNL compromise between the two• Static performance

– Component matching• Dynamic performance

– Glitches• DAC improvement techniques

– Symmetrical DAC element switching rather than sequential switching– Current source self calibration– Dynamic element matching

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 20

MOS Sampling Circuits

Page 11: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 21

Re-Cap

• How can we build circuits that "sample"

Analog Post processing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling+Quantization

"Bits to Staircase"

Reconstruction Filter

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 22

Ideal Sampling

• In an ideal world, zero resistance sampling switches would close for the briefest instant to sample a continuous voltage vIN onto the capacitor C

• Not realizable!

vIN vOUT

CS1

φ1

φ1

T=1/fS

Page 12: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 23

Ideal T/H Sampling

vIN vOUT

CS1

φ1

• Vout tracks input when switch is closed• Grab exact value of Vin when switch opens• "Track and Hold" (T/H) (often called Sample & Hold!)

φ1

T=1/fS

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 24

Ideal T/H Sampling

ContinuousTime

T/H signal(SD Signal)

Clock

DT Signal

time

Page 13: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 25

Practical Sampling

vIN vOUT

CM1

φ1

• Switch induced noise power à kT/C • Finite Rswà limited bandwidth• Rsw = f(Vin) à distortion• Switch charge injection • Clock jitter

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 26

kT/C Noise

In high resolution ADCs kT/C noise usually dominates overall error (power dissipation considerations).

2

2

1212

12

−≥

∆≤

FS

B

B

B

VTkC

CTk

0.003 pF0.8 pF13 pF

206 pF52,800 pF

812141620

Cmin (VFS = 1V)B

Page 14: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 27

Acquisition Bandwidth

• The resistance R of switch S1 turns the sampling network into a lowpass filter with risetime = RC = τ

• Assuming Vin is constant during the sampling period and C is initially discharged

vIN vOUT

CS1

φ1

R

( )τ/1)( tinout evtv −−=

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 28

Switch On-Resistance

Example:B = 14, C = 13pF, fs = 100MHz

T/τ >> 19.4, R << 40Ω

vIN vOUT

CS1

φ1

φ1

T=1/fS

R

( )

( )

12

12

Worst Case:

12 ln 2 1

1 12 ln 2 1

s

in outs

fin

in FS

B

Bs

V V tf

V e

V V

T

Rf C

τ

τ

− = << ∆

<< ∆=

<< −−

<< −−

Page 15: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 29

Switch On-Resistance

( ) ( )

( )

( )( )

0

1,

2

1 1

1 for

1

DS

D triodeDSD triode ox GS TH DS

ON DS V

ON

ox GS th ox DD th in

o

ox DD th

oON

in

DD th

dIW VI C V V V

L R dV

RW W

C V V C V V VL L

RW

C V VL

RR

VV V

µ

µ µ

µ

= − − ≅

= =− − −

=−

=−

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 30

Sampling Distortion

in

DD th

outT V

12 V V

in

v

v 1 e τ

− − −

= −

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

Page 16: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 31

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR is very sensitive to sampling distortion

• Solutions:• Overdesignà Larger

switchesà increased switch

charge injectionà increased switch

drain & source C• Complementary switch• Maximize VDD/VFSà decreased dynamic

range• Constant VGS ? f(Vin)à …

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 32

Practical Sampling

22 1

12B

BFS

C k TV

−≥

( )1 for inON o o ox DD th

DD th

WVg g g C V V

V V Lµ = − = − −

( )1 1

2 ln 2 1Bs

Rf C

<< −−

• kT/C noise

• Finite Rswà limited bandwidth

• gsw = f(Vin) à distortion

• Switch charge injection • Clock jitter

vINvOUT

CM1

φ1

Page 17: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 33

Sampling DistortionEffect of Supply Voltage

10bit ADC & T/τ = 10VDD – Vth = 4V VFS = 1V

10bit ADC & T/τ = 10VDD – Vth = 2V VFS = 1V

• Effect of lower supply voltage on sampling distortionà HD3 increases by (VDD1/VDD2)2

à HD2 increases by (VDD1/VDD2)

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 34

Sampling Distortion

10bit ADC T/τ = 20VDD – Vth = 2V VFS = 1V

• SFDR à sensitive to sampling distortion -improve linearity by:

• Larger VDD • Higher sampling bandwidth

• Solutions:• Overdesignà Larger

switchesà Increased switch

charge injectionà Increased nonlinear S &D junction cap.

• Maximize VDD/VFSàDecreased dynamic range if VDD const.

• Complementary switch• Constant & max. VGS ? f(Vin)

Page 18: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 35

Complementary Switch

φ1φ1B

φ1

φ1B

gon

gop

goT =go

n + gopgo

•Complementary n & p switch advantages:•Increases the overall conductance•Linearize the switch conductance for the range Vtp< Vin <Vdd-Vtn

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 36

Complementary Switch IssuesSupply Voltage Evolution

• Supply voltage scales down with technology scaling• Threshold voltages do not scale accordingly

Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

Page 19: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 37

Complementary SwitchEffect of Supply Voltage Scaling

gon

gop

goT =go

n + gopgo

φ1φ1B

φ1

φ1B

•As supply voltage scales down input voltage range for constant go shrinksà Complementary switch not effective when VDD becomes comparable to Vth

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 38

Boosted & Constant VGS Sampling

• Increase gate overdrive voltage as much as possible + keep VGSconstantØ Switch overdrive voltage is independent of signal levelØ Error from finite RON is linear (to first order)Ø Lower Ron achieved à lower time constant

VGS=const.

Page 20: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 39

Constant VGS Sampling

(= voltage @ the switch source terminal)

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 40

Constant VGS Sampling Circuit

VP1100ns

M12

M8

M9

M6

M11VS1

1.5V1MHz

Chold

P

C1 C2

M1 M2

VDD=3V

M3

C3

M5

M4

P

P_N

This Example: All device sizes:10µ/0.35µAll capacitor size: 1pF

P_N

Vg

Va Vb

Sampling switch & C

Page 21: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 41

Clock Voltage Doubler

C1 C2

M1 M2

VP1 Clock period: 100ns

P_N

P_Boost

VDD

2VDD

0

VDD=3V

R1 R2

*R1 & R2=1GOhmà dummy resistors added for simulation only

P

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 42

Constant VGS Sampler: Φ LOW

• Sampling switch M11 is OFF

• C3 charged to VDD

Input voltagesource

M3

C3

M12

M4

OFF

VS11.5V1MHz

Chold1pF

~ 2 VDD(boosted clock)

VDD

VDD

OFF M11OFF

DeviceOFF

VDD=3V

Page 22: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 43

Constant VGS Sampler: Φ HIGH

• C3 previously charged to VDD

• M8 & M9 are on:C3 across G-S of M11

• M11 on with constant VGS = VDD

Constant Vgs Switch: P is HIGH

C31pF

M8

M9 M11

VS11.5V1MHz

Chold1pF

VDD

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 44

Constant VGS Sampling

Input Switch VGate

Input Signal

Chold Signal

Page 23: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 45

Complete Circuit

Ref: A. Abo et al, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-Digital Converter,” JSSC May 1999, pp. 599.

Clock Multiplier

Switch

M7 & M13 for reliability

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 46

Advanced Clock Boosting

Ref: H. Pan et al., "A 3.3-V 12-b 50-MS/s A/D converter in 0.6um CMOS with over 80-dB SFDR," IEEE J. Solid-State Circuits, pp. 1769-1780, Dec. 2000]

Page 24: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 47

Advanced Clock Boosting Technique

• Gate tracks average of input and output, reduces effect of I·R drop at high frequencies

• Bulk also tracks signal ⇒ reduced body effect (technology used allows connecting bulk to S)

• SFDR = 76.5dB at fin=200MHz (measured)

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314

Sampling Switch

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 48

Switch Off-Mode Feedthrough Cancellation

Ref: M. Waltari et al., "A self-calibrated pipeline ADC with 200MHz IF-sampling frontend," ISSCC 2002, Dig. Techn. Papers, pp. 314

Page 25: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 49

Practical Sampling

vIN vOUT

CM1

φ1

• Rsw = f(Vin) à distortion• Switch charge injection

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 50

Sampling Switch Charge Injection

VIN VO

Cs

M1

VG

• First assume VIN is a DC voltage• When switch turns off à offset voltage induced on Cs• Why?

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

Page 26: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 51

SamplingSwitch Charge Injection

• Channel à distributed RC network• Channel to substrate junction capacitance à distributed & variable• Over-lap capacitance Cov = LDxWxCox associated with GS & GD overlap

MOS xtor operating in triode regionCross section view

Distributed channel resistance & gate & junction capacitances

S

G

D

B

LD

L

Cov Cov

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 52

Switch Charge InjectionSlow Clock

• Since clock fall time >> device speed à During the period (t- to toff) current in channel discharges channel charge into low impedance signal source

• Only source of error à Charge transfer from Cov into Cs

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

tt-

Page 27: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 53

Switch Charge InjectionSlow Clock

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

D

Cov

VG

( )

( )

( )

( )

ovi th L

ov s

ovi th L

s

o i os

ov ovos th L

s s

CV V V V

C C

CV V V

CV V 1 V

C Cwhere ; V V V

C C

ε

ε

∆ = − + −+

≈ − + −

= + +

= − = − −

t-

Cs

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 54

Switch Charge InjectionSlow Clock- Example

( )

' 2ov ox th

ov

s

ovos th L

s

C 0.3 fF / C 5 fF / V 0.5V

C 12 x0.3 fF /.36% 7 bi t

C 1pF

CV V V 1.8mV

C

µ µ

µ µε

= = =

= − = − = − → −

= − − = −

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

VIN VO

Cs=1pF

M1

VG 12µ/0.35µ

t-

Page 28: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 55

Switch Charge InjectionFast Clock

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

VIN VO

Cs=1pF

M1

VG

• Sudden gate voltage drop à no gate voltage to establish current in channel àchannel charge has no choice but to escape out towards S & D

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 56

Switch Charge InjectionFast Clock

( )

( ) ( ) ( )( )

( )

( ) ( )

ov cho H L

ov s s

ox H i thov DH L

ov s s

o i os

ox

s

ov ox H thos H L

s s

C 1 QV V V

C C 2 C

WC V V VC 1 L 2LV V

C C 2 C

V V 1 V

1 WC Lwhere

2 C

C 1 WC L V VV V V

C 2 C

ε

ε

∆ = − − − ×+

− −−≈ − − − ×

+

= + +

= − ×

−= − − − ×

• Assumption à channel charge divided equally between S & D • Source of error à channel charge transfer + charge transfer from Cov into Cs

VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

Page 29: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 57

Switch Charge InjectionFast Clock- Example

( ) ( )

2ov ox th DD

ox

s

ov ox H thos H L

s s

C 0.3 fF / C 5 fF / V 0.5V V 3V

WLC 12 x0.35x5 fF /1 / 2 2.1% 4.5 bit

C 1pF

C 1 WC L V VV V V 9mV 26.3mV 45.3mV

C 2 C

µ µ

µ µε

= = = =

= − = = − → −

−= − − − × = − − = −

VIN VO

Cs=1pF

M1

VG 12µ/0.35µ VG

t

VH

VIN

VL

VIN +Vth

VO

VIN

toff

∆V

t

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 58

Switch Charge InjectionExample

à Both errors are a function of clock fall time, input voltage level, source impedance & sampling capacitance

Clock fall time

ε VOS

Clock fall time

2.1%

.36%

45mV

1.8mV

Page 30: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 59

Switch Charge InjectionError Reduction

( )

( )

( )( )

sON s

ox GS th

cho

s

ox H i thso

sox GS th

2

CR C W

C V VL

1 QV

2 C

WC L V V VC 1FOM V W 2 CC V V

L

LFOM

µ

µ

µ

τ

τ

= =−

∆ = −

− −= ∆ ≈ ×

× ×

• How do we reduce the error?àReduce switch?

àReducing switch size increases τ à increased distortionà not a viable solutionàSmall τ and ∆V à use minimum chanel lengthàFor a given technology τ x ∆V=conts.

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 60

Sampling Switch Charge InjectionSummary

• Extra charge injected onto sampling capacitor @ switch device turn-off– Charge sharing with Cov

– Channel charge transfer

• Issues:– DC offset– Input dependant error voltage à distortion

• Solutions:– Complementary switch?– Addition of dummy switches?– Bottom-plate sampling?

Page 31: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 61

Switch Charge InjectionComplementary Switch

• In slow clock case if area of devices are equal à effect of overlap capacitor for n & p devices cancel to first order (matching n & p area)

φ1φ1B

φ1

φ1B

VG

t

VH

VIN

VL

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 62

Switch Charge InjectionComplementary Switch

Fast Clock

• In fast clock case §Offset cancelled for equal device area§Input voltage dependant error worse!

φ1

φ1B

VG

t

VH

VIN

VL

( )

( )

( )

ch n n ox n H i th n

th pch p p ox p i

ch p ch no

s s

o i os

n ox n p ox p

s

Q W C L V V V

VQ W C L V VL

Q1 QV

2 C C

V V 1 V

W C L W C L1

2 C

ε

ε

− −

−−

− −

= − −

= − −

∆ = −

= + +

+= − ×

Page 32: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 63

Switch Charge InjectionDummy Switch

VIN VO

Cs

t

VH

VIN

VL

VG VGB

• Dummy switch same L as main switch but half W • Main device clock goes low, dummy device goes high à dummy switch acquires

same amount of channel charge main switch needs to lose§ Effective only if exactly half of the charge transferred to M2 and good matching

between clock fall/rise

WM2=1/2WM1

VG VGB

M1M2

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 64

Switch Charge InjectionDummy Switch

VIN VOM1

VG

M2

VGB

§ To guarantee half of charge goes to each sideà create the same environment on both sidesvAdd C equal to sampling capacitor to the other side of the switch +

add fixed resistor§ Degrades sampling bandwidth

CsCs

RWM2=1/2WM1

Page 33: DAC Reconstruction Filter - EECS Instructional Support ...ee247/fa05/lectures/L17_2_f05.pdf · – Reconstruction filter • DAC self calibration techniques ... – Current source

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 65

Dummy SwitchDummy Switch Effectiveness Test

Ref: L. A. BIENSTMAN et al, “ An Eight-Channel 8 13it Microprocessor Compatible NMOS D/A Converter with Programmable Scaling”, IEEE JSSC, VOL. SC-15, NO. 6, DECEMBER 1980

• Dummy switch àW=1/2Wmain

• Note large Lsà good device

area matching

EECS 247 Lecture 17: Data Converters © 2005 H.K. Page 66

Switch Charge InjectionBottom Plate Sampling

VI+

VO+

M1A

VI-

VO-M1B •Switches M2A@ B are opened slightly earlier

compared to M1A&Bà Injected charge by the opening of M2AB is constant & eliminated when used differentially

•Since bottom plate of Cs is open when M1A&B are openedà no charge injected on Cs

φ1b

φ1a

M2B

M2A

φ1aVH

VL

t

φ1bCs

Cs