D. Rikard Mikalsen University of Newcastle

19
Marine engineering research Sir Joseph Swan Institute for Energy Research Newcastle University Rikard Mikalsen 26 January 2010 Santiago de Compostela

description

Presentación del ponente D. Rikard Mikalsen University of Newcastle, en la Jornada Transnacional "Demostración Tecnológica en la Industria Auxiliar del Naval" Realizada el 26 de enero de 2010, en Santiago de Compostela

Transcript of D. Rikard Mikalsen University of Newcastle

Page 1: D. Rikard Mikalsen University of Newcastle

Marine engineering research

Sir Joseph Swan Institute for Energy Research

Newcastle University

Rikard Mikalsen26 January 2010

Santiago de Compostela

Page 2: D. Rikard Mikalsen University of Newcastle

Sustainable Power Research Group

 Led by Professor Tony Roskilly.

~14 research/technical staff, ~7 PhD students.

Key research areas: Engine condition monitoring and fault diagnostics.

Marine robotics and control.

Alternative heat engines / refrigeration cycles.

Alternative fuels.

Combined heat and power / tri­generation.

Modelling and simulation of complex systems.

Page 3: D. Rikard Mikalsen University of Newcastle

HISMAR project Hull Identification System for Marine Autonomous Robotics.

Funded through EU FP6; 10 partners; led by Newcastle.

Inspects and cleans ship hull.

Optical positioning and navigation system.

Magnetic attachment and landmark detection for position tracking and hull integrity analysis.

Currently at commercialisation stage.

Further information: www.hismar.eu

Page 4: D. Rikard Mikalsen University of Newcastle

Engine condition monitoring Condition monitoring; 

operational optimisation; emissions control.

Thermal overload prediction in large marine engines.

Monitoring and detection of cylinder liner scuffing.

Influence on ambient conditions on engine performance.

Page 5: D. Rikard Mikalsen University of Newcastle

Alternative fuels Biodiesel and bio­oil engine operation.

Efficiency and emissions testing.

Combustion modelling validation.

Injection properties; viscosity control.

Small marine craft trials carried out.

Dual fuel operation: improve combustion of low­quality fuels by gas injection.

New experimental facility funded by Carbon Connections.

Page 6: D. Rikard Mikalsen University of Newcastle

Dual fuel CHP facility

Page 7: D. Rikard Mikalsen University of Newcastle

Dual fuel CHP facility

Page 8: D. Rikard Mikalsen University of Newcastle

Dual fuel CHP facility

Page 9: D. Rikard Mikalsen University of Newcastle

Dual fuel CHP facility

Page 10: D. Rikard Mikalsen University of Newcastle

Dual fuel CHP facility

Page 11: D. Rikard Mikalsen University of Newcastle

Hydrogen-fuelled CI engine Low emissions: no CO, CO2, HC; very low NOx.

Fast combustion: high thermal efficiency.

Both direct injection and homogeneous charge compression ignition (HCCI) systems developed and tested.

Page 12: D. Rikard Mikalsen University of Newcastle

Novel engine/refrigeration cycles

Recuperated Joule (gas turbine) thermodynamic cycle with reciprocating compressor and expander.

Continuous, external combustion     low emissions; fuel flexible.→

Efficiency advantages in small scale: suitable for micro­CHP systems.

Reciprocating Joule cycle concept

Page 13: D. Rikard Mikalsen University of Newcastle

Over­expanded engine: utilises energy normally lost to exhaust gases.

Efficiency improvements particularly at low compression ratios.

Can be used to reduce emissions (NOx).

Miller cycle engines

Refrigeration cycles

Expertise in ab­/adsorbtion refrigeration cycles.

New cycles / configurations; applications in e.g. fishing vessels.

Page 14: D. Rikard Mikalsen University of Newcastle

Free-piston engines

Linear, “crankless” engine.

Simple; compact; low mechanical losses.

High­pressure operation possible: no load­carrying bearings.

Variable compression ratio.

Modular; flexible engine layout.Further information: www.free­piston.eu

Page 15: D. Rikard Mikalsen University of Newcastle

Free-piston engines No crank system   very low frictional losses.→

Lower lubrication requirements; reduced wear.

Low ignition timing requirements   suitable for HCCI.→

Challenge: piston motion control (load changes and cycle­to­cycle variations).  

Page 16: D. Rikard Mikalsen University of Newcastle

Other ongoing projectsBio­fuel micro­trigeneration with cryogenic energy storage. UK­China collaboration (Leeds, Ulster, Shanghai Jiaotong, Guangxi, ...).

Funded by EPSRC (£1.1M)

Thermal management of industrial processes Major industrial companies involved (Alstom, BP Chem., Corus, Pfizer).

Research project and network funded by EPSRC (>£1M).

Pose2idon: Power Optimised Ship EU FP7 funded; led by BMT Defence Services Ltd.

Life cycle analysis; environmental impact assessment.

Page 17: D. Rikard Mikalsen University of Newcastle

Recent publications Roskilly, A.P, Nanda, S.K, Wang, Y.D, Chirkowski, J. The performance and the gaseous emissions of two 

small marine craft diesel engines fuelled with biodiesel. Applied Thermal Engineering 2008; 28:872­880.

Huang JC, Wang YD, Roskilly AP et al. Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol­diesel blends. Applied Thermal Engineering 2009; 29:2484­2490.

Wang YD, Roskilly AP, Huang Y. Trigeneration Integrated with Absorption Enhanced Reforming of Lignite and Biomass. Fuel 2009, 88(10), 2004­2010.

Nanda, S.K, Roskilly, A.P. Performance monitoring of slow­speed diesel engines by dynamic exhaust gas measurement and oxygen concentration measurement of blow down exhaust gas. 25th CIMAC World Congress on Combustion Engine Technology 2007. Vienna.

Gomes Antunes J.M., Mikalsen R., Roskilly A.P. An investigation of hydrogen fuelled HCCI engine performance and operation. International Journal of Hydrogen Energy, 2008; 33:5823­5828.

Gomes Antunes J.M., Mikalsen R., Roskilly A.P. An experimental study of a direct injection compression ignition hydrogen engine. International Journal of Hydrogen Energy, 2009; 34:6516­6522.

Mikalsen R., Wang Y.D., Roskilly A.P. A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications. Applied Energy, 2009; 86:922­927.

Page 18: D. Rikard Mikalsen University of Newcastle

Recent publications Wang YD, Lin L, Zeng S, Roskilly AP, et al. Application of the Miller cycle to reduce NOx emissions from 

petrol engines. Applied Energy 2008, Volume 85(Issue 6), Pages 463­474.

Wang YD, Lin L, Roskilly AP, et al. An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Applied Thermal Engineering 2007, 27(11­12), 1779­1789.

Tunwattana N, Roskilly AP, Norman RA. Investigations into the effects of illumination and acceleration on opitcal mouse sensors as contact­free 2D measurement devices. Sensors and Actuators A, 2009; 149:87­92.

Mikalsen R., Roskilly A.P. A computational study of free­piston diesel engine combustion.  Applied Energy, 2009; 86:1136­1143.

Mikalsen R., Roskilly A.P. Coupled dynamic­­multidimensional modelling of free­piston engine combustion.  Applied Energy, 2009; 86:89­95.

Mikalsen R., Roskilly A.P. The control of a free­piston engine generator. Applied Energy, 2010; 87:1273­1287.

Mikalsen R., Jones E., Roskilly A.P. Predictive piston motion control in a free­piston internal combustion engine. In press:  Applied Energy, 2010.

          For a full list, please see www.ncl.ac.uk/energy.

Page 19: D. Rikard Mikalsen University of Newcastle

Thank you.

Rikard Mikalsen

Sir Joseph Swan Institute for Energy Research

Newcastle University

www.ncl.ac.uk/energy