Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions...

60
ÐOÀN Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire du rift de Corinthe
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    220
  • download

    0

Transcript of Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions...

Page 1: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

ÐOÀN Mai LinhInstitut de Physique du Globe de Paris

Étude in-situ des interactions hydromécaniques

entre fluides et failles

Application au laboratoire du rift de Corinthe

Page 2: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Fluid-fault interactions

Fault closed

Fluid pressureBuild-up

Fault slip

Fluid Pressuredecrease

Fault-valve mechanism (Sibson70)Example of fluid-fault hydromechanical coupling:

Page 3: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Motivations

Lots of theory andlaboratory

works

But field data:• altered outcrops after slip• dynamical seismics indirect

After Matthai (1992)

Page 4: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

I Presentation of the Gulf of Corinth and the DGLAB project

II Characterization of the hydraulic setting

III A peculiar kind of hydraulic transients: Events triggered by far earthquakes

I Presentation of the Gulf of Corinth and the DGLAB project

II Characterization of the hydraulic setting

III A peculiar kind of hydraulic transients: Events triggered by far earthquakes

Structure of the presentation

Page 5: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The Corinth Rift

From Jolivet (2005)

Greece

Complicated geodynamics

subduction

extension

Complexgeology

Pindos

Gavrovo-Tripolitza

shear zone

Rift of Corinth

Page 6: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The Corinth Rift

1.5cm/yr

Aigio fault

1-3cm of slip

After Koukouvelas (1998)

After Bernard (1997)

Page 7: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Deep Geodynamic LABoratory

0.5±0.1MPa

0.9±0.1MPa

karst

South North

Page 8: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Initial hydraulic knowledge of the Aigio fault

Impervious fault

• Difference in overpressure

K=0.9-2 10-18m²(Song,2004)

• Laboratory test on core samples

• Difference in mineralization

Page 9: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Initial hydraulic knowledge of upper aquifer

Hydraulic tests by GFZ – July 2003

(Giurgea, 2004)

Dra

wdo

wn

[m]

Double porosity model

Bulk properties

Matrix properties

Results to be taken

with caution

Page 10: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Initial hydraulic knowledge of the karst

Q~600m³/hk=1-1.5 10-5 m/s

No storativity

k

lnRr b

2 HPg

Q

Permanent regime Dupuit formula

Page 11: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

AIG10 permanent sensors

Page 12: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Pressure sensors

2 absolute pressure gauges- high precision- low precision1 relative pressure gauge- hydrophone

Log10

(Frequency [Hz])

Log

10(P

ress

ure

[MP

a])

Tides

Page 13: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Structure of the presentation

I Presentation of the Gulf of Corinth and the DGLAB project

II Characterization of the hydraulic setting

III A peculiar kind of hydraulic transients: Events triggered by far earthquakes

Page 14: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Quality of the pressure signalPressure

Pre

ssur

e (B

ar)

UT Time

Resolution better than 1%

The pressure is similar to that of the karst The karst dominates the measured pressure

Page 15: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Strategy

Long-termfluctuations

Tidal calibration

ThermalRegime

Tidal calibration

How sensitive is the pressure signal to deformation ?

What are the dimensions

of the aquifers ?

How waterflows through the aquifers ?

Page 16: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Tidal inversion

Triple origine

Earth Tide (Prediction ETERNA 3.3)

Aigion

Oceanic load (P. Bernard)

Trizonia

(Aigio)

Also

Barometric pressure (V. Léonardi)

Temeni

Page 17: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Input: Theoretical tidal strain in Aigio

Input: Barometric pressure in Temeni

Input: Tide gage in Trizonia

Ouput: pressure in Aigio

Linear regression on the input data

Analysis of the tidal signal

Page 18: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

dP=2.748 10-4 dhoc

– 1.784 10-4 dter No offset

Analysis of the tidal signal

Page 19: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Barometric effectBad weather at the end of the year 2003

Observed pressure (detided) Atmospheric pressure

Page 20: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Interpretation of the coefficients

Poroelastic model (large wavelengths)

P

ter

B K u

PPatm

B 1 u

3 1 u

P

ter

B K u

P

ter

B K u

B Ku=17±1GPa =0.3±0.1

B : Skempton coefficientK

u : Undrained bulk modulus

u : Undrained Poisson ratio

: Barometric efficiency

Page 21: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Oceanic loadN SAig10Oceanic load

Loading profile at a depth of 700m induced by a unit load

Water flux

The oceanic load should induce a phase lag !

Distance to southern shore (m)

σ xx+σ zz

/2ρg

h

AIG10

Page 22: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Influence of boundariesN SAig10Oceanic load

Aigiofault

Helikefault

Can the presence of impervious faults explainthis absence of phase lag ?

Analytical prediction of phase lag for a 1D aquifer with impervious boundaries

Page 23: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Oceanic load

Map of semi-diurnal phase lag (°) for a semi-infinite ocean

L

x/L

Phase lag[-5 min 5min]

[-2.5° 2.5°]

L

x

N

S

L

x

N

Page 24: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Is Aigio fault impervious at all depths ?

Page 25: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Tidal information

Long-termfluctuations

Tidal calibration

Thermalregime

How sensitive is the pressure signal to deformation ?

What are the dimensions

of the aquifers ?

How waterflows through the aquifers ?

Poroelastic parameters → excellent « strain » sensor

Tidal calibration

Karst confinedin a NS direction.By Aigio fault ?

Storativity → Hydraulic

diffusivity

Tidal calibration

Long-termfluctuations

Page 26: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Long-term dataPressure

Time

Pre

ssur

e (b

ar)

1 year

14 kPa

Flow betweenthe two previouslyindependent aquifers

Nosharpseasonal variations

Page 27: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Analytical solutionAxisymmetric response for infinite aquifers

Pre

ssur

e (b

ar)

Time (day)

Axisymmetric analytical solutions Finite aquifers

Transients controlled by the radii of the aquifers and borehole radius

Page 28: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Development of the FEM2.1D method

1. Finite Element Method 2D to describe flow

in upper and lower aquifers

Efficient Keep the characteristic distance of the well radius

2. Manual coupling at a well node (0.1D) Same pressure Mass conservation of fluid

Page 29: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Dimensions of the aquifers ?

Can the decrease in pressure observed during the first 3 monthsprovide constraints on the dimensions of the aquifers ?

Try to find plausible configurations

Rectangular-shaped aquifers 4 unknownsHydraulic properties of the upper aquifer 1 unknown (storativity)

2 pieces of information to fit : amplitude and duration of the drop

Page 30: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Dimensions of the aquifers ?

Time (days)

Pre

ssur

e (b

ar)

Upper aquifer: LNS=1000m LWE=200m

Lower aquifer: LNS=5000m LWE=?

Too small

Too slow

Pertinence ofThe homogeneous

Model for the karst ?

Page 31: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Long-termfluctuations

Storativity → Hydraulic

diffusivity

Karst confinedin a NS

direction

Poroelastic parameters → excellent « strain » sensor

Long-term information

Tidal calibration

ThermalRegime

Tidal calibration

Long-termfluctuations

Thermalregime

Hydraulicdiffusivity

(Almost) no flow

Both aquifersare confined

Page 32: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Thermal profile

Depth (m)

Tem

pera

ture

(°C

) 1 year after drilling

Page 33: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Heat flow measurement

=

50±10 mW/m2~22°C/km

Page 34: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

H > 400 m

ρ

ρ

pf

P

C

HTKgaR

24 CP aRaR

Relation Ttzt

from extrapolation ofThermal gradient

Karst convection

qb= 70mW/m² qb=100mW/m² qb=200mW/m²

770m

zt

Tt

Tmes

Fault vertical offset=150m

zt-770m <150m

H>600 m Gavrovo-Tripolitza nappe

Page 35: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Thermal anomaly

Heat generated by fault slip does not explain this anomaly

Temperature (°C)30 30.2 30.4 30.6 30.8 31 31.4 31.6 31.831.2

700

710

740

Dep

th (

m)

720

730

But the introduction of thekarst convection does.

Karst in conduction

Karst in convection

500

1000

1500

Temperature (°C)3020100 40 50 60

Page 36: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Hydraulicdiffusivity

(Almost) no flow

Long-termfluctuations

Poroelastic parameters → excellent « strain » sensor

Thermal information

Tidal calibration

Both aquifersare confined

Thermalregime

Tidal calibration

Hydraulicdiffusivity

Internal advection

Both aquifersare confined

Large vertical extension

Low heat flow50±10 mW/m²

Page 37: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Structure of the presentation

I Presentation of the Gulf of Corinth and the DGLAB project

II Characterization of the hydraulic setting

III A peculiar kind of hydraulic transients: Events triggered by far earthquakes

Page 38: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

A panel of hydraulic anomalies

~2minute-long

~2minute-long ~30minute-long

~10minute-long

Only associated withteleseismic transients

~200 events/yr

~100 events/yr~20 events/yr

2 events/yr

10-400 Pa

10-200 Pa

10-200 Pa

50-60 Pa

Time

Pre

ssur

e

Page 39: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The Mw=7.8 Rat Island Earthquake

November, 17th 2003 06:43 UTC

Drop of 60 Pa(equivalent to 3.5nstr)

5min 30min

Much earlier than other publishedtriggered events

BKu~17GPa

determined from tidal analysis

Page 40: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Review of triggered hydraulic anomalies

Distance to epicenter (km)

Mag

nitu

de

Strain<10-8

Strain>10-8

2003Rat Island

Event

After Montgomery and Manga (2003)

Page 41: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Comparison with other local sensors

Anomalous drop on pressure data only

h<5nstr

Aigio

Trizonia

0 10km

Sacks-EvertsonStrainmeter

STS2broad-band

Seismometer(North component)

LF signal

Page 42: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Validity of the pressure dataNyquist frequency

of the pressure sensor

Fre

quen

cy

Time

Good correlation of both sensors

P

h

Comparison of seismic oscillations of both «deformation» sensors

- Strainmeter- Pressure

Page 43: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Response to a dislocation

Fault movement

Average of pressureanomaly

along the borehole

Poroelastic responseHETEROGENEOUS

along the borehole

One single wellhead value

Page 44: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Response to a dislocation

yx

y

zx

Dip direction

Average of pressure along the borehole induced by a double-couple located at (x,y)

Map of Log10

(Pressure anomaly) for D×S=1m3

Distance from borehole

~ √hydraulic

trelaxation

D×S~1m3

S= slip areaD= relative displacement

M0=DS

<5000m3 (Trizonia data)

Page 45: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

High-frequency hydrophone data

Pressure HydrophoneClose-up

Time

+0.000

07:15

07:05 07:10 07:15

Hydrophone

UTC Time 07:07:02

+0.100

07:1007:05

07:05 07:1507:10

Page 46: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Angle of slip

yx

y

zx

Fault plane

Slickensides

Average of pressure along the borehole induced by a double-couple located at (x,y)

Map of Log10

(Pressure anomaly) for D*S=1m3

Not seen by pressure sensor D*S<0.1-1m3

Page 47: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The Mw=9 Sumatra event

Data acquisition problem Irregular sampling

P S

Pressurein Aigio

Strainin Trizonia

Below Nyquist frequency

December, 26th 2004 00:58 UTC

Page 48: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Hydraulic characterisation of AIG10● We measure the pressure of the bottom karst

● Poroelastic response to both Earth tides and ocean load Sensitive “strain” sensor

● Aquifers are confined with almost no flow at the boundariesand internal convection within the karst

● Aigio fault is impervious at the intersection with the boreholebut is it the case below the Pindos nappe

● Low heat flow

Hydraulic characterisation of AIG10

It is now possible to model the wellhead pressure response to

fault movement within an homogeneous poroelastic framework

Conclusion

Hydraulic anomalies● A large set of hydraulic anomalies.● An anomalous hydraulic anomaly

dynamically triggered by S waves from a teleseism, with a concomitant local microseismic event

Hydraulic anomalies

The DGLAB project provides the opportunityto study

dynamic fluid-fault interactions

Page 49: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Perspectives

Interpretation of the remaining hydraulic events

• But we monitor fluids around a fault rather than fluids inside a fault

• But no independent evaluation of fluid evolution and fault movement

Better knowledge of the surrounding seismicity Better interpretation of the hydrophone signal

Better understanding of the aquifer and its heterogeneities

Page 50: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

PerspectivesExpected full instrumentation

0 m

700 m

750 m

870 m

1000 m

Hydrophone

Hydrophone

3C Seismometer

High-precisionpressure gage

High-precisionpressure gage

Installation of thewhole instrumentation

scheduled in March 2006

Page 51: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.
Page 52: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Link between storativities

S = uniaxial storativity 11= 22=0, dσ33=0

S = unstrained storativity =0Sσ = strained storativity dσ=0

S S Sσ

S = (1-αB) Sσ

Page 53: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The AIG10 borehole

0.5±0.1MPa

0.9±0.1MPa

karst

Page 54: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Age of the karst waterSimple optimistic model :

Čermák model

T>1000 yr(In accordance

with the absence of Tritium in water)

Page 55: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

The lower aquifer is karstic

800

900

Page 56: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Are the aquifers well confined ?

Page 57: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Long-termfluctuations

All the three studies were necessary

Tidal calibration

Thermalregime

Tidal calibration

Page 58: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Pressure sensors

2 absolute pressure gauges- high precision- low precision1 relative pressure gauge- hydrophone

Log10

(Frequency [Hz])

Log

10(P

ress

ure

[MP

a])

Tides

Page 59: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Development of the FEM2.1D method

1. Finite Element Method 2D on each aquifer2. Manual coupling at a well node (0.1D)

Efficient Keep the characteristic distance of the well radius

Analytical axisymmetric solutions shows that the transitory regime

is partly controlled by the borehole radius

Page 60: Ð O À N Mai Linh Institut de Physique du Globe de Paris Étude in-situ des interactions hydromécaniques entre fluides et failles Application au laboratoire.

Conclusion

Hydraulic anomalies● A large set of hydraulic anomalies.

● A anomalous hydraulic anomaly dynamically triggered by S waves from a teleseism,

with concomitant a local seismic event

Borehole instrumentation provides tools to understand the triggering mechanism

Hydraulic characterisation of AIG10● We measure the pressure of the bottom karst

● Poroelastic response to both Earth tides and ocean load Sensitive “strain” sensor

● Aquifers are confined with almost no flow at the boundariesbut internal convection within the karst

● Aigio fault is impervious at the intersection with the boreholebut is it the case below ?

● Low heat flow and rigid block. Not a process zone.