Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved...

32
IBOIS Laboratory for Timber Constructions Curved Origami beams 24 April 2012 Curved Origami beams Laurent HUMBERT Statuseminar SAH 2012 24 April 2012 Hani BURI Yves WEINAND

Transcript of Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved...

Page 1: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Curved Origami beams

Laurent HUMBERT Statuseminar SAH 2012

24 April 2012

Hani BURI

Yves WEINAND

Page 2: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

1) Origami beam geometry

2) Experimental investigation

Outline

3) Numerical study

- Origami principles

- Parameterization

Conclusion

Page 3: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

1) Curved prototypes geometry

Origami principles :

Reverse fold as a reflection about a plane

a) with planar elements

Page 4: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

1) Curved prototypes geometry

Origami principles :

Reverse fold as a reflection about a plane

a) with planar elements

Page 5: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

1) Curved prototypes geometry

Origami principles :

Reverse fold as a reflection about a plane

b) with curved elements

Page 6: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

1) Curved prototypes geometry

Origami principles :

Reverse fold as a reflection about a plane

b) with curved elements

Page 7: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Geometric Design: Construction by two Profile Curves

a) Folded plate structures b) Curved origami figure

Page 8: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Curved origami beam

Page 9: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Roofing structure composed of several elements

Page 10: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

• Slowly varying height along arc E of constant curvature (plane x-z), similarly

for the beam width

Geometrical considerations:

• Beam axis x directed along the line of centroïds

0 x L

cross section at x=L/2

cross section at x= 0

• Cross sections parallel to the y-z plane, delimited by the vertices a, b, c, d at

the mid-thickness of the panel

Beam length L [mm]

Global coordinate system xyz

Page 11: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

h0, h1, h2 : beam heights at x = 0, (L-S)/2, L/2 respectively

Elevation (plane x-z):

E

2 0max

2z

h hf

Radius r of arc E:

2

22

max4

z

Lr r f with

2 2

max

max

4

8

z

z

f Lr

f

solving,

E

Page 12: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Half-height evolution :

max sin 1z zf f r x

with the variable part,

0

2z

hh x f x

max

0 0

2

z

z z

f

f L f

such that

0

0 max 2

0 2

2 2 2z

h h

h L h f h

Not at scale !

2

acosL x

xr

where

L

Page 13: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Half-width evolution :

tan2

y zf x f x

max max tan2

y zf f

22 max

2y y y

ww x f f f x

with

2 22 tan cotan

2 2 2y

h hf

max

0 0

2

y

y y

f

f L f

such that

2 2 max

2 2

0 2

2 2

y y

y

w w f f

w L w f

max max 2, 02

y z yf f f when

Page 14: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

y

z

a

a

a

Vertices coordinates:

t : panel thickness [mm]

y

z

b

b

by

z

c

c

cy

z

d

d

d

where,

y

z

a x w x

a x h x

2 cotany y z

z z

b x a x a x

b x a x

y y

z z

d x a x

d x a x

y y

z z

c x b x

c x a x

Page 15: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

• Parametrization of the curved beam:

Li

S

- length/span ratio :

- height at end / height at mid-length ratio :

0

2

hq

h

- height / width ratio at mid-length:

2

2

hp

w

- Reflection angle

(loading consideration)

Page 16: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

- “Aspect” ratio :

max2 2 max,

hk h w h

S half the perimeter at mid-length

2

2

hp

w

Same value of k for the two configurations

Cross section at x=L/2 (=90°)

1p 3p

2w

2h

square rectangular

maxh

Page 17: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

k=0.2

p=1

q=1/4

= 90 °

p=1

q=1/4

= 90 °

k=0.1

Illustration:

Page 18: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

20

max

hp

halternatively,

p=3

q=1/4

= 90 °

p= 3

p0=0.75 where 0

01

pp

p

k=0.1

p=3

q=1

= 90 °

k=0.1

constant cross section :

Page 19: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Limiting cases :

q=0

0 1

p

p

Page 20: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

2) Experimental investigation

• Curved prototypes of length 2m :

OB1, OB2, OB3

Prototypes:

• Screwed and glued connection between the panels

• Okoumé plywood panels (three plies) of thickness t = 6 mm

1 2

3

4 6 7

mid-length

8

5

9 10

• 10 Stiffeners - Okoumé plywood of thickness 22 mm :

4-5-6-7 linked together

2, 9 placed at support position

Page 21: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

mid-surfaces of stiffeners and panels depicted

S = 1778 mm

L = 2000 mm

h0 = 33.33 mm

w0 = 340.71 mm

h2 = 200 mm

w2 = 170.59 mm

Parameters values:

1.1249i

0.166q

1.172p

78 44

0.208k

Page 22: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Experimental setup:

Load cell 1

Load cell 0

S=1778mm

LVDTs

LVDT

W+B 300kN loading system Four point bending test :

transducers locations (i=1..7)

(2)

F0 F1

(3) (4) (5) (6)

(7) (1)

290 290 309 290 290 309

three specimens OB1, OB2, OB3

Load cell 1 Load cell 0

S=1778mm

LVDTs

LVDT LVDT

OB1 and OB2

OB3

LVDTs

transducers locations (i=1..5)

(1)

F0 F1 (2) (3) (4) (5)

444 445 445 444

S/3 S/3

Page 23: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

F0 F1 F0+F1

OB1 6.7 6.4 13.1

OB2 8.5 8.1 16.6

OB3 5.8 5.7 11.5

Maximum load (KN) :

- Loading process:

- Imposed grip displacement at 0.05mm/s

OB1

OB2

OB3

Failure :

Page 24: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Measurements of deflection :

Increasing load

OB3 OB2

OB1

F0+F1 (KN)

(1) (2) (3)

OB1 2.02 4.10 8.08

OB2 1.99 4.11 8.04

OB3 2.07 4.00 7.96

(1)

(2)

(3)

Three levels of loads

examined

Page 25: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

3) Numerical study – 1D simplified model

• Frame work : bending analysis of elastic beams with general cross section variation :

assumptions : - classical Euler beam theory

- homogeneous material

- rigid connections between the panels

• Model implemented in Matlab :

- Finite Element formulation not used here

- handling problems with - depth/width beam variations

- any number of concentrated/linearly varying distributed loads

- general end conditions

- interior supports

Page 26: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

0

0

0 0

0n

n

x xx x

x x x x

• Implementation

-Use of singularity functions of order n (=-1,0,1):

satisfying,

1

0 0

1

1

xn n

o

x x dx x xn

n= -1 : appropriate for describing a concentrate load

Nf concentrated loads Fj acting at positions x fj

Nr ramped loads varying (linearly) between j jp x q

-Prescribed (general) external loads :

1 0 0 1 1

1 1

f rN N

j j

e j j j j j j j j

j j j j

Q Pw x F x f P x p Q x q x p x q

q p

x

F1

F2

F3 P1 Q1 P2 Q2

0 x L

L : beam length

L

Page 27: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Moment & deflection:

'm x v

Shear & load:

1

0

1

0

0

1

.

'

',

s

s

N

e j j

j

x

e j e

N

j

j

e

v x q x w x R x r

v x v v xd

v x w x dxdx

R x r

NS reaction forces Rj (to be determined) at the support positions x r

j

- System of differential equations :

1

0

1 0

0 ,sN

j e ee

x

j

j

m mx m v x m x R x x vr x dx

+ four end conditions imposed at x=0 and x=L

x

R1 R2

R3

''

m xy x

E I x

varying cross section moment of inertia I(x) ,

Young modulus E

Page 28: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

a= S/3

L

F1 F0

a a

S

• Loading configuration (four-point bending) :

• Simulated geometry:

L (mm) 2000

i 1.125

q 0.166

p 1.172

78°44

k 0.208

Young modulus E=2398 MPa

(from Thebault company)

Page 29: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Normal and shear maximum stresses evolution :

Simulation for F0+F1=2KN

Page 30: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Deflection curves

Comparison between experimental & numerical results

S

Numerical model

Page 31: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

Conclusion

• Efficient parameterization of the origami beam geometry

• Experimental & numerical characterization of the mechanical

behavior of (small) origami beams under static bending load

• Application of origami principles to curved beams with

potential architectural interest

Page 32: Curved Origami beams - École Polytechnique Fédérale de · PDF fileCurved Origami beams January 201224 April 2012 Curved Origami beams Statuseminar SAH 2012 Laurent HUMBERT 24 April

IBOIS Laboratory for Timber Constructions

Curved Origami beams January 2012 Curved Origami beams 24 April 2012

• Prospects:

Parameters values:

i =1.1

q=1

p=5.666

=90

k=0.05

i =1.1

q=0.176

p=5.666

=90

k=0.05

i =1.1

q=1

p=1.609

=90

k=0.05

S = 4000 mm

L = 4400 mm

t = 15 mm

Larger prototypes with different section profiles and material

Introduction of semi-rigid dove-tail joints (no stiffeners)

Numerical investigation of the joints mechanical

behavior