Current Biology Supplemental Information Org 1 Dependent …€¦ ·  · 2015-04-07Org-1-Dependent...

7
Current Biology Supplemental Information Org-1-Dependent Lineage Reprogramming Generates the Ventral Longitudinal Musculature of the Drosophila Heart Christoph Schaub, Johannes März, Ingolf Reim, and Manfred Frasch

Transcript of Current Biology Supplemental Information Org 1 Dependent …€¦ ·  · 2015-04-07Org-1-Dependent...

Current Biology

Supplemental Information

Org-1-Dependent Lineage Reprogramming

Generates the Ventral Longitudinal

Musculature of the Drosophila Heart

Christoph Schaub, Johannes März, Ingolf Reim, and Manfred Frasch

Supplemental  data  

 

Figure   S1.   Lack   of   larval   alary   muscle   phenotypes   upon   org-­‐1-­‐driven   knock-­‐

down   of  Mef2,   tup,   EcRDN,   and   HtlDN   and   the   role   of   cardioblast-­‐intrinsic   EcR  

signals.  Related  to  Figures  3  and  4.  

(A-­‐D)  Control  stainings  of  late  3rd  instar  larvae  carrying  org-­‐1-­‐RFP  showing  that  

org-­‐1-­‐GAL4-­‐driven  expression  of  dsRNA  against  Mef2  (A),  tup  (B),  and  dominant-­‐

negative  versions  of  EcR  (C)  and  Htl  (D)  do  not  elicit  any  effects  on  alary  muscle  

morphologies   prior   to   pupariation.   Shown   are   dorsal-­‐anterior   views   of   live  

larvae.   (E)   Phalloidin-­‐staining   of   dorsal   vessel   from   adult   with   tinCΔ4-­‐GAL4-­‐

driven  EcRDN  in  cardioblasts  showing  only  mild  effects  on  VLM  formation.  Scale  

bars  of  (A)–(E)  represent  100  µm.  

Supplemental  Material  &  Methods  

Analysis  of  pupal  and  adult  phenotypes  

Individuals  were  kept  and  GAL4/UAS-­‐induced  overexpression  was  carried  out  at  

22°C,   except   for   the   experiments   using   TARGET   [S1],   which   involved  

temperature   shifts   to  28oC  during   embryonic   stages.   Control   experiments  with  

the  TARGET  system  without  this  temperature  shift  did  not  show  any  phenotype  

or  G-­‐TRACE  expression,  thus  ruling  out  that  the  observed  effects  are  due  to  leaky  

expression  during  later  development.  

Pupal   stages   until   P4   were   dissected   with   microsurgery   scissors   in   toto.   For  

pupae   from   P4   and   later   as   well   as   for   pharate   adults   the   pupal   cases   were  

removed  prior  to  dissection.    

Drosophila  strains  

In   this   study   the   following   strains  were  used:  org-­‐1-­‐HN39-­‐GFP  [S2],  hand-­‐nGFP  

[S3,   S4],   duf-­‐rP298-­‐lacZ   [S5]   and   duf-­‐rP298-­‐GAL4   [S6],   tupF4-­‐nGFP   [S7],   tin346  

[S8],  tinEC40  [S9],  tin-­‐ABD  [S10],  and  tinCΔ4-­‐Gal4  [S11].  UAS-­‐Abd-­‐A  was  a  gift  from  

Juan  Botas   (Baylor,  Houston).  UAS-­‐lifeact-­‐GFP  was   a   gift   from  Frank   Schnorrer  

(MPI,  Martinsried).  UAS-­‐dsRNA-­‐org-­‐1  (Transformant  ID  104393),  UAS-­‐dsRNA-­‐tup  

(Transformant  IDs  103585  and  45859)  and  UAS-­‐dsRNA-­‐Mef2  (Transformant  IDs  

15549   and   15550)   were   obtained   from   the   VDRC   (Vienna)   [S12].   The   two  

different  RNAi  lines  for  tup  and  Mef2,  respectively,  showed  essentially  the  same  

effects.   tubP-­‐GAL80ts20;TM2/TM6B   and   UAS-­‐FLP-­‐Exel3,Ubi-­‐p63E(FRT.STOP)  

Stinger   [S13]   as   well   as   UAS-­‐EcR-­‐B1DN   [S14]   and   UAS-­‐heartlessDN   [S15]   were  

obtained  from  the  Bloomington  stock  center  (Indiana).    

Construction   of   org-­‐1-­‐HN18-­‐RFP,   org-­‐1-­‐HN39-­‐GAL4   and   tup-­‐ADME-­‐GFP  

reporters  

For   the   creation   of   org-­‐1-­‐HN18-­‐RFP,   the   genomic   region   chrX:   8442048...  

8444555  (R6.01)  was  amplified  using  yw  genomic  DNA  as  template  and  cloned  

into  BglII/NaeI  of  pRed  H-­‐Pelican  [S16].  

For  org-­‐1-­‐HN39-­‐GAL4  the  HN39  fragment  from  org-­‐1-­‐HN39-­‐pH-­‐Stinger-­‐AttB  [S2]  

was  cloned  into  EcoRI/BamHI  of  p221-­‐GAL4  (a  gift  from  C.  Klämbt).  

For   tup-­‐ADME-­‐GFP   the   genomic   region   chr2L:   18899122…18900688   (R6.01)  

(tup-­‐ADME)  [S17]  was  amplified  using  yw  genomic  DNA  as  template  and  cloned  

into   KpnI/XhoI   of   pH-­‐Stinger-­‐AttB   [S18].   For   the   analogous   creation   of   tup-­‐

ADMEorgI-­‐IIImut-­‐GFP   reporter   the   Org-­‐1   binding   sites   within   the   tup-­‐ADME  

sequence   [S17]   were   mutated   via   site   directed   mutagenesis   as   follows:   tup-­‐

ADME-­‐orgI   TAACACAT   -­‐>   tup-­‐ADME-­‐orgImut   TAAGCTTT,   tup-­‐ADME-­‐orgII  

GGGTGCCA  -­‐>  tup-­‐ADME-­‐orgIImut  GGCTCGAG  and  tup-­‐ADME-­‐orgIII  TGGTGGGA  -­‐

>  tup-­‐ADME-­‐orgIIImut  TGTCTAGA.  

All  constructs  were  transformed  into  yw  using  standard  transgenesis  techniques.  

Immunofluorescence  

For  antibody  stainings  the  dissected  animals  were  fixed  in  3,7  %  formaldehyde  

for  1  hour,  washed  several  times  in  PBT,  and  incubated  in  the  primary  antibody  

for   two   days   at   4   °C.   Subsequent   staining   procedures   were   performed   as  

described  [S19].  

The  following  primary  antibodies  were  used:  rat  anti-­‐Org-­‐1  (1:100,  [S2]),  mouse  

anti-­‐Isl1/Tup   40.3A4   (1:25,   DSHB)   guinea-­‐pig   anti-­‐Ubx   (1:400,   a   gift   from   I.  

Lohmann,   Heidelberg),   rabbit   anti-­‐RFP   (1:300,   Millipore)   and  mouse   anti-­‐GFP  

(1:100,   Molecular   Probes).   Filamentous   actin   was   visualized   using   Phalloidin-­‐

Atto   647N   (1:1500,   Sigma-­‐Aldrich).   Confocal   pictures  were   taken  with   a   Leica  

SP5  II  (20x/1.3  PL  APO  Glycerol).  Projections  were  done  with  Leica  Application  

Suite  Advanced  Fluorescence  (LAS  AF).  

In  vivo  time-­‐lapse  imaging  

Pupae  were  aligned  on  a  strip  of  double-­‐faced  adhesive  tape  connected  to  a  slide,  

covered  with  a  drop  of  halocarbone  oil  and  a  coverslip.  Time-­‐lapse  imaging  was  

essentially  performed  as  described   in   [S20,  S21].  Movies  were  generated  using  

LAS  AF.  

   

Supplemental  References  S1.   McGuire,   S.E.,   Mao,   Z.,   and   Davis,   R.L.   (2004).   Spatiotemporal   gene  

expression   targeting   with   the   TARGET   and   gene-­‐switch   systems   in  

Drosophila.  Sci  STKE    2004,  pl6.  

S2.   Schaub,  C.,  Nagaso,  H.,  Jin,  H.,  and  Frasch,  M.  (2012).  Org-­‐1,  the  Drosophila  

ortholog   of   Tbx1,   is   a   direct   activator   of   known   identity   genes   during  

muscle  specification.  Development  139,  1001-­‐1012.  

S3.   Han,   Z.,   and   Olson,   E.N.   (2005).  Hand   is   a   direct   target   of   Tinman   and  

GATA   factors   during   Drosophila   cardiogenesis   and   hematopoiesis.  

Development    132,  3525-­‐3536.  

S4.   Sellin,  J.,  Albrecht,  S.,  Kolsch,  V.,  and  Paululat,  A.  (2006).  Dynamics  of  heart  

differentiation,   visualized   utilizing   heart   enhancer   elements   of   the  

Drosophila   melanogaster   bHLH   transcription   factor   Hand.   Gene   Expr  

Patterns  6,  360-­‐375.  

S5.   Nose,   A.,   Isshiki,   T.,   and   Takeichi,   M.   (1998).   Regional   specification   of  

muscle   progenitors   in   Drosophila:   the   role   of   the  msh  homeobox   gene.  

Development  125,  215-­‐223.  

S6.   Menon,   S.D.,   and   Chia,   W.   (2001).   Drosophila   Rolling   pebbles:   a  

multidomain  protein  required  for  myoblast  fusion  that  recruits  D-­‐Titin  in  

response  to  the  myoblast  attractant  Dumbfounded.  Dev  Cell  1,  691-­‐703.  

S7.   Tao,   Y.,   Wang,   J.B.,   Tokusumi,   T.,   Gajewski,   K.,   and   Schulz,   R.A.   (2007).  

Requirement   of   the   LIM   homeodomain   transcription   factor   Tailup   for  

normal   heart   and   hematopoietic   organ   formation   in   Drosophila  

melanogaster.  Mol  Cell  Biol  27,  3962-­‐3969.  

S8.   Azpiazu,  N.,   and  Frasch,  M.   (1993).   tinman   and  bagpipe:   two  homeo  box  

genes   that   determine   cell   fates   in   the   dorsal   mesoderm   of   Drosophila.  

Genes  Dev  7,  1325-­‐1340.  

S9.   Bodmer,   R.   (1993).   The   gene   tinman   is   required   for   specification   of   the  

heart  and  visceral  muscles  in  Drosophila.  Development    118,  719-­‐729.  

S10.   Zaffran,   S.,   Reim,   I.,  Qian,   L.,   Lo,   P.C.,   Bodmer,  R.,   and  Frasch,  M.   (2006).  

Cardioblast-­‐intrinsic  Tinman  activity   controls  proper  diversification  and  

differentiation  of  myocardial  cells  in  Drosophila.  Development  133,  4073-­‐

4083.  

S11.   Lo,  P.C.,  and  Frasch,  M.  (2001).  A  role  for  the  COUP-­‐TF-­‐related  gene  seven-­‐

up   in   the   diversification   of   cardioblast   identities   in   the   dorsal   vessel   of  

Drosophila.  Mech.  Dev.  104,  49-­‐60.  

S12.   Dietzl,  G.,  Chen,  D.,  Schnorrer,  F.,  Su,  K.C.,  Barinova,  Y.,  Fellner,  M.,  Gasser,  

B.,   Kinsey,   K.,   Oppel,   S.,   Scheiblauer,   S.,   et   al.   (2007).   A   genome-­‐wide  

transgenic   RNAi   library   for   conditional   gene   inactivation   in  Drosophila.  

Nature  448,  151-­‐156.  

S13.   Evans,   C.J.,   Olson,   J.M.,   Ngo,   K.T.,   Kim,   E.,   Lee,   N.E.,   Kuoy,   E.,   Patananan,  

A.N.,  Sitz,  D.,  Tran,  P.,  Do,  M.T.,  et  al.   (2009).  G-­‐TRACE:  rapid  Gal4-­‐based  

cell  lineage  analysis  in  Drosophila.  Nat  Methods  6,  603-­‐605.  

S14.   Cherbas,  L.,  Hu,  X.,  Zhimulev,  I.,  Belyaeva,  E.,  and  Cherbas,  P.  (2003).  EcR  

isoforms   in  Drosophila:   testing   tissue-­‐specific   requirements   by   targeted  

blockade  and  rescue.  Development  130,  271-­‐284.  

S15.   Michelson,  A.M.,  Gisselbrecht,  S.,  Zhou,  Y.,  Baek,  K.H.,  and  Buff,  E.M.  (1998).  

Dual   functions   of   the   Heartless   fibroblast   growth   factor   receptor   in  

development  of  the  Drosophila  embryonic  mesoderm.  Dev  Genet  22,  212-­‐

229.  

S16.   Barolo,   S.,   Castro,   B.,   and   Posakony,   J.W.   (2004).   New   Drosophila  

transgenic   reporters:   insulated   P-­‐element   vectors   expressing   fast-­‐

maturing  RFP.  BioTechniques  36,  436-­‐440,  442.  

S17.   Boukhatmi,  H.,  Schaub,  C.,  Bataillé,  L.,  Reim,  I.,  Frendo,  J.-­‐L.,  Frasch,  M.,  and  

Vincent,   A.   (2014).   An   Org-­‐1–Tup   transcriptional   cascade   reveals  

different  types  of  alary  muscles  connecting  internal  organs  in  Drosophila.  

Development  141,  3761-­‐3771.  

S18.   Jin,  H.,  Stojnic,  R.,  Adryan,  B.,  Ozdemir,  A.,  Stathopoulos,  A.,  and  Frasch,  M.  

(2013).   Genome-­‐wide   screens   for   in   vivo   Tinman   binding   sites   identify  

cardiac   enhancers   with   diverse   functional   architectures.   PLoS   Genet   9,  

e1003195.  

S19.   Domsch,  K.,  Ezzeddine,  N.,  and  Nguyen,  H.T.  (2013).  Abba   is  an  essential  

TRIM/RBCC   protein   to   maintain   the   integrity   of   sarcomeric  

cytoarchitecture.  J  Cell  Sci  126,  3314-­‐3323.  

S20.   Hollfelder,   D.,   Frasch,   M.,   and   Reim,   I.   (2014).   Distinct   functions   of   the  

laminin   beta   LN   domain   and   collagen   IV   during   cardiac   extracellular  

matrix   formation  and  stabilization  of  alary  muscle  attachments  revealed  

by  EMS  mutagenesis  in  Drosophila.  BMC  Dev  Biol  14,  26.  

S21.   Reim,  I.,  Hollfelder,  D.,  Ismat,  A.,  and  Frasch,  M.  (2012).  The  FGF8-­‐related  

signals  Pyramus  and  Thisbe  promote  pathfinding,  substrate  adhesion,  and  

survival  of  migrating  longitudinal  gut  muscle  founder  cells.  Dev  Biol  368,  

28-­‐43.