Crystallite size nanomaterials

45
1 Crystallite Size Analysis – Nanomaterials This tutorial was created from a presentation by Professor Paolo Scardi and Dr. Mateo Leone from the University of Trento, Italy. The presentation was given at an ICDD workshop held during the 2008 EPDIC-11 Meeting in Warsaw, Poland. Professor Paolo Scardi is shown above on the right. The tutorial includes the theory and examples of the particle size algorithm and display features that are embedded in PDF-4+! It also demonstrates how this simulation can be used for the study of nanomaterials. The ICDD is grateful to both Paolo and Mateo as well as the University of Trento for allowing the ICDD to use their data for this tutorial.

Transcript of Crystallite size nanomaterials

Page 1: Crystallite size   nanomaterials

1

Crystallite Size Analysis –Nanomaterials

This tutorial was created from a presentation by Professor Paolo Scardi and Dr. Mateo Leone fromthe University of Trento, Italy. The presentation was given at an ICDD workshop held during the2008 EPDIC-11 Meeting in Warsaw, Poland. Professor Paolo Scardi is shown above on the right.

The tutorial includes the theory and examples of the particle size algorithm and display features that

are embedded in PDF-4+! It also demonstrates how this simulation can be used for the study ofnanomaterials.

The ICDD is grateful to both Paolo and Mateo as well as the University of Trento for allowing theICDD to use their data for this tutorial.

Page 2: Crystallite size   nanomaterials

2

Note

This presentation can be directly viewedusing your browser.

It can also be saved, and viewed, withMicrosoft® PowerPoint®. The authors have

made additional comments in the notessection of this presentation, which can

be viewed within PowerPoint®, but is notvisible using the browser.

Page 3: Crystallite size   nanomaterials

3

ICDD PDF-4+ 2008ICDD PDF-4+ 2008EPDIC Workshop 3EPDIC Workshop 3

Featuring:Featuring:ICDD PDF-4+/DDView+ 2008:ICDD PDF-4+/DDView+ 2008:

Applications to NanomaterialsApplications to Nanomaterials

Prof. Paolo Scardi (University of Trento), ICDD Director-at-Large

Dr. Matteo Leoni (University of Trento), ICDD Regional Chair (Europe)

September 19, 2008

Page 4: Crystallite size   nanomaterials

4

PDF Card

• Contains Diffraction Data of Material

• Multiple d-Spacing Sets– Fixed Slit Intensity– Variable Slit Intensity– Integrated Intensity– New: Footnotes for

d-Spacings (*)• Options

– 2D/3D Structure– Bond Distances/Angles– Electron Patterns– New: PD3 Pattern– Diffraction Pattern

Page 5: Crystallite size   nanomaterials

5

Diffraction Pattern

• Simulated digitized pattern

Page 6: Crystallite size   nanomaterials

6

• pseudo-Voigt (pV)• Modified Thompson-

Cox-Hastings pV• Gaussian• Lorentzian• Particle Size

Profile Settings

Page 7: Crystallite size   nanomaterials

7

• Particle Size (Gamma distribution of diameters of spherical coherent-scattering domains)

Particle SizeParticle Size

Diffraction Pattern

Page 8: Crystallite size   nanomaterials

8

• pseudo-Voigt (pV)• Modified Thompson-

Cox-Hastings pV• Gaussian• Lorentzian• Particle Size

? Given the variety of available profile functions, why bother with a new one???

Answer: because the size distribution matters!!!

Profile Settings

Page 9: Crystallite size   nanomaterials

9

PIONEERS IN POWDER DIFFRACTION: PAUL SCHERRER

2 2

2 B

I d

I

The Scherrer formula [Gottinger Nachrichten 2 (1918) 98]

ln 22

cosh

h – full width at half maximum – effective domain size – wavelength – Bragg angle

Cerium oxide powder from xerogel, 1 h @400°C

Paul Scherrer (1890–1969)

Page 10: Crystallite size   nanomaterials

10

EFFECTIVE SIZE AND GRAIN SIZE

What is the meaning of L, the ‘effective size’ of the Scherrer formula?

2cosL

L ≠ D

5 nm

D

Page 11: Crystallite size   nanomaterials

11

SCHERRER FORMULA AND SIZE DISTRIBUTION

4

3

1V

ML

K M

In most cases, crystalline domains have a distribution of sizes (and shapes).

Scherrer constant a shape factor, generally function of hkl (4/3 for spheres)

<D> = M1 meanM2 - M1

2 variance

2cosVL

( )iiM D g D dD

Distribution ‘moments’

Scherrer formula is still valid

Page 12: Crystallite size   nanomaterials

12

4

3

1V

ML L

K MD

EFFECTS OF A SIZE DISTRIBUTION

Example: lognormal distributions of spheres, g(D) (mean , variance )

5 nm

D

Page 13: Crystallite size   nanomaterials

13

<L>V

13.33D

Lognormal distribution of spheres: 2 2exp ln ) 2 2p D D D

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 14: Crystallite size   nanomaterials

14

13.33D

13.23D <L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 15: Crystallite size   nanomaterials

15

13.33D

11.82D

<L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 16: Crystallite size   nanomaterials

16

13.33D

8.25D <L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 17: Crystallite size   nanomaterials

17

13.33D

4.53D <L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 18: Crystallite size   nanomaterials

18

13.33D

1.95D <L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 19: Crystallite size   nanomaterials

19

<L>V

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 20: Crystallite size   nanomaterials

20

2 2exp ln ) 2 2p D D D Lognormal distribution of spheres:

2 2D exp

23 4 7 2VL exp mean diameter

‘Scherrer’ size

EFFECTS OF A SIZE DISTRIBUTION

P. Scardi, Size-Strain V (Garmisch (D) Sept. 2007). Z. Kristallogr. 2008. In press

Page 21: Crystallite size   nanomaterials

21

EFFECT OF A BIMODAL SIZE DISTRIBUTION

If the size distribution is multimodal, a single (“mean size”) number is of little use, and possibly misleading!!

Page 22: Crystallite size   nanomaterials

22

• pseudo-Voigt (pV)• Modified Thompson-

Cox-Hastings pV• Gaussian• Lorentzian• Particle Size

? Given the variety of available profile functions, why bother with a new one???

Answer: because the size distribution matters!!!

Profile Settings

Page 23: Crystallite size   nanomaterials

23

“Particle size” option in DDView+

s s=2sin/ Gamma distribution : mean variance

: mean variance

Page 24: Crystallite size   nanomaterials

24

“Particle size” option in DDView+

M. Leoni & P. Scardi, “Nanocrystalline domain size distributions from powder diffraction data”, J. Appl. Cryst. 37 (2004) 629

Page 25: Crystallite size   nanomaterials

25

“Particle size” option in DDView+

Page 26: Crystallite size   nanomaterials

26

“Particle size” option in DDView+

Page 27: Crystallite size   nanomaterials

27

“Particle size” option in DDView+

Page 28: Crystallite size   nanomaterials

28

“Particle size” option in DDView+

Page 29: Crystallite size   nanomaterials

29

PDF 04-001-2097 cerium oxide

“Particle size” option in DDView+PDF 04-001-2097 cerium oxide

Page 30: Crystallite size   nanomaterials

30

“Particle size” option in DDView+PDF 04-001-2097 cerium oxide

Page 31: Crystallite size   nanomaterials

31

“Particle size” option in DDView+PDF 04-001-2097 cerium oxide

Page 32: Crystallite size   nanomaterials

32

“Particle size” option in DDView+PDF 04-001-2097 cerium oxide

Page 33: Crystallite size   nanomaterials

33

“Particle size” option in DDView+

TEM: 4.5 nmXRD/WPPM:4.4nm

PDF 04-001-2097 cerium oxide

M. Leoni & P. Scardi, “Nanocrystalline domain size distributions from powder diffraction data”, J. Appl. Cryst. 37 (2004) 629

Page 34: Crystallite size   nanomaterials

34

Validating the procedure

“Particle size” option in DDView+

20 30 40 50 60 70 80 90 1000

2000

4000

6000

8000

10000

12000

14000

Inte

nsi

ty

(a.u

.)

2theta (deg)

Diffraction pattern of Au generated by Debye equation

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal distribution of spherical domains (m=1.2, s=0.15) <D>=3.36 nm

K. Beyerlein, A. Cervellino, M. Leoni, R.L. Snyder & P. Scardi. EPDIC-11 (Warsaw (PL) Sept. 2008)

Page 35: Crystallite size   nanomaterials

35

“Particle size” option in DDView+

Page 36: Crystallite size   nanomaterials

36

“Particle size” option in DDView+

Page 37: Crystallite size   nanomaterials

37

“Particle size” option in DDView+

Page 38: Crystallite size   nanomaterials

38

“Particle size” option in DDView+

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=3.36, s=50) <D>=3.36 nm

Page 39: Crystallite size   nanomaterials

39

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=4.0, s=50) <D>=4.0 nm

“Particle size” option in DDView+

Page 40: Crystallite size   nanomaterials

40

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=5.0, s=50) <D>=5.0 nm

“Particle size” option in DDView+

Page 41: Crystallite size   nanomaterials

41

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

1.2

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=3.0, s=50) <D>=3.0 nm

“Particle size” option in DDView+

Page 42: Crystallite size   nanomaterials

42

0 1 2 3 4 5 6 7 8 90.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=2.0, s=50) <D>=2.0 nm

“Particle size” option in DDView+

Page 43: Crystallite size   nanomaterials

43

“Particle size” option in DDView+

0 1 2 3 4 5 6 7 8 9

0.0

0.2

0.4

0.6

0.8

1.0

Fre

qu

ency

(a

.u.)

Spherical domain size (nm)

Lognormal (m=1.2, s=0.15) <D>=3.36 nm DDView+ Gamma (m=3.36, s=50) <D>=3.36 nm

Page 44: Crystallite size   nanomaterials

44

“Particle size” option in DDView+

• DDView+ “Particle size” is NOT a profile fitting!• NO other sources of line broadening (e.g., instrumental profile, dislocations, etc.) are considered!

Use this feature only for estimating domain size, especially in nano materials where the line width/shape is dominated by the size effects.

• Gamma distribution is flexible and handy, but in some cases it MIGHT NOT work! Domains might not be spherical!

In all other cases, use a Line Profile Analysis software, e.g., PM2K, based on the WPPM algorithm ([email protected])

CAVEAT!CAVEAT!

Page 45: Crystallite size   nanomaterials

45

International Centre for Diffraction Data

12 Campus Boulevard

Newtown Square, PA 19073

Phone: 610.325.9814

Fax: 610.325.9823

Thank you for viewing our tutorial. Additional tutorials are available at the ICDD web site (

www.icdd.com).