Crystal Structure (2008) (CHAPTER 1)

download Crystal Structure (2008) (CHAPTER 1)

of 31

Transcript of Crystal Structure (2008) (CHAPTER 1)

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    1/31

    Crystal structure

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    2/31

    Learning Objective

    Students should be able to:

    Differentiate between crystalline, noncrystalline, single crystaland polycrsytal.

    Derive the relationship between unit cell edge length andatomic radius for face centered and body centered cubic

    Compute density and atomic packing factors for crystal

    Specify the miller indices for crystallography plane anddirection

    Relate the crystal structure with material properties

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    3/31

    Fundamental Concept

    a crystal structure is a unique arrangement

    of atoms in a crystal.

    Composed of a unit cell

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    4/31

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    5/31

    Crystal Structure

    Crystal structure

    Crystalline MaterialNoncrsytalline material

    (Amorphous)

    Single Crystal polycrystal

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    6/31

    Crystalline Material

    Crystalline material-atoms, molecules or ion

    packed in a regularly ordered, repeating pattern,

    extending in 3 spatial dimension.

    Single crystal-the periodicity of the pattern

    extends throughout a certain piece of material.

    Polycrystalline material-comprised of many

    single crystal or grain

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    7/31

    atoms pack in periodic, 3D arrays typical of:

    Crystalline materials...

    -metals

    -many ceramics

    -some polymers

    atoms have no periodic packing

    occurs for:

    Noncrystalline materials...

    -complex structures-rapid cooling

    crystalline SiO2

    noncrystalline SiO2"Amorphous" = Noncrystalline

    Adapted from Fig. 3.18(a),

    Callister 6e.

    MATERIALS AND PACKING

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    8/31

    Polycrystalline material

    grains

    Crystalline Amorphous

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    9/31

    19

    Single Crystals

    -Properties vary withdirection: anisotropic.

    -Example: the modulus

    of elasticity (E) in BCC iron:

    Polycrystals

    -Properties may/may not

    vary with direction.

    -If grains are randomly

    oriented: isotropic.(Epoly iron= 210 GPa)

    -If grains are textured,

    anisotropic.

    200 mm

    SINGLE VS POLYCRYSTALS

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    10/31

    Unit cell- smallest structural unit or building

    block that can describe the crystal structure.Repetition of the unit cell generates the entire

    crystal.

    Primitive unit cell- smallest possible unit cell onecan construct.

    Lattice parameters-spacing between unit cellsin various direction.

    Unit cell

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    11/31

    Unit Cells?

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    12/31

    Concept test

    which one is

    unit cell

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    13/31

    Crystal system

    Point group of lattice

    7 unique crystal system Cubic

    Hexagonal Tetragonal

    Rhombohedral

    Orthorhombic

    Monoclinic

    Triclinic

    By adding additional lattice point to 7 basic shapes form 14Bravais lattice

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    14/31

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    15/31

    Metallic crystal structure

    Most found crystal structure in common metal Body centered cubic (BCC)

    Face centered Cubic (FCC)

    Hexagonal close-packed (HCP)

    Simple cubic (SC) one lattice point at each of the eight corners

    a= lattice parameter

    a=2r

    n= no. of atom per unit cell

    n= 1

    coordination no : no of

    adjacent atom that touch

    atom at lattice point= 6

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    16/31

    Body Centered Cubic (BCC)

    3

    4ra

    n = 2

    coordination no: 8

    http://www.uncp.edu/home/mcclurem/lattice/vrml/bcc1.wrl
  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    17/31

    Face Centered Cubic (FCC)

    n= 4

    coordination no = 12

    22ra

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    18/31

    Hexagonal Close PackedStructure

    c/a =1.633

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    19/31

    Atomic Packing Factor (APF)

    Efficiency of atomic arrangement in a unit cell.

    Exercise: calculate APF for SC,BCC and FCCcrystal structure

    Vc

    nVs

    APF

    cellunitofvol.

    spherex vol.ofatomofno.

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    20/31

    Theoretical density

    ex; If a hypothetical metal crystalline with BCC

    crystal structure. Calculate its density. GivenA= 26.98 amu/atom, atomic diameter0.286nm

    AcNV

    nA

    so'no.avogadrxcell)/unitcell(cmunitofvol.

    (g/mol)weightatomicxatomofno.3

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    21/31

    Polymorphism allotropic

    transformation

    the ability of a solid material to exist in more

    than one form or crystal structure.

    Example: Carbon and iron

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    22/31

    Allotropy: Carbon

    Graphite Diamond

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    23/31

    Allotropy : iron

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    24/31

    Crystallography Direction and Plane

    (by using miller indices)

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    25/31

    Crystallography direction

    Line between two

    point or a vector

    Axis x y z

    Head (H) 0 1 1

    Tail (T) 0 0 1

    Projection

    (H-T)

    0 1 0

    Enclosed [ O 1 O]

    Enclosed in squarebracket

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    26/31

    Lets do another example

    Axis x y z

    Head (H) 1 0

    Tail (T) 0 1 1

    Projection

    (H-T)

    1 - -1

    Reduction

    (x 2)

    2 -1 -2

    Enclosed [ 2 ]1 2

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    27/31

    Try it by yourself!!

    (0,0,0)

    Axis x y z

    Head (H)

    Tail (T)

    Projection

    (H-T)

    Reduction(x )

    Enclosed [ ]

    You have to come to the class to get more examples.

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    28/31

    Crystallography Plane

    The procedure:

    1. If the plane passes through the selected origin

    Another parallel plane must be constructed OR

    Establish new origin

    2. Determine either the plane is intersects or parallels with three axes.

    3. Get the reciprocals.

    4. If necessary, reduce the number.

    5. Enclosed with parentheses , ( )

    Remember the integer in enclosure is not separated by commas

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    29/31

    Example:

    Axis x y z

    Intercepts 1

    reciprocals 0 1 0

    Reduction(if necessary)

    - - -

    Enclosed ( 0 1 0 )

    Reciprocal: 1/(value)

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    30/31

    Example 2:

    Axis x y z

    Intercepts 1 1

    reciprocals 1 1 0

    Reduction(if necessary)

    - - -

    Enclosed ( 1 1 0 )

  • 8/12/2019 Crystal Structure (2008) (CHAPTER 1)

    31/31

    Try it by yourself!!

    (0,0,0)

    You have to come to the class to get more examples

    Axis x y z

    Intercepts

    reciprocals

    Reduction(if necessary)

    Enclosed ( )