Cryodetector Readout for Dark Matter Searches

22
1 Cryodetector Readout for Dark Matter Searches Stuart Ingleby Cryodetectors Group, Oxford

description

Cryodetector Readout for Dark Matter Searches. Stuart Ingleby Cryodetectors Group, Oxford. Cryodetector readout. Direct dark matter searches Liquid noble gas Cryodetectors Cryogenic readout techniques Low impedance – SQUIDs High impedance – NTD/Ge sensors Light detectors. - PowerPoint PPT Presentation

Transcript of Cryodetector Readout for Dark Matter Searches

Page 1: Cryodetector Readout for Dark Matter Searches

1

Cryodetector Readout for Dark Matter Searches

Stuart Ingleby

Cryodetectors Group, Oxford

Page 2: Cryodetector Readout for Dark Matter Searches

2

Cryodetector readout

• Direct dark matter searches– Liquid noble gas– Cryodetectors

• Cryogenic readout techniques– Low impedance – SQUIDs– High impedance – NTD/Ge sensors– Light detectors

Page 3: Cryodetector Readout for Dark Matter Searches

3

Cosmological evidence of dark matter

• Baryon-to-photon ratio constrained– BBN– CMB power

spectrum• Matter density

constrained– Supernova redshift– CMB– Baryon acoustic

oscillations• Overall

– Baryons ~4%– Dark matter ~23%– Dark energy ~73%

Page 4: Cryodetector Readout for Dark Matter Searches

4

Astronomical evidence of dark matter• Galactic rotation curves

– Expect 1/√r velocity curve

– Observe ~linear• ‘Halo’ of DM• Alternative gravities

• Bullet cluster– Collision of clusters– Observe galaxies, gas

and overall mass separately

• Consistent with CDM model

Page 5: Cryodetector Readout for Dark Matter Searches

5

Cryodetector experiments

• Detect WIMP scattering– Nuclear recoils

• Extensive shielding– Deep

underground labs• Discrimination

– Exclude electron events

– Determine scattered nucleus

Page 6: Cryodetector Readout for Dark Matter Searches

6

Recent results

• Exclusion plot– Long exposures and

low event rate– Exclude more

parameter space

• Constrained MSSM theory– Filled area [1]

• Aim 10-10pb (=10-46cm2)

– Larger detectors– Lower backgrounds

[1] Trotta et al. 2008

CRESST 2007

EDELWEISS II

ZEPLIN III

XENON10

CDMS

SuperCDMS (dashed)

Page 7: Cryodetector Readout for Dark Matter Searches

7

CRESST methods• 300g CaWO4 crystal• Phonons & scintillation

at ~10mK– Light absorbed in

separate silicon/sapphire wafer

• Tungsten SPT in s/c transition

• Coincident measurement of phonon & light– Recoils identified by

quenching factor

Page 8: Cryodetector Readout for Dark Matter Searches

8

Low-impedance readout:SQUIDs

• SQUID– Parallel Josephson

junctions– V proportional to

flux enclosed– Input coil

• Current meter

• S/C film stabilised within transition– Current biased– Small ∆T; large ∆I

• Current read out using SQUID– SQUID voltage

channel low-impedance

Page 9: Cryodetector Readout for Dark Matter Searches

9

Cryogenic cabling• CRESST SQUID cabling

– Bespoke twisted-wire woven cables (right)

– £400 / channel• Etched metal foil cabling

– Conducting track defined by photolithography (below)

– £60 / channel

Page 10: Cryodetector Readout for Dark Matter Searches

10

Etched metal foil cabling• Oxford Physics

Photofabrication Unit• Phototool masks area to be

etched– UV exposure– Developed to produce

photo-resist layer• Etching removes resist-free

areas– Max width 40cm– Max length 3m

• New 1.2m laminator– Extra length can be

achieved with multiple pressing- lower yield

UV exposure unit

Etching bath

Laminator

Page 11: Cryodetector Readout for Dark Matter Searches

11

Cable design for SQUID readout• Maximum yield

– Even track width– Radiussed tracks– Teardropped contacts– 15 cables / etched sheet

• Simplicity– Surface mount

connectors

• Durability – Laminate cover layer– Straight fold-free cables– Reinforcement of

vulnerable areas

Etched cables

Foil with photo-resist pre-etching

Page 12: Cryodetector Readout for Dark Matter Searches

12

Heatload

• Larger detector mass– Lower heatload /

channel• Choice of

materials– Practical

constraints• Resistivity

measurements– Heatload

calculations– Etched steel

cables offer 20 x lower heatload

Mean Resistivity of Steel Foil Samples

7.0E-07

7.5E-07

8.0E-07

8.5E-07

9.0E-07

9.5E-07

1.0E-06

0 50 100 150 200 250 300

Temperature / K

Res

istiv

ity/O

hm

.m

Mean resistivity of copper foil samples

0.0E+00

5.0E-09

1.0E-08

1.5E-08

2.0E-08

2.5E-08

3.0E-08

0 50 100 150 200 250 300

Temperature / K

Res

istiv

ity/O

hm

.m

Page 13: Cryodetector Readout for Dark Matter Searches

13

Installation in K400• Cryodetectors Lab

Oxford• 6-channel SQUID

system– Mounted at 4K– 2 x 12-channel

etched foil cable• Custom hardware

– Compact SQUID mount

• Built around existing readout

– Copper baffles for etched foil cables

– SCSI connector box

• Vacuum tight PCB flange with high channel density

Page 14: Cryodetector Readout for Dark Matter Searches

14

Low noise SQUID readout

• SQUID baseline noise– Testing

cryostat in Oxford

• Intrinsic SQUID noise ~1 pA/√Hz

(=1.2 μV/√Hz)

– CRESST cables

1.55 pA/√Hz – Steel foil cables

~2.5 pA/√Hz • Extra noise

– Nyquist noise on voltage channel?

Page 15: Cryodetector Readout for Dark Matter Searches

15

EDELWEISS method

• Ge crystal 320g– 20mK operation

• Phonon signal– NTD/Ge

thermometer

• Ionisation signal – ‘ID’ detector– Interleaved

electrodes for charge capture

– Fiducial volume• Reject surface

events

A A A A AB B B B

C C C C CD D D D

G

H

Page 16: Cryodetector Readout for Dark Matter Searches

16

Cabling design for NTD/Ge

• Readout for NTD/Ge– High impedance

• Capacitance– Limits bandwidth– Microphonics

• Mounted 4K – 10mK– Heatload

minimised– Radiopurity

Page 17: Cryodetector Readout for Dark Matter Searches

17

Radiopurity measurements

• Radiopurity tests– On samples of materials used– From GERDA, NEMO, CUORE experiments

• Kapton has high 40K content• Steel wiring does not appear significant

– 7.1% steel by mass• Polyethylene napthalate (PEN) suitable alternative

– Prototyping and testing

Page 18: Cryodetector Readout for Dark Matter Searches

18

Light Detectors• CRESST light detector

– Silicon on sapphire wafer– Cryodetector

• Separate SQUID readout– Stabilised separately to

phonon detector– High sensitivity

• 20eV

• Photomultiplier tube– Operated within cryostat– Simple high-impedance readout– Radiopurity

• Light guides

– HV supply• Voltage divider• Voltage multiplier

Page 19: Cryodetector Readout for Dark Matter Searches

19

HV supply for cold PMT• Cockcroft-Walton voltage

multiplier– As seen in particle

accelerators• Resistive voltage divider

– Dissipative components add heatload

– Possible noise on DC HV• Voltage multiplier chain

– Can be designed and run efficiently at optimum frequency

– Single-frequency supply can be chosen outside signal range

• 2.9kV generated at 4K from 15V supply

Page 20: Cryodetector Readout for Dark Matter Searches

20

Component testing• Performance

simulation – Approximate

formulae available– Software simulation

• Efficiency– Drop voltage– Transformer

• Low-T component testing– Transformer

• MPP– Capacitors

• Polystyrene– Diodes

• Silicon 1N40071

10

100

1000

0 50 100 150 200 250 300

Temperature / K

Ca

paci

tanc

e /

nF

0

0.5

1

1.5

2

2.5

1 10 100 1000

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

Page 21: Cryodetector Readout for Dark Matter Searches

21

Prototype PMT module

• Installation of CWG-PMT module

• Preliminary 57Co spectra taken at 300K

• Detailed study of PMT performance for EURECA WP

-20 0 20 40 60 80 100

1

10

100

0.5 1.0 1.5 2.0 2.50.1

1

10Nu

mb

er

of

eve

nts

Pulse height

Time, sTime / μs

Pulse height / VN

umbe

r of

eve

nts

Page 22: Cryodetector Readout for Dark Matter Searches

22

Future cryodetectors

• Ton-scale experiments– EURECA

• Greater exposure– Larger detector mass

• Lower cost readout per module• Lower heatload per readout channel

– Simplicity & reproducibility for mass production• Excellent discrimination

– Ionisation • EDELWEISS ID detectors

– Scintillation • Low-temperature light detectors