Crush Injury slide

73
CRUSH INJURY CRUSH INJURY AND AND RHABDOMYOLYSIS RHABDOMYOLYSIS Trauma and Critical Care Trauma and Critical Care Symposium Symposium Penrose-St. Francis Trauma Penrose-St. Francis Trauma Center Center Colorado Springs – May 2, Colorado Springs – May 2, 2013 2013 Darren Malinoski, MD Darren Malinoski, MD Associate Professor of Surgery Associate Professor of Surgery

description

case study

Transcript of Crush Injury slide

  • CRUSH INJURY AND RHABDOMYOLYSISTrauma and Critical Care SymposiumPenrose-St. Francis Trauma Center

    Colorado Springs May 2, 2013

    Darren Malinoski, MDAssociate Professor of SurgeryOregon Health & Science University

  • ROADMAPGeneral definitionsHistoryPathophysiology of muscle injuryPathophysiology of renal injuryDiagnosisTreatment strategiesThresholds for treatmentNatural disastersResearch at LAC/USC and OHSU

  • RHABDOMYOLYSIS(Rhabdo): striped muscle dissolution. EtiologiesRelease of cellular contents into the circulationHow to measure/quantifyTreatment?

  • MYOGLOBINAn oxygen-binding protein found within skeletal muscle that contains a single heme prosthetic group with an iron atom at the center that serves as the oxygen-binding site. Higher affinity for oxygen than hemoglobin which facilitates delivery to muscle.

  • CREATINE KINASECK: intramuscular enzyme that catalyzes the formation of ATP:

    ADP + creatine phosphate ATP + creatine

    Several isoenzymes: CK-MM (striated muscle), CK-MB (cardiac), CK-BB (brain)Normal plasma range 45-397 IU/L; plasma level of CK is proportional to degree of rhabdoCK

  • COMPARTMENT SYNDROMERefers to the local manifestations of neuromuscular ischemia because of increased pressure within the osteofascial compartments. Signs and symptomsDiagnosisFluid sequestration

  • CRUSH SYNDROMEThe systemic manifestations of muscle injury after direct trauma or ischemia-reperfusion injury. Commonly found in victims of earthquakes who have been caught under the rubble of collapsed buildings. SIGNS AND SYMPTOMS:Tense, edematous, painful musclesDark tea-colored urineShockAcidosisAcute renal failure

  • RENAL IMPACTAcute Renal Failure (ARF): a decline in renal function severe enough to require some form of renal replacement therapy. Many definitions Mortality ranges from 5-50% when renal failure follows crush injury

  • HISTORY OF RHABDOMYOLYSIS1880s: first reported in the German Literature1911: Meyer-Betz described a clinical syndrome consisting of dark brown urine, muscle pain, and weakness1941: Bywaters and Beall report 4 cases of crush syndrome during the bombing of London during WWII. They recognized the association between swollen extremities, hypovolemia, vaso-constriction, and eventual oliguria / renal failure.

  • CAUSES OF RHABDOMYOLYSISAlcohol intoxication, immobility, compressionPositioning during surgerySeizure disordersMedications: steroids, paralyticsToxins: alcohol, cocaine, insect bites, reptilesCosta Rican jumping viper venomGenetic DisordersInfection: bacterial and viralTrauma: Crush injury / Vascular Occlusion

  • PATHOPHYSIOLOGY OF MUSCLE INJURYImmediate cell disruptionDirect pressure on musclesStretch-activated channels opened Ca++ influxIschemia/Anaerobic metabolismLoss of cellular membrane integrityVascular compromiseProlonged compression vs. vascular injuryHistologic changes at 2 hoursNecrosis at 6-8 hours

  • ISCHEMIA-REPERFUSION INJURYOccurs when patients are extricated from collapsed buildings or when vascular flow is re-established:Swelling of affected extremities / Compartment SyndromeHypovolemia / ShockFree Radical formationLipid Peroxidation cell lysisToxin release: lactic acidosis, aciduria, myoglobinemia, CK, and thromboplastin (can DIC)Electrolyte abnormalities: K, Phos, Ca

  • -Malinoski, Slater, Mullins. Crit Care Clin, 2004.

  • PATHOPHYSIOLOGY OF RENAL INJURYHypovolemia and ShockMyoglobinuria: when plasma concentration exceeds 0.5-1.5 mg/dL, myoglobin filtered into urine. Cast formation/tubular obstruction *Free radical formation and lipid peroxidation *Vaso-constrictor formation: PAF, endothelins

    *intensified by acidic urine

  • Myoglobin cast formation in renal tubules

  • Myoglobin cast formation in renal tubules

  • DIAGNOSISHistoryPEXLabs:Serum: CK, myoglobinUrine: inspection, dipstick, myoglobin Is general screening necessary?

  • TREATMENTPrevention of Muscle InjuryFasciotomyAmputationPrevention of Renal InjuryDialysis

  • PREVENTION OF MUSCLE INJURYPrompt restoration of blood flowDelivery of intravenous fluid is the FIRST priorityExtricate victims from rubble NEXTReduce fractures and splint extremitiesRepair vascular injuries

  • TREATMENT OF MUSCLE INJURYFasciotomy Controversies: indications and timingcompartment pressure >30-50mmHgDP
  • White, et al. Elevated Intramuscular Compartment Pressures Do Not Influence Outcome after Tibial Fracture. JOT, 2003.Hypothesis: Absolute intramuscular pressure measurements are non-specific and lead to unnecessary fasciotomiesProspective analysis of 210 patients with tibial fracturesContinuous compartment pressure (CP)Fasciotomy for DP >30 mmHg or clinical Dx109 pts either had Dx of compartment syndrome or elevated compartment pressures for less than 6 hrs.101 patients remained with CP > 30 mmHg

  • White, et al. Elevated Intramuscular Compartment Pressures Do Not Influence Outcome after Tibial Fracture. JOT, 2003.101 pts with elevated CP and normal DP41 patients: CP > 30 mmHg (30 to >70)60 pts: CP < 30 mmHgNone developed compartment syndromeNone required fasciotomyNo significant difference in outcome:Sensory function, Muscle power, Peak torque, Functional indices of recovery

  • TO CUT or NOT TO CUTIrreversible muscle damage after 6-8 hours

    Sheridan, et al. J Bone Joint Surg Am 1976Only 8% of pts with fasciotomy after 12 hours had restoration of normal function46% infection, 21% amputation

    Bradley. Surg Gynecol Obstet. 1973Meta-analysis: 80% of pts with paralysis had unsatisfactory outcomes

  • TO CUT or NOT TO CUTMatsuoka, et al. J Trauma. 2002Increased disability in pts who underwent fasciotomy >12 hours after injury (47% vs 16%)

    Seddon. J Bone Joint Surg Br. 1956Spontaneous recovery of muscle function up to 3 months after injuryRecommends delayed fasciotomy and release of ischemic contractures to maximize outcome

    Better and Finkelstein condemn delayed fasciotomy due to risk of overwhelming infection

  • FASCIOTOMYTwo incisionsLateral incision:Anterior compartmentLateral / Peroneal compartmentMedial incision:Posterior compartmentsOne incisionLateral: all four compartments

  • LATERAL INCISION: anterior and lateral compartments

  • Delayed Primary Closure of fasciotomy wound.

  • Split Thickness Skin Graft to close fasciotomy wound after several weeks.

  • PREVENTION OF RENAL INJURYGoal is to prevent rise in serum Cr and the need for renal replacement therapy.Treatment of shock and hypovolemiaRestoration of adequate intravascular volume6-12 L of saline in first 24hrs is recommendedUrine flow rate of 100-200cc/hr is idealCorrection of underlying cause of shockMeasure serial CK levels in high-risk patientsTreatment threshold 5000-30,000 U/L

  • PREVENTION OF RENAL INJURYAlkalinization of urine with NaHCO3- (K+)Mannitol Dopamine, acetazolamide, and Lasix Experimental therapies:DeferoxaminePAF-receptor blockadeBosentan endothelin receptor blockadeAnti-oxidants

  • MannitolMannitolSodium Bicarbonate

  • Better OS, Stein JH. Early Management of Shock and Prophylaxis of Acute Renal Failure in Traumatic Rhabdomyolysis. New England Journal of Medicine 1990; 322 (12): 825-829 Hypothesis: Shock occurs only after extrication, when compressed extremities are released, resulting in ischemia-reperfusion injury1979: 7 men with rhabdo due to building collapse who did not receive IV fluid for at least 6 hours; all 7 developed ARF1982: 7 men with traumatic rhabdo who received IV fluid before extrication and forced mannitol-alkaline diuresis within 2 hours of extrication; none developed ARF

  • TREATMENT THRESHOLDSERUM CREATINE KINASE LEVELS$151-2 hour turnaroundElimination T1/2: 42 hrsMore prevalent in the literature - >3000 ptsPeak levels of 5000 to 75,000 risk ARDAll pts with increased CK levels have positive urine dipstick**URINE OR SERUM MYOGLOBIN LEVELS$971-3 day turnaroundElimination T1/2: 12 hrsStudies with small numbers -
  • DIALYSISRisk factors for developing ARF:CK level >20,000Delay in diagnosis or treatmentExtent of injuryDehydrationPreexisting renal diseaseAdvanced ageAdministration of nephrotoxic agentsNormalization of Hyperkalemia is the main priority.Need for dialysis is temporary in most cases

  • EARTHQUAKES AND RHABDOMYOLYSIS1988: Armenian Republic of Soviet Union100,000 injured, 15,254 extricated from rubble, crush injury third most common injury but leading cause of death, 323 patients required hemodialysis, poorly organized disaster response1991: Limon, Costa RicaCrush injury was the leading cause of injury and death

  • EARTHQUAKES AND RHABDOMYOLYSIS1995: Kobe, Japan41,000 injured, 5000 died, 54% of victims with crush injury developed ARF and 13% died1999: Marmara, TurkeyRenal Disaster Relief Task Force created in 1995 after Armenian earthquake462 patients underwent dialysis, with
  • Oda et al. Analysis of 372 Patients with Crush Syndrome Caused by the Hanshin-Awaji Earthquake. Journal of Trauma 1997; 42: 470-476Retrospective review of 6107 charts at 95 hospitals; 372 patients with crush syndromeARF= Cr > 2.5; 200 (54%) ARF, 123 (33%) required dialysisMany patients had a delay until treatment, either due to transportation problems or failure to accurately diagnose crush injury.Risk factors for ARF: 75,00050 patients died (13.4%); causes of death within 5 days of the earthquake were mainly hyperkalemia and hypovolemia.

  • Oda et al. Analysis of 372 Patients with Crush Syndrome Caused by the Hanshin-Awaji Earthquake. Journal of Trauma 1997; 42: 470-476 *black = hypovolemia, diagonal stripe = hyperkalemia, horizontal stripe = other form of shock, vertical stripe = multiple organ failure, open = other causes

  • Oda et al. Analysis of 372 Patients with Crush Syndrome Caused by the Hanshin-Awaji Earthquake. Journal of Trauma 1997; 42: 470-476***9% had trunk involvement; extremities do not need to be involved to develop rhabdomyolysis.

  • Trauma patient with crush injury to the flank

  • CT scan of same patient.

  • RECENT PUBLICATIONS AND UNPUBLISHED DATA FROM USC/LAC AND OHSU

  • RHABDOMYOLYSIS AT OHSUTreatment Protocol in 1992Mannitol and Bicarbonate infusionsTreatment threshold = CK >10,000 U/LInterim Analysis 1997Threshold raised to 20,000 U/LUrine myoglobin levels abandonedSecond Analysis 2002CK > 20,000 U/L = risk factor for dialysisCK > 10,000 U/L = risk factor for AKI/death

  • 2000 trauma ICU admissions85% elevated CK18% CK > 5000 U/L 19% vs 8% ARDBicarbonate and Mannitol no sig differenceTrend in CK >30,000 U/L groupLimitations

  • A FORCED ALKALINE DIURESIS DECREASES THE INCIDENCE OF ACUTE RENAL DYSFUNCTION IN PATIENTS WITH TRAUMATIC RHABDOMYOLYSIS

    Malinoski, Slater, Schreiber, MullinsOregon Health & Sciences University

  • OBJECTIVETo determine if the increase in the treatment threshold from CK 10,000 to 20,000 U/L would lead to an increase in ARD.

    HYPOTHESIS:A forced alkaline diuresis is beneficial ONLY in patients with a peak CK > 20,000 U/L.MannitolBicarbonate

  • METHODSRetrospective review - 1/93 to 10/03 Selection criteria:CPK >2000 U/L (normal 4-397)No prior history of CRI or other cause of ARFARD = serum Cr >2.0 mg/dLProtocol instituted for CPK >10K/20K U/LPrimary endpoint: ARD

  • STATISTICAL ANALYSISUnivariate analysis Parametric data: Pearson Chi-square, Fishers exact, or independent samples T-testNon-parametric: Mann-Whitney UMultivariate analysis:Logistic regression analysisAll variables with p
  • CK levels checked in pts at risk for crush injury:painful, swollen extremities; prolonged compression; urine dipstick positive .Protocol initiated when CK level >20,000 or patient has dark urine

  • Urine output is monitored hourlyAdditional mannitol boluses if neededTitration of drips

  • Monitor urine pH (goal>6.5), ABG, serum electrolytes, creatinine, and osmolarityConsider acetazolamide for serum pH > 7.5

  • Volume status must be watched in elderly patients and those with a history of heart diseaseIf oliguria persists after 2 hours, cessation of the protocol is necessary and renal replacement therapy should be initiated

  • RESULTSN = 77

  • 80 patients77 included3 excludedCK 20K34Normal Cr = 16ARD = 5Normal Cr = 3ARD = 3Normal Cr = 20ARD = 14ARF = 4CK 10-20K16Normal Cr = 14ARD = 2NO PROTOCOLPROTOCOL**4 pts in CK > 20K did not receive protocol

  • Primary Endpoint = ARDMore common than ARFSerum Cr > 2 mg/dL is a common definition of renal failure in the literatureAssociated with an increased risk of death17% vs 51%, p
  • Prevalence of ARD in patients with peak CK > 10,000 U/L

    p=0.022, Fishers Exact Test

  • **If Peak CK 2000-9999 vs > 10,000 U/L used, OR = 9.8, p=0.013

  • PROTOCOL COMPLICATIONS3 pt (3.9%) with reversible CHF

    1 pt (1.3%) with pH=7.78

    1 pt with abdominal compartment syndrome after analysis completed

  • STUDY CONCLUSIONSA peak CK > 20,000 U/L is a definite risk factor for developing ARD.

    A forced alkaline diuresis is protective in patients with traumatic rhabdomyolysis.

    Due to a trend towards increased renal dysfunction, we recommend using a forced alkaline diuresis in patients with peak CK >10,000 U/L.

  • UNFINISHED BUSINESSTREATMENT OF MUSCLE INJURY

    LATE FASCIOTOMIES

    IDEAL TREATMENT FLUID RANDOMIZED CONTROLLED TRIAL

  • THANK YOUDont forget DVT prophylaxis

    *Release of cellular contents into circulationEtiologiesCreatine Kinase (CK) levels TreatmentWhat level is significant???

    *Increased plasma levels myoglobinuriadipstick positive urineFree radical formation and lipid peroxidationSerum and urine levels vs. CK***Searched registry for : ARF, crush injury, rhabdomyolysis, myoglobinuria, fasciotomy*changed after interim analysis*2 patients excluded due to MODS and late ARF req HD (>7d after injury)1 patient excluded due to 80cc/hr at time of cvvh. No HCO3-, lasix, kayexelate used

    *All manageable.*Power analysis: 1000 pt needed to show decrease in incidence of ARF from 10 to 5% with p=0.05 and power=0.80