CRESST to EURECA – Progress with cryogenic dark matter searches

16
CRESST to EURECA – Progress with cryogenic dark matter searches Sam Henry University of Oxford

description

CRESST to EURECA – Progress with cryogenic dark matter searches. Sam HenryUniversity of Oxford. Dark matter - Evidence. CMBR WMAP + HST:. Galactic dark matter Rotation curves of spiral galaxies Galaxy velocities within clusters. Dark matter - candidates. Neutrinos Axions - PowerPoint PPT Presentation

Transcript of CRESST to EURECA – Progress with cryogenic dark matter searches

Page 1: CRESST to EURECA –  Progress with cryogenic dark matter searches

CRESST to EURECA – Progress with cryogenic dark matter searches

Sam Henry University of Oxford

Page 2: CRESST to EURECA –  Progress with cryogenic dark matter searches

Dark matter - Evidence• CMBR

WMAP + HST:

• Galactic dark matterRotation curves of spiral galaxiesGalaxy velocities within clusters

Page 3: CRESST to EURECA –  Progress with cryogenic dark matter searches

Dark matter - candidates

• Neutrinos

• Axions

• Gravitinos, axinos

• WIMPs - Weakly Interacting Massive Particles

Supersymmetric neutralinosKaluza Klein particles

• Alternative gravityMOND - TeVeS

Ruiz de Austri, Trotta & Roszkowski

Page 4: CRESST to EURECA –  Progress with cryogenic dark matter searches

CRESST – Detectors heat bath

thermal link

thermometer(W-film)

absorbercrystal

Particle interaction in absorber creates a temperature rise in thermometer which is proportional to energy deposition in absorber

Temperature pulse (~6keV)

Res

ista

nce

[m

] normal-conductin

g

super-conducting

T

R

Width of transition: ~1mKSignals: few K Stablity: ~ K

Page 5: CRESST to EURECA –  Progress with cryogenic dark matter searches

Phonon – Scintillation

separate calorimeter as

light detector

light reflector

W-SPT

W-SPT

300 g CaWO4

Energy in phonon channel

En

erg

y in

lig

ht

chan

nel

keV

ee]

high rejection:99.7% > 15 keV99.9% > 20 keV

Discrimination of nuclear recoils from radioactive backgrounds (electron recoils) by simultaneous measurement of phonons and scintillation light

Page 6: CRESST to EURECA –  Progress with cryogenic dark matter searches

90%W-Recoils

90%O-Recoils

0 50 100 150-0.5

0.0

0.5

1.0

1.5

Run28, 2004, 10.5 kg d

Energy in Phonon Channel / keV

CRESST II – Results 2004 L

igh

t/Ph

ono

n e

ner

gy

Page 7: CRESST to EURECA –  Progress with cryogenic dark matter searches

CRESST – Results 2007

Next step – install and run 17 detector modules

Page 8: CRESST to EURECA –  Progress with cryogenic dark matter searches

Upper Limit for Spin-independent WIMP Nucleon Cross section for cryogenic detector experiments

CRESST / EDELWEISS – Results

(Preliminary)

Page 9: CRESST to EURECA –  Progress with cryogenic dark matter searches

European

Underground

Rare Event

Calorimeter

Array

• Search to σ~10-10pb (~1 event/tonne/year)

• CRESST and EDELWEISS, with additional groups joining.

• Target: Ge, CaWO4, ZnWO4….

(A dependence)

• Mass: above 100 kg towards 1 tonne

• Modane Laboratory

Page 10: CRESST to EURECA –  Progress with cryogenic dark matter searches

EURECA challenges Detectors• Large volume – 1000kg• Multiple target materials – Ge + scintillators• Radiopurity• Maintain background discriminationCryostat• Cool ~1000kg to ~10mK• Allow easy removal / insertion of detectorsReadout• 1000+ channelsRadiation shielding• Neutrons

Page 11: CRESST to EURECA –  Progress with cryogenic dark matter searches

United Kingdom

Oxford (H Kraus, coordinator)

Germany

MPI für Physik, Munich

Technische Universität München

Universität Tübingen

Universität Karlsruhe

Forschungszentrum Karlsruhe

Russia

DNLP Dubna

Ukraine

INR Kiev

CRESST + EDELWEISS + ROSEBUD + …

EURECA Collaboration

France

CEA/DAPNIA Saclay

CEA/DRECAM Saclay

CNRS/CRTBT Grenoble

CNRS/CSNSM Orsay

CNRS/IPNL Lyon

CNRS/IAP Paris

Spain

Zaragoza

CERN

Page 12: CRESST to EURECA –  Progress with cryogenic dark matter searches
Page 13: CRESST to EURECA –  Progress with cryogenic dark matter searches
Page 14: CRESST to EURECA –  Progress with cryogenic dark matter searches

Dark matter detection

Page 15: CRESST to EURECA –  Progress with cryogenic dark matter searches

Why use cryodetectors?

Initial recoil energy

Displace-ments,

Vibrations

Athermalphonons

Ionization(~10 %)

Thermal phonons(Heat)

Scintil

lation

(~1 %

)

Energy to extract electron in PM tube: ~300eV

Energy to ionize gas molecule: ~30eV

Energy to produce electronhole pair: 3.6eV

Energy to break superconducting electron pair: ~meV !

Page 16: CRESST to EURECA –  Progress with cryogenic dark matter searches

EDELWEISS – Detectors

Target:Cyl. Ge crystal, 320 gØ 70 mm, h = 20 mmPhonon - signal:NTD-Ge (~ 20 mK)Ionisation - signal:Inner disc / outer guard ring