Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg...

55
Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich

Transcript of Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg...

Page 1: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Creating new states of matter:

Selim JochimMPI für Kernphysik andUniversität Heidelberg

Experiments with ultra-cold Fermi gases

Henning MoritzETH Zürich

Page 2: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

• Major breakthroughs in this field have made this field an exciting one in the past decade

• Fermi Superfluidity, Crossover to a gas of Bosons (weakly bound molecules)

• With tunable interactions: Model system for High-TC superconductors, Neutron stars, Quark-Gluon Plasma and more ….

Introduction

Page 3: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

What is an ultracold quantum gas?

Gas shows “quantum” effects when the wave packets start to overlap

2

2dBB

h

mk T 3 1dBD n

Page 4: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Fermions and Bosons:

FermienergyEF=kBTF

Bose-Einstein condensation Degenerate Fermi gas

Bosons Fermions

At zero temperature ….

Page 5: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

What makes ultracold gases special?

Compare with superfluids, like He, or superconductors:

Density is way lower -> dilute gas makes description very simple

Lab-in-a-trap type of systems with many easy-to-use knobs, such as

• temperature• confinement (single well, periodic …), • Interactions (even do controlled “chemistry”!)

Page 6: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

First BEC experiments

JILABoulder

1995

MIT1995

Rb

Na

Page 7: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Fermi degenerate gases

Two isotopes of Lithium in the same trap in thermal equilibrium

Page 8: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Superfluid Fermi Gases:

• Molecular condensates

Look like a normal BECAre normal BECsA little bit of cheating?

Page 9: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Observe superfluidity

A rotating superfluid cloud needs to exhibit vortices

Page 10: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

What will the course be about?

• How do we make/manipulate/detect ultracold gases– Laser cooling– Trapping– Evaporative cooling in conservative potentials– Detection and manipulation of ultracold atoms

Today:

Page 11: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

• How to cool a Fermi gas- special challenges,- like forbidden collisions- Pauli blocking, etc.

• Scattering length• Concept of Feshbach resonance to tune

interactions make things interesting!• Making ultracold molecules, BEC of molecules

2nd day

Page 12: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

3rd day

• BEC of molecules• BEC/BCS crossover• Gap, collective excitations/ Cooper pairs

superconductivity• Vortices• Imbalanced spin mixtures

Page 13: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

4th day

• Condensed Matter Physics with atoms? • Periodic potentials, bosonic Case: Mott isolator • Fermions: The Fermi Surface • Interactions of Fermions in optical lattices • Low dimensional systems • Future directions with optical lattices

• Final discussion

Page 14: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Spontaneus light force:

Frisch 1933: Deflection of a sodium beam using a Na-lamp:

kF

/hk photon momentum (recoil)

scattering rate

Lithium:

3419

9

6.63 10 Js6MHz 10 N

671 10 m

xF

x

acceleration:

175 2 5

26

6 10 N/ 6 10 / 10

10 kg

xa F m x m s g

Page 15: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Model: 2 level atom:

g

e

0 02

0 0

s( )

2 1 s [2( )/ ]

Line width

s0: saturation

Spontaneous scattering rate:

Page 16: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Optical molasses

• Doppler shift: Doppler k v

v

2 0g s 1 0e ( )( )kF k kvv

blue detunedred detuned

Page 17: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Doppler molasses:

20

20

8

[1 (2 ) ]tot

vk sF

s

( 0; )kv

Page 18: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Harold Metcalf (1986)

Optical molasses!

Page 19: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

How cold can we get?

Spontaneous emission causes heating, due to randomly distributed emission.

stationary state when heating rate=cooling rate

minimal, whenkin,min/ 2 / 2E

T = /2kB

≈ a few MHz Tmin typically 0.1…0.25 mK

Prediction by Hänsch, Schawlow, Wineland, Dehmelt (1975)

Page 20: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Much lower temperatures observed!!!

Time-of flight measurement:

Page 21: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

,n g1,n e

Sub Doppler and sub recoil cooling

• So far we only considered a 2-level atom,typically, there are several Zeeman-sublevels.

• different Zeeman-sublevel experience different“light shifts”, “dressed atom” picture:

2 2E

Rabi frequency

Page 22: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Sisyphus cooling

• Light shift on Zeeman level(Clebsch Gordan coefficients)

Counter propagating Laser beams with orthogonal polarization create a polarization grating:

Page 23: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Sideband cooling

h

Condition for sideband cooling:

“Lamb-Dicke regime”:Localize atoms better than x<<

|g>

|e>

Quantization of trap potential

Used in this way in ion traps!

Page 24: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Raman-sideband cooling

e.g. in optical lattice!

h

Raman-couplingOptical pumping

A little more complicated, but universal!

Page 25: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Magneto-optical trap

Optical molasses + magnetic field + polarisation:

Page 26: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

MOT in 3D

Quadrupole field through anti-Helmholtz coils,Counterpropagating laser beams in x,y,z, with proper polarization

Page 27: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

How to load a MOT?

• Most simple technique: Load atoms from vapor! but: trapping velocity is limited to v ≈ a few 10 m/s,e.g. Rb., Cs.

only a small fraction of the Boltzmann distribution can be trapped!

also: atomic vapor limits the vacuum and causes trap loss (Especially critical for subsequent experiments!)

Page 28: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Loading from and atomic beam

Atoms with a low vapor pressure: need to be evaporated from an oven.

Slow an atomic beam?

make use of spontaneous light scattering!

(need to compensate Doppler shift!)

Page 29: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Zeeman slower

Make use of Zeeman tuning:

Apply magnetic field, such that B kv E.g.: Li, Na

“Extend” MOT to obtain slow atomic beam

Page 30: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

MOT ….

Page 31: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

(Density) limitation of the MOT

• What limits the (phase space) density in a MOT?

• Collisions with background gas ( vapor cell!)

• Light assisted collisions:

e.g.:

photo association!

max. phase space density: ≈10-5

Page 32: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

How to obtain a quantum gas?

• So far: No success with exclusively optical cooling, but it provides excellent starting conditions

• Also: No success without optical cooling!!!

Page 33: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Conservative potentials for atoms

• Spatially varying magnetic field (magnetic trap): trap polarized atoms

• Far detuned laser fields (induce dipole)

U B

21/ 2U E I p E

Page 34: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Magnetic trap

• Simplest configuration: quadrupole field (MOT)

There is a problem, when the atoms get colder:

B

µB

Majorana spin flips at B=0!

Orientation of the magnetic field should not change faster than Larmor frequency

dd /Lt B

Page 35: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Ways around the zero:

Time Orbiting Potential (TOP) Trap:

• Rotate zero of magnetic field fast enough such that the atoms don’t take notice …

• …but slower than the Larmor frequency Time averaged potential!

Page 36: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Trap with offset field

• “Ioffe”-Bars with minimum (0G) in the center

“Pinch”-coils produce an offset fieldand confine the atoms axially

Ioffe Pritchard-trap

Page 37: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Optical traps (dipole force)

• Electric field induces dipole:

E p

1/ 2U p E

Page 38: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

oscillating E-Feld

• E-field oscillates slower than resonance (red detuned light) dipole oscillates in phase

Intensity maximum is trap (e.g. focus)

• E-field oscillates faster than resonance (blue detuned)

Dipole phase is shifted by

Intensity minimum is trap (e.g. hollow beam)

Page 39: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

optical dipole interaction

optical dipole force

Fdip = - Udip

optical dipole potential

optical dipole force

Fdip = - Udip

optical dipole potential

dipole potential

scattering rate

0

„redred“ detuning 0 „blueblue“ detuning 0

attraction repulsion

For most applications: Need to go for very large detunings!

Page 40: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Why an optical trap?

+ Potential is independent of spin state, magnetic field

+ Very flexible opportunities to shape potentials, e.g. optical lattice

Challenge: • Typically, very large intensities are required to create the desired potential• Also, photon scattering has to be taken care of!

Page 41: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Evaporative cooling

Idea: Remove hottest atoms, while thermal equilibrium is maintained

Important figure of merit: Gain in phase space density per loss of particles d ln( )

d ln( )

D

N

Page 42: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

EV cooling techniques

• In magnetic traps, use RF fields to convert atoms to a high-field seeking state at distinct magnetic field (i.e. position)

position

pote

nti

al

Page 43: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

• In optical traps, reduce trap depth by reducing laser power.

EV cooling techniques

Page 44: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Evaporative cooling

Important quantities:• Truncation parameter:

• Ratio of good to bad collisions:

U

kT

loss

el

R

Bad collisions: E.g. dipolar relaxation, three-body recombination ….

Page 45: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Optimize EV cooling

Efficiency limited by

• Collision rate• Losses

Background gas (increase collision rate)Binary collisions (scales just as EV cooling)Three body collisions (go for low density)

• HeatingPhoton scatteringParametric heatingAnti-evaporation (e.g. Majorana spin flips)

• Trap geometry

Page 46: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Efficiency

• Graph: Typical efficiencies ….

truncation parameter

EV

coolin

g e

ffici

en

cy

Page 47: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Optimize EV cooling

Geometry matters when the gas becomes (close to) hydrodynamic, e.g. trap frequency < collision rate:

Example for inefficient geometry:

Magnetic trap with gravitational sag

Page 48: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Which trap to use?

Magnetic trap:• Easy evaporation, • Well defined potential• Constant trap frequency

Optical trap• More freedom with trap potentials• Can trap atoms in absolute (magnetic) ground

state• Have to take care of photon scattering (use far

off-resonant traps!)

Page 49: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Absorption imaging

• resonant cross section of the atoms ~2

(depends on Clebsch-Gordan coefficients)• Considerable absorption already at very low

density:

Image shadow on CCD!

Important advantage: “See” ALL scattered photons

Page 50: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Absorption imaging

( , , ) (0

, )( , ) absn x y z l x ytI I x y e

In the same way, measure momentum distribution:Time of flight (TOF): measure spatial distribution after a certain time of flight

This is the quantity we measure

Page 51: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Challenges when cooling Fermions

• Identical ultracold particles do not collide (s-waves).

• “Pauli blocking” makes cooling of a degenerate Fermi gas very inefficient.

• Also: Very low temperatures required to observe superfluidity:

C FF

~ exp2

T Tk a

Page 52: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Idea: Use Bosons to cool Fermions

• Bosons can be cooled with “established” technology

• Not the first degenerate Fermi gas, but a very instructive one:

• 6Li cooled by bosonic 7Li (Rice U., ENS Paris):

• Difference of just one neutron makes all the difference!

Page 53: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

6Li+7Li cooled together

• Two MOTs for the two isotopes (10GHz isotope shift)

• Magnetic trap traps both isotopes …

Page 54: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Challenges to achieve very low T

• Bosons condense to BEC -> heat capacity drops to zero, no more cooling effect

• Interactions between Fermions are necessary to observe interesting physics -> spin mixture is needed

• To study pairing effects, wish to tune pairing energy!

• All of this: Tomorrow by Henning Moritz

Page 55: Creating new states of matter: Selim Jochim MPI für Kernphysik and Universität Heidelberg Experiments with ultra-cold Fermi gases Henning Moritz ETH Zürich.

Literature

• Metcalf and van der Straaten:“Laser cooling and trapping”

• Ketterle, Durfee and Stamper-Kurn“Making, probing and understanding Bose-Einstein condensates”