Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor...

21
Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa [email protected], http://ibivu.cs.vu.nl, Tel.

Transcript of Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor...

Page 1: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Course Sequence Analysisfor Bioinformatics Master’s

Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa

[email protected], http://ibivu.cs.vu.nl, Tel. 47649, Rm R4.41

Page 2: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Sequence Analysis course scheduleLectures

[wk 45] 01/11/04 Introduction Lecture 1[wk 45] 04/11/04 Sequence Alignment 1 Lecture 2[wk 46] 08/11/04 Sequence Alignment 2 Lecture 3[wk 46] 11/11/04 Sequence Alignment 3 Lecture 4[wk 47] 15/11/04 Multiple Sequence Alignment 1 Lecture 5[wk 47] 18/11/04 Multiple Sequence Alignment 2 Lecture 6[wk 48] 22/11/04 Multiple Sequence Alignment 3 Lecture 7[wk 48] 25/11/04 Sequence Databank Searching 1Lecture 8[wk 49] 29/11/04 Sequence Databank Searching 2Lecture 9[wk 49] 02/12/04 Pattern Matching 1 Lecture 10[wk 50] 06/12/04 Pattern Matching 2 Lecture 11[wk 50] 09/12/04 Genome Analysis Lecture 12[wk 51] 13/12/04 (lecture rm TBA)

Phylogenetics/Overview Lecture 13

Page 3: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Sequence Analysis course schedulePractical assignments

• There will be four practical assignments you will have to carry out. Each assignment will be introduced and placed on the IBIVU website:

1. Pairwise alignment (DNA and protein) (Victor/Radek)2. Multiple sequence alignment (insulin family) (Victor)3. Pattern recognition (Jens)4. Database searching (Jens)

• Optionally, you can further do an assignment on programming your own sequence analysis method (assignment ‘Dynamic programming’ supervised by Bart). This assignment will give you bonus points for your final mark but is not required.

Page 4: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Sequence Analysis course final mark

Task Fraction1. Oral exam 1/2

2. Assignment Pairwise alignment 1/8

3. Assignment Multiple sequence alignment 1/8

4. Assignment Pattern recognition 1/8

5. Assignment Database searching 1/8

6. Optional assignment 1/8 (bonus)

Dynamic programming

Page 5: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Bioinformatics staff for this course

• Jens Kleinjung – UD (1/11/02)

• Victor Simossis – PhD (1/12/02)

• Radek Szklarczyk - PhD (1/03/03)

• Bart van Houte – PhD (1/09/04)

• Jaap Heringa – Grpldr (1/10/02)

Page 6: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Gathering knowledge

• Anatomy, architecture

• Dynamics, mechanics

• Informatics(Cybernetics – Wiener, 1948) (Cybernetics has been defined as the science of control in machines and animals, and hence it applies to technological, animal and environmental systems)

• Genomics, bioinformatics

Rembrandt, 1632

Newton, 1726

Page 7: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

MathematicsStatistics

Computer ScienceInformatics

BiologyMolecular biology

Medicine

Chemistry

Physics

Bioinformatics

Bioinformatics

Page 8: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Bioinformatics

“Studying informational processes in biological systems” (Hogeweg, early

1970s)• No computers necessary• Back of envelope OK

Applying algorithms with mathematical formalisms in biology (genomics) -- USA

“Information technology applied to the management and analysis of biological data” (Attwood and Parry-Smith)

Page 9: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Bioinformatics in the olden days• Close to Molecular Biology:

– (Statistical) analysis of protein and nucleotide structure

– Protein folding problem– Protein-protein and protein-nucleotide

interaction

• Many essential methods were created early on (BG era)– Protein sequence analysis (pairwise and

multiple alignment)– Protein structure prediction (secondary, tertiary

structure)

Page 10: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Bioinformatics in the olden days (Cont.)

• Evolution was studied and methods created– Phylogenetic reconstruction (clustering – NJ

method

Page 11: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

But then the big bang….

Page 12: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

The Human Genome -- 26 June 2000

Dr. Craig Venter

Celera Genomics

-- Shotgun method

Sir John Sulston

Human Genome Project

Page 13: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Human DNA

• There are about 3bn (3 109) nucleotides in the nucleus of almost all of the trillions (3.5 1012 ) of cells of a human body (an exception is, for example, red blood cells which have no nucleus and therefore no DNA) – a total of ~1022 nucleotides!

• Many DNA regions code for proteins, and are called genes (1 gene codes for 1 protein in principle)

• Human DNA contains ~30,000 expressed genes • Deoxyribonucleic acid (DNA) comprises 4 different

types of nucleotides: adenine (A), thiamine (T), cytosine (C) and guanine (G). These nucleotides are sometimes also called bases

Page 14: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Human DNA (Cont.)

• All people are different, but the DNA of different people only varies for 0.2% or less. So, only 2 letters in 1000 are expected to be different. Over the whole genome, this means that about 3 million letters would differ between individuals.

• The structure of DNA is the so-called double helix, discovered by Watson and Crick in 1953, where the two helices are cross-linked by A-T and C-G base-pairs (nucleotide pairs – so-called Watson-Crick base pairing).

• The Human Genome has recently been announced as complete (in 2004).

Page 15: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Genome sizeGenome sizeOrganism Number of base pairs

X-174 virus 5,386

Epstein Bar Virus 172,282

Mycoplasma genitalium 580,000

Hemophilus Influenza 1.8 106

Yeast (S. Cerevisiae) 12.1 106

Human Human 3.2 3.2 10 1099

Wheat 16 109

Lilium longiflorum 90 109

Salamander 100 109

Amoeba dubia 670 109

Page 16: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Humans have spliced genes…Humans have spliced genes…

Page 17: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Protein

mRNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

A gene codes for a proteinA gene codes for a protein

Page 18: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Genome information has changed bioinformatics

• More high-throughput (HTP) applications (cluster computing, GRID, etc.)

• More automatic pipeline applications• More user-friendly interfaces• Greater emphasis on biostatistics• Greater influence of computer science (machine

learning, software engineering, etc.)• More integration of disciplines, databases and

techniques

Page 19: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Protein Sequence-Structure-FunctionProtein Sequence-Structure-Function

Sequence

Structure

Function

Threading

Homology searching (BLAST)

Ab initio prediction and folding

Function prediction from structure

Page 20: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Luckily for bioinformatics…

• There are many annotated databases (i.e. DBs with experimentally verified information)

• We can relate biological macromolecules using evolution and then “steal” annotation of “neighbouring” proteins or DNA in the DB

• This works for sequence as well as structural information

• Problem we discuss in this course: how do we score the evolutionary relationships; i.e. we need to develop a measure to decide which molecules are (probably) neighbours and which are not

Page 21: Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa heringa@cs.vu.nl,

Modern bioinformatics is closely associated with genomics

• The aim is to solve the genomics information problem

• Ultimately, this should lead to biological understanding how all the parts fit (DNA, RNA, proteins, metabolites) and how they interact (gene regulation, gene expression, protein interaction, metabolic pathways, protein signalling, etc.)