Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength...

29
Coupling Superconducting Qubits and Generation of Entanglement

Transcript of Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength...

Page 1: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Coupling Superconducting Qubits andGeneration of Entanglement

Page 2: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Entangling two distant qubits

transmission line resonator can be used as a ‘quantum bus’

to create entangled states

Page 3: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Dispersive two-qubit J-coupling – Energy levels

qubit 1: transition frequency:

resonator:

qubit 2: constant frequency (5.5 GHz)

• direct coupling (g ~ 130 MHz)

g

• mediated J-coupling (J ~ 20 MHz)

J

[Majer et al., Nature 449 (2007)]

Page 4: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Dispersive regime – 2 qubits

transverse exchange (J-) couplingmediated by virtual photons

coupling strength determined by qubit-cavity coupling gj and detuning = a‐r:

qubit eigenstates (Bell states):

| (|eg |ge)/2| (|eg |ge)/2

Page 5: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Avoided level crossing

J

qubit A swept across resonance with fixed qubit Bcavity mediated coupling leads to an avoided crossing

J/

Page 6: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

2-qubit gate: iSWAP gate using ge eg transitions

qubit B

qubit A

|eg|ge

|ee

|gg

|eg

|ge

Page 7: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

2-qubit gate: iSWAP gate using ge eg transitions

Re[||] Im[||]+ local phase transformation:

Page 8: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Characterisation of two-qubit state:

Is it sufficient to measure single qubit observables

to fully reconstruct any arbitrary two-qubit state?

1. Yes – it is sufficient.2. No – more observables need to be measured.3. Maybe.

and

Page 9: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement[Photons: Weihs et al., PRL 81 (1998); supercond. qubits: Steffen et al., Science 313 (2006).

Page 10: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with individual readout

table of single shot values (±1):k σz

k 1

1 +12 -1… …K -1

Page 11: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with individual readout

table of single shot values (±1):k σz

k 1 1 σzk

1 +1 +12 -1 -1… … …K -1 +1

Page 12: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with individual readout

table of single shot values (±1):k σz

k 1 1 σzk σz

k σzk

1 +1 +1 (+1).(+1) = +12 -1 -1 (-1).(-1) = +1… … … …K -1 +1 (-1).(+1)=-1

Page 13: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with individual readout

rotation of qubit: h σx 1i, h 1 σzi and h σx σzi are measured

Page 14: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with individual readout

orh σx 1i, h 1 σyi and h σx σyi, a.s.o.

-> all combinations of {σx, σy, σz} give full information about the state

Page 15: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Correlation measurement with joint readout

Circuit QED-Setup:

• single qubit operations• only single detection device

Page 16: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Two qubit setup

joint averaged read-out of two-qubit state:

dispersive two-qubit Hamiltonian: [Majer et al., Nature 449 (2007)]

Page 17: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Homodyne measurement

Amplitude difference (δQ) depends on state of second qubit:

qubit-qubit correlations can be determined from transmission measurement

Page 18: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Measurement operator

Homodyne voltage measurement:

steady state amplitude:

++

-+

+-

--

Page 19: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Measurement operator

Integrated Q-quadrature signaldetermines measurement operator:

Non-vanishing σz σz term for qubit-qubit correlations, e.g.:

Page 20: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Quantum Teleportation

Qubit A: Qubit B, C:

Alice Bob

Bell state measurement:

If Bell state 1:

No local interaction!

If Bell state 2:

classical communication

U

Page 21: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Teleportation Circuit

Bell MeasurementMeasurement + classical communication

Teleportation:transmission of quantum bit (qubit A) from Alice to Bobusing a pair of entangled qubits (qubits B+C)

Preparation of Bell state

Page 22: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

|fgi

|eei coupling J2

ee-level interacts with fg-level coupling strength J2~ 40-80 MHz (g ~ 300 MHz) fast, non-adiabatic tuning of ee/fg levels into resonance 2 - rotation after t=/J2

|ee -state picks up phase ei2/2= -1

2-qubit gate: C-Phase gate using ee fg transitions

Page 23: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

J2

|gg |gg

|ge

|ee|fg

|eg

2-qubit gate: C-Phase gate using ee <-> fg transitions

– |ee|ee|ge|ge|eg|eg|gg|gg

gate operation:C-Phase = universal 2-qubit gate

qubit A qubit B

Page 24: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Teleportation Circuit

implemented three qubit tomography at step III

Bell MeasurementMeasurement + classical communication

Teleportation:transmission of quantum bit (qubit A) from Alice to Bobusing a pair of entangled qubits (qubits B+C)

Preparation of Bell state

Page 25: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

ETH Quantum processor platform with 3-Qubits

• Full individual coherent qubit controlvia local charge and flux lines

• Large coupling strength to resonator g ~ 300 - 350 MHz

• Transmon coherences times: T1 ~ 0.8 - 1.2 s, T2 ~ 0.4 – s.

[Baur, Fedorov, Steffen, SF, da Silva, Wallraff. arXiv:1107.4774]

Page 26: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Example: State to be teleported on qubit A is

fidelity 88%

[Baur, Fedorov, Steffen, Filipp, da Silva, Wallraff. PRL 108, 040502 (2012)]

State tomography of the entangled 3-qubit state

Simulating measurement of qubit A and B with projection on |gAgB:

Page 27: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

DiVincenzo Criteria fulfilled for Superconducting Qubits

for Implementing a Quantum Computer in the standard (circuit approach) to quantum information processing (QIP):

#1. A scalable physical system with well-characterized qubits.#2. The ability to initialize the state of the qubits.#3. Long (relative) decoherence times, much longer than the gate-operation time.#4. A universal set of quantum gates.#5. A qubit-specific measurement capability.

plus two criteria requiring the possibility to transmit information:

#6. The ability to interconvert stationary and mobile (or flying) qubits.#7. The ability to faithfully transmit flying qubits between specified locations.

Page 28: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Recent trends I – transmon in 3D cavity

Transmon in a three-dimensional cavity: lifetimes (T1) ~ 100s

Questions: Tunabiliy? Scalability?

Page 29: Coupling Superconducting Qubits and Generation of Entanglement€¦ · • Large coupling strength to resonator g ~ 300 - 350 MHz • Transmon coherences times: T1 ~ 0.8 - 1.2 s,

Spin ensembles (NV centers) – superconducting circuits[cavity-NV: Kubo et al., PRL 105, 140502 (2010); Schuster et al., PRL 205, 140501 (2010)]

Electrons on Helium[Schuster et al., PRL 105, 040503 (2010)]

Charged particles (Ions)[Tian et al., PRL 92, 247902(2004)]

Atomic ensembles (BEC) [Verdu, PRL 103, 043603 (2009)]

[Kubo, et al. PRL 107, 220501 (2011)]

Recent trends II – Hybrid Circuit QED

Rydberg atoms[Hogan et al., PRL 108, 063004 (20012)]