Coupling Di erent Tra c Models - UCLAhelper.ipam.ucla.edu/publications/traws1/traws1_13185.pdf ·...

73
Coupling Different Traffic Models Francesca Marcellini Department of Mathematics and Applications University of Milano–Bicocca, Italy September 28th - October 2nd, 2015 Mathematical Foundations of Traffic IPAM, UCLA, Los Angeles, USA

Transcript of Coupling Di erent Tra c Models - UCLAhelper.ipam.ucla.edu/publications/traws1/traws1_13185.pdf ·...

Coupling Different Traffic Models

Francesca Marcellini

Department of Mathematics and ApplicationsUniversity of Milano–Bicocca, Italy

September 28th - October 2nd, 2015

Mathematical Foundations of TrafficIPAM, UCLA, Los Angeles, USA

Introduction

A Two-Phase Model

A Discrete–Continuous Description

A Traffic Model Aware of Real Time Data

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

Different drivers have different maximal speeds

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

Different drivers have different maximal speeds{∂tρ+ ∂x (ρV ) = 0

V = w ψ(ρ)

ρ=ρ(t, x) traffic densityV =V (w , ρ) traffic speedw=w(t, x) > 0 maximal traffic speed

ψ ∈ C2([0,R]

), ψ(0) = 1, ψ(R) = 0, ψ′(ρ) ≤ 0, describes the

attitude of drivers to choose their speed depending on the trafficdensity at their location

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

Different drivers have different maximal speeds{∂tρ+ ∂x (ρV ) = 0

∂tw + v(ρ,w) ∂xw = 0

ρ=ρ(t, x) traffic densityV =w ψ(ρ) traffic speedw=w(t, x) > 0 maximal traffic speed

w is a specific feature of every single driver

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

We assume that there exists an overall maximal speed Vmax:{∂tρ+ ∂x

(ρ v(ρ,w)

)= 0

∂tw + v(ρ,w) ∂xw = 0with v = min

{Vmax,w ψ(ρ)

}

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

We assume that there exists an overall maximal speed Vmax:{∂tρ+ ∂x

(ρ v(ρ,w)

)= 0

∂tw + v(ρ,w) ∂xw = 0with v = min

{Vmax,w ψ(ρ)

}Since∂t(ρw) + ∂x

(ρw v(ρ,w)

)=

ρ(∂tw + v(ρ,w) ∂xw

)+ w

(∂tρ+ ∂x

(ρ v(ρ,w)

))we obtain an equivalent form of the system:

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

A 2× 2 system of conservation laws with a C0,1 flow:{∂tρ+ ∂x

(ρ v(ρ,w)

)= 0

∂t(ρw) + ∂x(ρw v(ρ,w)

)= 0

with v = min{

Vmax,w ψ(ρ)}

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

A 2× 2 system of conservation laws with a C0,1 flow:{∂tρ+ ∂x

(ρ v(ρ,w)

)= 0

∂t(ρw) + ∂x(ρw v(ρ,w)

)= 0

with v = min{

Vmax,w ψ(ρ)}

S. Blandin, D. Work, P. Goatin, B. Piccoli, A. Bayen: SIAM J.Appl.Math. 2011

R.M. Colombo, F. Marcellini, M. Rascle: SIAM J.Appl.Math. 2010

Two–Phase Model

The Classical LWR Model

∂tρ+ ∂x (ρV ) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V (ρ) traffic speed

With η = ρw :{∂tρ+ ∂x

(ρ v(ρ,w)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

with v = min

{Vmax,

η

ρψ(ρ)

}

Two–Phase Model

The speed bound Vmax induces two distinct phases:free phase F = {v = Vmax} high speed low densitycongested phase C =

{v = w ψ(ρ)

}low speed high density

The Fundamental Diagram

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

w

w

0

η

ρR

F

C

Two–Phase Model

The speed bound Vmax induces two distinct phases:free phase F = {v = Vmax} high speed low densitycongested phase C =

{v = w ψ(ρ)

}low speed high density

The Fundamental Diagram

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

w

w

0

η

ρR

F

C

Two–Phase Model

The speed bound Vmax induces two distinct phases:free phase F = {v = Vmax} high speed low densitycongested phase C =

{v = w ψ(ρ)

}low speed high density

The Fundamental Diagram

0

ρv

ρR

F

C

0

w

ρR

F

C

Vmax

w

w

0

η

ρR

F

C

Two–Phase Model – The Riemann Problem

For all states (ρl , ηl), (ρr , ηr ) ∈ F ∪ C , the Riemann problem of{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

with v(ρ, η) = min

{Vmax,

η

ρψ(ρ)

}with initial data

ρ(0, x) =

{ρl if x < 0ρr if x > 0

η(0, x) =

{ηl if x < 0ηr if x > 0

Theorem (R.M.Colombo, F.Marcellini, M.Rascle: SIAM J.Appl.Math. 2010)

The Riemann problem admits a unique self similar weak entropysolution (ρ, η)

Two–Phase Model – The Riemann Problem

For all states (ρl , ηl), (ρr , ηr ) ∈ F ∪ C , the Riemann problem of{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

with v(ρ, η) = min

{Vmax,

η

ρψ(ρ)

}with initial data

ρ(0, x) =

{ρl if x < 0ρr if x > 0

η(0, x) =

{ηl if x < 0ηr if x > 0

If(ρl , ηl) ∈ F (ρr , ηr ) ∈ C(ρl , ηl) ∈ C (ρr , ηr ) ∈ F

}⇒ Phase Transitions

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

w is specific of every single driver, w(t, p(t)

)= w(0, po)

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

w is specific of every single driver, w(t, p(t)

)= w(0, po)

n drivers, ` standard car length

⇒ ρ(t, x) '∑i

`

pi+1(t)− pi (t)χ]pi (t),pi+1(t)](x)

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

If

the follow-the-leader model

pi = v

(`

pi+1−pi ,wi

)pn+1 = Vmax

pi (0) = po,i

is such that

∑i

`

pi+1(t)− pi (t)χ]pi (t),pi+1(t)](x)→ ρ(t, x) a.e.

then ρ solves the macroscopic model.

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

If the follow-the-leader model

pi = v

(`

pi+1−pi ,wi

)pn+1 = Vmax

pi (0) = po,i

is such that

∑i

`

pi+1(t)− pi (t)χ]pi (t),pi+1(t)](x)→ ρ(t, x) a.e.

then ρ solves the macroscopic model.

Follow-The-Leader Model

A single driver starting from po at t = 0 follows the particle pathp = p(t) that solvesp = v

(ρ(t, p(t)

),w((t, p(t)

))p(0) = po

v(ρ,w) = min{

Vmax, w ψ(ρ)},

If the follow-the-leader model

pi = v

(`

pi+1−pi ,wi

)pn+1 = Vmax

pi (0) = po,i

is such that

∑i

`

pi+1(t)− pi (t)χ]pi (t),pi+1(t)](x)→ ρ(t, x) a.e.

then ρ solves the macroscopic model.

Follow-The-Leader Model

Scheme

(ρ, w)

(ρ(t),w(t)

)

discretize

↓ ↑

n→ +∞

(pni , w

ni ) →

(pni (t),wn

i (t))

Cauchy Theorem

Follow-The-Leader Model

Scheme

(ρ, w)

(ρ(t),w(t)

)discretize ↓ ↑

n→ +∞

(pni , w

ni ) →

(pni (t),wn

i (t))

Cauchy Theorem

Follow-The-Leader Model

Scheme

(ρ, w)

(ρ(t),w(t)

)discretize ↓ ↑

n→ +∞

(pni , w

ni ) →

(pni (t),wn

i (t))

Cauchy Theorem

Follow-The-Leader Model

Scheme

(ρ, w)

(ρ(t),w(t)

)discretize ↓ ↑ n→ +∞

(pni , w

ni ) →

(pni (t),wn

i (t))

Cauchy Theorem

Follow-The-Leader Model

Scheme

(ρ, w) →(ρ(t),w(t)

)discretize ↓ ↑ n→ +∞

(pni , w

ni ) →

(pni (t),wn

i (t))

Cauchy Theorem

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}

0

ρv

ρR

F

C

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}

0

ρv

ρR

F

C

I A.Aw, M.Rascle: SIAM J.Appl.Math., 2000

I M.Zhang: Transportation Research, 2002

I P.Goatin: Math. Comput. Modelling, 2006{∂tρ+ ∂x

[ρ v(ρ, y)

]= 0

∂ty + ∂x[y v(ρ, y)

]= 0

v(ρ, y) = yρ − p(ρ)

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}0

ρv

ρR

F

C

I A.Aw, M.Rascle: SIAM J.Appl.Math., 2000

I M.Zhang: Transportation Research, 2002

I P.Goatin: Math. Comput. Modelling, 2006{∂tρ+ ∂x

[ρ v(ρ, y)

]= 0

∂ty + ∂x[y v(ρ, y)

]= 0

v(ρ, y) = yρ − p(ρ)

ρ v

0 R

ρ

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}0

ρv

ρR

F

C

R.M.Colombo: SIAM J. Appl. Math., 2002

Free flow: (ρ, q) ∈ F , Congested flow: (ρ, q) ∈ C ,

∂tρ+ ∂x[ρ · vF (ρ)

]= 0,

{∂tρ+ ∂x

[ρ · vC (ρ, q)

]= 0

∂tq + ∂x[(q − q∗) · vC (ρ, q)

]= 0

vF (ρ) =(1− ρ

R

)· V vC (ρ, q) =

(1− ρ

R

)· qρ

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}0

ρv

ρR

F

C

R.M.Colombo: SIAM J. Appl. Math., 2002

ρ v

0 R

ρ

F

C

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

Traffic Modeling – Other Macroscopic Models{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}0

ρv

ρR

F

C

R.M.Colombo: SIAM J. Appl. Math., 2002

ρ v

0 R

ρ

F

C

I J.P.Lebacque, S.Mammar, H.Haj Salem: ISTTT, 2007

A Kinetic Model{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}S.Benzoni-Gavage, R.M.Colombo, P.Gwiazda: Proc. R. Soc. London, 2006

∂tr(t, x ; w) + ∂x

w r(t, x ; w)ψ

(∫ w

wr(t, x ; w ′) dw ′

) = 0 .

The unknown r = r(t, x ,w) is the probability density of vehicleshaving maximal speed w that at time t are at point x

A Kinetic Model{∂tρ+ ∂x

(ρ v(ρ, η)

)= 0

∂tη + ∂x(η v(ρ, η)

)= 0

v(ρ, η) = min{

Vmax,ηρ ψ(ρ)

}S.Benzoni-Gavage, R.M.Colombo, P.Gwiazda: Proc. R. Soc. London, 2006

∂tr(t, x ; w) + ∂x

w r(t, x ; w)ψ

(∫ w

wr(t, x ; w ′) dw ′

) = 0 .

If the measure r solves the kinetic model and is such that

r(t, x ; ·) = ρ(t, x) δw(t,x)

than (ρ,w) solves the 2−phase model

Experimental Fundamental Diagrams

B.Kerner K.M.Kockelman

Traffic and Granular Flow Transportation, 2001

Springer Verlag, 2000

Experimental Fundamental Diagrams

B.Kerner K.M.Kockelman

Traffic and Granular Flow Transportation, 2001

Springer Verlag, 2000

0

ρv

ρR

F

CFundamental Diagram byR.M. Colombo, F. Marcellini, M. Rascle

SIAM J. Appl. Math. 2010

Discrete–Continuous Description

The Macroscopic Part: LWR Model

∂tρ+ ∂x (ρ v) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density v v = v(ρ) traffic speed

The Microscopic Part: Follow-the-Leader Model

pi = v

(`

pi+1 − pi

)pi = pi (t) position of the i−th driver, for i = 1, ..., n` > 0 vehicles’ lenght and

pi+1 − pi ≥ `

Discrete–Continuous Description

The Macroscopic Part: LWR Model

∂tρ+ ∂x (ρ v) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density v v = v(ρ) traffic speed

The Microscopic Part: Follow-the-Leader Model

pi = v

(`

pi+1 − pi

)pi = pi (t) position of the i−th driver, for i = 1, ..., n` > 0 vehicles’ lenght and

pi+1 − pi ≥ `

Discrete–Continuous Description

The Macroscopic Part: LWR Model

∂tρ+ ∂x (ρ v) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density v v = v(ρ) traffic speed

The Microscopic Part: Follow-the-Leader Model

pi = v

(`

pi+1 − pi

)pi = pi (t) position of the i−th driver, for i = 1, ..., n` > 0 vehicles’ lenght and

pi+1 − pi ≥ `

Discrete–Continuous Description

The Case LWR-FtL

∂tρ+ ∂x(ρ v(ρ)

)= 0 x < p1(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = w(t)ρ(0, x) = ρ(x) x ≤ p1

p(0) = p

Theorem (R.M. Colombo, F. Marcellini: Math. Meth. Appl. Sci., 2014)

Discrete–Continuous Description

The Case LWR-FtL

∂tρ+ ∂x(ρ v(ρ)

)= 0 x < p1(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = w(t)ρ(0, x) = ρ(x) x ≤ p1

p(0) = p

Theorem (R.M. Colombo, F. Marcellini: Math. Meth. Appl. Sci., 2014)

There exists a unique solution (ρ, p) such that

ρ ∈ C0(

[0,T ]; (L1 ∩ BV)(R; [0, 1]))

ρ(t, x) = 0 for x > p1(t)

p ∈ W1,∞([0,T ];Rn)

Discrete–Continuous Description

The Case LWR-FtL

∂tρ+ ∂x(ρ v(ρ)

)= 0 x < p1(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = w(t)ρ(0, x) = ρ(x) x ≤ p1

p(0) = p

Theorem (R.M. Colombo, F. Marcellini: Math. Meth. Appl. Sci., 2014)

There exists a constant C > 0 such that∥∥∥ρ(t) − ρ′(t)∥∥∥L1

≤ C∥∥∥ρ− ρ′

∥∥∥L1

+ C(1 + t)

[∥∥∥p − p′∥∥∥ +

∥∥∥w − w ′∥∥∥L1([0,t])

]e2

Lip(v)`

t

∥∥∥p(t) − p′(t)∥∥∥ ≤

[∥∥∥p − p′∥∥∥ +

∥∥∥w − w ′∥∥∥L1([0,t])

]e2

Lip(v)`

t .

Discrete–Continuous Description

The Case FtL-LWR

∂tρ+ ∂x(ρ v(ρ)

)= 0 x > pn(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = v(ρ(t, pn(t))

)ρ(0, x) = ρ(x) x ≥ pn

p(0) = p

I Well posedness result as before

I Extension to FtL – LWR – FtL – LWR . . .

I With fixed boundary and micro-macro transitionsC. Lattanzio, B. Piccoli: Math. Mod. Meth. Appl. Sci., 2010

Discrete–Continuous Description

The Case FtL-LWR

∂tρ+ ∂x(ρ v(ρ)

)= 0 x > pn(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = v(ρ(t, pn(t))

)ρ(0, x) = ρ(x) x ≥ pn

p(0) = p

I Well posedness result as before

I Extension to FtL – LWR – FtL – LWR . . .

I With fixed boundary and micro-macro transitionsC. Lattanzio, B. Piccoli: Math. Mod. Meth. Appl. Sci., 2010

Discrete–Continuous Description

The Case FtL-LWR

∂tρ+ ∂x(ρ v(ρ)

)= 0 x > pn(t)

pi = v(

`pi+1−pi

)i = 1, . . . , n − 1

pn = v(ρ(t, pn(t))

)ρ(0, x) = ρ(x) x ≥ pn

p(0) = p

I Well posedness result as before

I Extension to FtL – LWR – FtL – LWR . . .

I With fixed boundary and micro-macro transitionsC. Lattanzio, B. Piccoli: Math. Mod. Meth. Appl. Sci., 2010

Discrete–Continuous Description

The Case LWR-FtL

Discrete–Continuous Description

The Case FtL-LWR

The Next Step

x

t

ρ

ρ

ρ

ρ

ρ

The Next Step

x

t

ρ

ρ

ρ

ρ

ρ

I Millennium Project

I D.B. Work, S. Blandin, O. Tossavainen, B. Piccoli, A. Bayen: Appl.

Math. Res. Express, 2010

I C. Lattanzio, A. Maurizi, B. Piccoli: SIAM J. Math. Anal., 2011

I A. Cabassi, P. Goatin: Res. Report INRIA, 2013

The Next Step

x

t

ρ

ρ

ρ

ρ

ρ

I A. Alessandri, R. Bolla, M. Repetto: Proc. Amer. Control Conf.,

2003

I P. Cheng, Z. Qiu, B. Ran: Proc. IEEE ITSC’06, 2006

I J.-C. Herrera, D. Work, R. Herring, J.Ban, Q. Jacobson, A. Bayen:

Transp. Res. C, 2009

An Inverse Problem for 1D Scalar Conservation Laws

Given the initial density ρo = ρo(x)

and the measured trajectory p = p(t)

find the best speed law v = v(ρ), i.e., so that∫ T

0

∣∣∣p(t)− v(ρ(t, p(t)+

)∣∣∣ dt is minimal

where

{∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) = ρ0(x)

I S. Fan, M. Herty, B. Seibold: Netw. Heterog. Media, 2014

A solution may fail to exist

An Inverse Problem for 1D Scalar Conservation Laws

Given the initial density ρo = ρo(x)

and the measured trajectory p = p(t)

find the best speed law v = v(ρ), i.e., so that∫ T

0

∣∣∣p(t)− v(ρ(t, p(t)+

)∣∣∣ dt is minimal

where

{∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) = ρ0(x)

I S. Fan, M. Herty, B. Seibold: Netw. Heterog. Media, 2014

A solution may fail to exist

An Inverse Problem for 1D Scalar Conservation Laws

Given the initial density ρo = ρo(x)

and the measured trajectory p = p(t)

find the best speed law v = v(ρ), i.e., so that∫ T

0

∣∣∣p(t)− v(ρ(t, p(t)+

)∣∣∣ dt is minimal

where

{∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) = ρ0(x)

I S. Fan, M. Herty, B. Seibold: Netw. Heterog. Media, 2014

A solution may fail to exist

Inverse Problem – A Negative Example

Class of speed laws: vε(ρ) = (1 + ερ)(1− ρ)

ρ1

1

0

v

ρ1

1

0

v

ρ1

1

0

v

Inverse Problem – A Negative Example

Class of speed laws: vε(ρ) = (1 + ερ)(1− ρ)

Measured trajectory: p(t) = t/2

ρε solves:

∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) =

{1/8 x < 03/8 x > 0

Inverse Problem – A Negative Example

Class of speed laws: vε(ρ) = (1 + ερ)(1− ρ)

Measured trajectory: p(t) = t/2

ρε solves:

∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) =

{1/8 x < 03/8 x > 0

ϕ : [−1/3, 1/3] → R

ε →∫ T

0

∣∣∣∣p(t)− vε(ρε(t, p(t)+

))∣∣∣∣dt

Inverse Problem – A Negative Example

Class of speed laws: vε(ρ) = (1 + ερ)(1− ρ)

Measured trajectory: p(t) = t/2

ρε solves:

∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) =

{1/8 x < 03/8 x > 0

ϕ : [−1/3, 1/3] → R

ε →

(

38 + 7ε

64

)T if ε> 0(

98 + 15ε

64

)T if ε≤ 0

Inverse Problem – A Negative Example

Class of speed laws: vε(ρ) = (1 + ερ)(1− ρ)

Measured trajectory: p(t) = t/2

ρε solves:

∂tρ+ ∂x

(ρ v(ρ)

)= 0

ρ(0, x) =

{1/8 x < 03/8 x > 0

ε

ϕ

Inverse Problem – A Positive Result

Class of Speed Laws: vV (ρ) = V (1− ρ) for V ∈ [V , V ].

ρ10

v

V

ρ10

vV

ρ10

v

V

Inverse Problem – A Positive Result

Class of Speed Laws: vV (ρ) = V (1− ρ) for V ∈ [V , V ].

Theorem (R.M.Colombo, F.Marcellini: Math. Mod. Meth. Appl. Sci.,2015)

Let ρo ∈ (L1 ∩ BV)(R; [0, 1]) and p ∈W1,∞([0,T ];R).

Let ρV solve

{∂tρV + ∂x

(V ρV (1− ρV )

)= 0

ρV (0, x) = ρo(x) .

Then, the map

ϕ : [V , V ] → R

V →∫ T

0

∣∣∣∣p(t)− vV

(ρV(t, p(t)+

))∣∣∣∣ dt

is continuous, provided

essinfx∈R ρo > ρ and essinft∈[0,T ] p ≥ V (1− 2ρ) .

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

x

t

V(t, x , ρ) = ?

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

x

t

V(t, x , ρ) = ?

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

x

t

V(t, x , ρ) = v(ρ)

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

x

t

V(t, x , ρ) =2

1p(t) + 1

v(ρ)

A Traffic Model Aware of Real Time Data

Macroscopic Model∂tρ+ ∂x (ρV) = 0

t t ∈ [0,+∞[ time x x ∈ R space coordinateρ traffic density V V = V(t, x , ρ) traffic speed

x

t

V(t, x , ρ) = χ(x − p(t)

) 21

p(t) + 1v(ρ)

+(

1− χ(x − p(t)

))v(ρ)

A Traffic Model Aware of Real Time Data

Theorem (R.M.Colombo, F.Marcellini: Math. Mod. Meth. Appl. Sci.,2015)

The Cauchy Problem∂tρ+ ∂x

(ρV(t, x , ρ)

)= 0

V(t, x , ρ) = χ(x − p(t)

) 2p(t) v(ρ)p(t)+v(ρ) +

(1− χ

(x − p(t)

))v(ρ)

ρ(0, x) = ρo(x)

admits a unique solution.

I E.Y. Panov: Arch. Rat. Mech. An., 2010

I K.H. Karlsen, N.H. Risebro: Discr. Cont. Dyn. Syst. – A, 2003

I B. Andreianov, P. Benilan, S.N. Kruzkov: J. Func. An., 2000

A Traffic Model Aware of Real Time Data